Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(2): 853-866, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256950

RESUMO

N 6-methyladenosine (m6A) modification is critical for mRNA splicing, nuclear export, stability and translation. Fat mass and obesity-associated protein (FTO), the first identified m6A demethylase, is critical for cancer progression. Herein, we developed small-molecule inhibitors of FTO by virtual screening, structural optimization, and bioassay. As a result, two FTO inhibitors namely 18077 and 18097 were identified, which can selectively inhibit demethylase activity of FTO. Specifically, 18097 bound to the active site of FTO and then inhibited cell cycle process and migration of cancer cells. In addition, 18097 reprogrammed the epi-transcriptome of breast cancer cells, particularly for genes related to P53 pathway. 18097 increased the abundance of m6A modification of suppressor of cytokine signaling 1 (SOCS1) mRNA, which recruited IGF2BP1 to increase mRNA stability of SOCS1 and subsequently activated the P53 signaling pathway. Further, 18097 suppressed cellular lipogenesis via downregulation of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and C/EBPß. Animal studies confirmed that 18097 can significantly suppress in vivo growth and lung colonization of breast cancer cells. Collectively, we identified that FTO can work as a potential drug target and the small-molecule inhibitor 18097 can serve as a potential agent against breast cancer.

2.
Acta Pharmaceutica Sinica B ; (6): 853-866, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929330

RESUMO

N 6-methyladenosine (m6A) modification is critical for mRNA splicing, nuclear export, stability and translation. Fat mass and obesity-associated protein (FTO), the first identified m6A demethylase, is critical for cancer progression. Herein, we developed small-molecule inhibitors of FTO by virtual screening, structural optimization, and bioassay. As a result, two FTO inhibitors namely 18077 and 18097 were identified, which can selectively inhibit demethylase activity of FTO. Specifically, 18097 bound to the active site of FTO and then inhibited cell cycle process and migration of cancer cells. In addition, 18097 reprogrammed the epi-transcriptome of breast cancer cells, particularly for genes related to P53 pathway. 18097 increased the abundance of m6A modification of suppressor of cytokine signaling 1 (SOCS1) mRNA, which recruited IGF2BP1 to increase mRNA stability of SOCS1 and subsequently activated the P53 signaling pathway. Further, 18097 suppressed cellular lipogenesis via downregulation of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and C/EBPβ. Animal studies confirmed that 18097 can significantly suppress in vivo growth and lung colonization of breast cancer cells. Collectively, we identified that FTO can work as a potential drug target and the small-molecule inhibitor 18097 can serve as a potential agent against breast cancer.

3.
Onco Targets Ther ; 14: 4837-4846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34556998

RESUMO

In 2007, the fat mass and obesity-associated (FTO) gene was discovered initially to regulate body mass index and obesity and was subsequently found to be the first mRNA N6-methyladenosine (m6A) demethylation enzyme, which can demethylate m6A. A growing body of evidence shows that m6A modification is involved in a variety of cell biological processes, including cell proliferation, apoptosis, and self-renewal through different regulatory mechanisms. In recent years, a large number of studies have found that m6A modification play key role in the occurrence and development of tumors, such as acute myeloid leukemia, breast cancer, lung cancer, etc. As a function of m6A demethylase, FTO has attracted more and more attention in cancer. There is evidence that specific FTO single nucleotide polymorphisms (SNPs) may be significantly associated with overweight and cancer susceptibility by regulating the expression of related genes. Besides, when the expression level of FTO is altered or dysfunctional, it may be involved in the occurrence and progression of a variety of tumors as a tumor suppressor gene or oncogene, usually in an m6A-dependent manner. Further research found that FTO is involved in the development of different kinds of malignant tumors, but the mechanism is unknown. According to this review, The FTO gene's research progress in tumors is reviewed, aiming to find new targets for molecular pathological diagnosis and molecular targeted therapy of tumors.

4.
Front Genet ; 11: 559138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304380

RESUMO

In recent years, the prevalence of obesity and cancer have been rising. Since this poses a serious threat to human health, the relationship between the two has attracted much attention. This study examined whether fat mass and obesity-associated (FTO) genes are linked, taking into account a Genome-wide Association Study (GWAS) that revealed multiple single nucleotide polymorphism sites (SNPs) of the FTO gene, indicating an association between obesity and cancer in different populations. FTO proteins have been proved to participate in adipogenesis and tumorigenesis with post-transcriptional regulation of downstream molecular expression or through the target of the mammalian target protein rapamycin (mTOR). FTO inhibitors have also been found to share anti-obesity and anti-cancer effects in vivo. In this review, we comprehensively discuss the correlation between obesity and cancer by measuring FTO gene polymorphism, as well as the molecular mechanism involved in these diseases, emphasizing FTO as the common genetic basis of obesity and cancer.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30105001

RESUMO

Fat mass and obesity-associated protein (FTO) single-nucleotide polymorphisms (SNPs) have been linked to increased body mass and obesity in humans by genome-wide association studies (GWAS) since 2007. Although some recent studies suggest that the obesity-related SNPs in FTO influence obesity susceptibility likely through altering the expression of the adjacent genes such as IRX3 and RPGRIP1L, rather than FTO itself, a solid link between the SNP risk genotype and the increased FTO expression in both human blood cells and fibroblasts has been reported. Moreover, multiple lines of evidence have demonstrated that FTO does play a critical role in the regulation of fat mass, adipogenesis, and body weight. Epidemiology studies also showed a strong association of FTO SNPs and overweight/obesity with increased risk of various types of cancers. As the first identified messenger RNA N6-methyladenosine (m6A) demethylase, FTO has been shown recently to play m6A-dependent roles in adipogenesis and tumorigenesis (especially in the development of leukemia and glioblastoma). Given the critical roles of FTO in cancers, the development of selective and effective inhibitors targeting FTO holds potential to treat cancers. This mini review discusses the roles and underlying molecular mechanisms of FTO in both obesity and cancers, and also summarizes recent advances in the development of FTO inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...