Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Protein J ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095592

RESUMO

The current investigation focused on separating Cerastes cerastes venom to produce the first Kunitz-type peptide. Based on its anti-trypsin effect, Cerastokunin, a 7.75 kDa peptide, was purified until homogenity by three steps of chromatography. Cerastokunin was found to include 67 amino acid residues that were obtained by de novo sequencing using LC-MALDI-MSMS. Upon alignment with Kunitz-type peptides, there was a high degree of similarity. Cerastokunin's 3D structure had 12% α-helices and 21% ß-strands with pI 8.48. Cerastokunin showed a potent anticoagulant effect by inhibiting the protease activity of thrombin and trypsin as well as blocking the intrinsic and extrinsic coagulation pathways. In both PT and aPPT, Cerastokunin increased the blood clotting time in a dose-dependent way. Using Lys48 and Gln192 for direct binding, Cerastokunin inhibited thrombin, Factor Xa and trypsin as shown by molecular docking. Cerastokunin exhibited a dose-response blockade of PARs-dependent pathway platelet once stimulated by thrombin. An increased concentration of Cerastokunin resulted in a larger decrease of tail thrombus in the mice-carrageenan model in an in vivo investigation when compared to the effects of antithrombotic medications. At all Cerastokunin doses up to 6 mg/kg, no in vivo toxicity was seen in challenged mice over the trial's duration.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399378

RESUMO

Activated blood coagulation factor X (FXa) plays a critical initiation step of the blood-coagulation pathway and is considered a desirable target for anticoagulant drug development. It is reversibly inhibited by nonvitamin K antagonist oral anticoagulants (NOACs) such as apixaban, betrixaban, edoxaban, and rivaroxaban. Thrombosis is extremely common and is one of the leading causes of death in developed countries. In previous studies, novel thiourea and oxime ether isosteviol derivatives as FXa inhibitors were designed through a combination of QSAR studies and molecular docking. In the present contribution, molecular dynamics (MD) simulations were performed for 100 ns to assess binding structures previously predicted by docking and furnish additional information. Moreover, three thiourea- and six oxime ether-designed isosteviol analogs were then examined for their drug-like and ADMET properties. MD simulations demonstrated that four out of the nine investigated isosteviol derivatives, i.e., one thiourea and three oxime ether ISV analogs, form stable complexes with FXa. These derivatives interact with FXa in a manner similar to Food and Drug Administration (FDA)-approved drugs like edoxaban and betrixaban, indicating their potential to inhibit factor Xa activity. One of these derivatives, E24, displays favorable pharmacokinetic properties, positioning it as the most promising drug candidate. This, along with the other three derivatives, can undergo further chemical synthesis and bioassessment.

3.
J Thromb Thrombolysis ; 57(2): 285-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932587

RESUMO

Following FDA approval in 2018, consensus guidelines recommend andexanet alfa as first-line therapy for the management of life-threatening or uncontrollable bleeding in patients taking oral factor Xa (FXa) inhibitors. Dosing is based on the specific FXa inhibitor and dose, and the time elapsed since the patient's last administration of the medication. Additionally, at our institution, anti-FXa screens and drug-specific assays are obtained to guide subsequent dosing based on institution protocol. The objective of this study was to evaluate andexanet alfa utilization based on anti-Xa and FXa-inhibitor-specific assays and assess associated outcomes. This was a retrospective, single-center study aimed to describe the use of anti-FXa and specific direct oral anticoagulant assays to guide the utilization and administration of andexanet alfa. Secondary endpoints evaluated included thrombotic events during index hospitalization, hospital length of stay, hospital mortality, and discharge disposition. Overall, most patients were prescribed apixaban for atrial fibrillation and received andexanet alfa for reversal of intracranial hemorrhage in the emergency department. In general, DOAC-specific assays were concordant with last known times; however, there appears to be minimal correlation with DOAC-specific assay levels and survival. There were 9 thrombotic events (8.7%) in 8 patients. In this cohort, collection of an anti-FXa assay screen was a practical strategy to guide reversal with andexanet alfa; however, the addition of DOAC-specific assay levels may not enhance clinical utility.


Assuntos
Fator Xa , Trombose , Humanos , Fator Xa/uso terapêutico , Fator Xa/farmacologia , Preparações Farmacêuticas , Estudos Retrospectivos , Inibidores do Fator Xa/efeitos adversos , Trombose/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Anticoagulantes/farmacologia , Rivaroxabana/efeitos adversos
4.
Cells ; 12(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132169

RESUMO

Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.


Assuntos
Fibrilação Atrial , Fator Xa , Animais , Camundongos , Fator Xa/metabolismo , NF-kappa B/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais
5.
Molecules ; 28(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37836752

RESUMO

Thromboembolic disorders, arising from abnormal coagulation, pose a significant risk to human life in the modern world. The FDA has recently approved several anticoagulant drugs targeting factor Xa (FXa) to manage these disorders. However, these drugs have potential side effects, leading to bleeding complications in patients. To mitigate these risks, coagulation factor IXa (FIXa) has emerged as a promising target due to its selective regulation of the intrinsic pathway. Due to the high structural and functional similarities of these coagulation factors and their inhibitor binding modes, designing a selective inhibitor specifically targeting FIXa remains a challenging task. The dynamic behavior of protein-ligand interactions and their impact on selectivity were analyzed using molecular dynamics simulation, considering the availability of potent and selective compounds for both coagulation factors and the co-crystal structures of protein-ligand complexes. Throughout the simulations, we examined ligand movements in the binding site, as well as the contact frequencies and interaction fingerprints, to gain insights into selectivity. Interaction fingerprint (IFP) analysis clearly highlights the crucial role of strong H-bond formation between the ligand and D189 and A190 in the S1 subsite for FIXa selectivity, consistent with our previous study. This dynamic analysis also reveals additional FIXa-specific interactions. Additionally, the absence of polar interactions contributes to the selectivity for FXa, as observed from the dynamic profile of interactions. A contact frequency analysis of the protein-ligand complexes provides further confirmation of the selectivity criteria for FIXa and FXa, as well as criteria for binding and activity. Moreover, a ligand movement analysis reveals key interaction dynamics that highlight the tighter binding of selective ligands to the proteins compared to non-selective and inactive ligands.


Assuntos
Fator IXa , Fator Xa , Humanos , Fator Xa/química , Fator IXa/metabolismo , Simulação de Dinâmica Molecular , Ligantes , Fatores de Coagulação Sanguínea
6.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446638

RESUMO

Direct oral anticoagulants are an important and relatively new class of synthetic anticoagulant drugs commonly used for the pharmacotherapy of thromboembolic disorders. However, they still have some limitations and serious side effects, which continuously encourage medicinal chemists to search for new active compounds acting as human-activated coagulation factor X (FXa) inhibitors. Isosteviol is a nontoxic hydrolysis product of naturally occurring stevioside and possesses a wide range of therapeutic properties, including anticoagulant activity. The present contribution describes the in silico design of novel oxime ether isosteviol derivatives as well as a molecular modeling approach based on QSAR analysis and a docking simulation for searching for novel isosteviol-based compounds as potential FXa inhibitors. The elaborated ANN model, encompassing topological and geometrical information, exhibited a significant correlation with FXa-inhibitory activity. Moreover, the docking simulation indicated six of the most promising isosteviol-like compounds for further investigation. Analysis showed that the most promising derivatives contain heterocyclic, aromatic, five-membered moieties, with substituents containing chlorine or fluorine atoms. It is anticipated that the findings reported in the present work may provide useful information for designing effective FXa inhibitors as anticoagulant agents.


Assuntos
Anticoagulantes , Inibidores do Fator Xa , Humanos , Inibidores do Fator Xa/farmacologia , Inibidores do Fator Xa/uso terapêutico , Modelos Moleculares , Anticoagulantes/farmacologia , Fator Xa , Simulação por Computador , Simulação de Acoplamento Molecular
7.
Expert Rev Hematol ; 16(8): 593-605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335893

RESUMO

INTRODUCTION: Antithrombotic therapy field is undergoing rapid and significant changes during the past decade. In addition to new therapeutic strategies with existing targets, investigators are exploring the potential use of new targets to address unmet needs to treat patients with arterial diseases. AREAS COVERED: We aim to provide an update on and a comprehensive review of the antithrombic agents that are being explored in patients with arterial diseases. We discuss latest developments with respect to upstream antiplatelet agents, and collagen and thrombin pathway inhibitors. We searched PubMed databases for English language articles using keywords: antiplatelet agents, thrombin pathway inhibitors, collagen receptors, arterial disease. EXPERT OPINION: Despite implementation of potent P2Y12 inhibitors, there are numerous unmet needs in the treatment of arterial diseases including ceiling effect of currently available antiplatelet agents along with and an elevated risk of bleeding. The latter observations encouraged investigators to explore new targets that can attenuate the generation of platelet-fibrin clot formation and subsequent ischemic event occurrences with minimal effect on bleeding. These targets include collagen receptors on platelets and thrombin generation including FXa, FXIa, and FXIIa. In addition, investigators are studying novel antiplatelet agents/strategies to facilitate upstream therapy in high-risk patients.


Assuntos
Inibidores da Agregação Plaquetária , Trombose , Humanos , Inibidores da Agregação Plaquetária/efeitos adversos , Trombina/metabolismo , Trombina/farmacologia , Trombina/uso terapêutico , Trombose/tratamento farmacológico , Trombose/etiologia , Plaquetas/metabolismo , Hemorragia/etiologia , Hemorragia/tratamento farmacológico , Receptores de Colágeno/metabolismo
8.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111345

RESUMO

A small natural substance called cirsilineol (CSL), which was discovered in the plant Artemisia vestita, is lethal to many cancer cells and has antioxidant, anticancer, and antibacterial properties. Here, we investigated the underlying mechanisms of the antithrombotic action of CSL. We demonstrated that CSL has antithrombotic efficacy comparable to rivaroxaban, a direct blood coagulation factor Xa (FXa) inhibitor employed as a positive control, in inhibiting the enzymatic activity of FXa and the platelet aggregation induced by adenosine diphosphate (ADP) and U46619, a thromboxane A2 analog. The expression of P-selectin, the phosphorylation of myristoylated alanine-rich C kinase substrate by U46619 or ADP, and the activation of PAC-1 in platelets were inhibited by CSL. Nitric oxide production was increased by CSL in ADP- or U46619-treated human umbilical vein endothelial cells (HUVECs), although excessive endothelin-1 secretion was suppressed. CSL demonstrated strong anticoagulant and antithrombotic effects in a mouse model of arterial and pulmonary thrombosis. Our findings suggest that CSL is a potential pharmacological candidate for a novel class of anti-FXa and antiplatelet medications.

9.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902328

RESUMO

Direct FXa inhibitors are an important class of bioactive molecules (rivaroxaban, apixaban, edoxaban, and betrixaban) applied for thromboprophylaxis in diverse cardiovascular pathologies. The interaction of active compounds with human serum albumin (HSA), the most abundant protein in blood plasma, is a key research area and provides crucial information about drugs' pharmacokinetics and pharmacodynamic properties. This research focuses on the study of the interactions between HSA and four commercially available direct oral FXa inhibitors, applying methodologies including steady-state and time-resolved fluorescence, isothermal titration calorimetry (ITC), and molecular dynamics. The HSA complexation of FXa inhibitors was found to occur via static quenching, and the complex formation in the ground states affects the fluorescence of HSA, with a moderate binding constant of 104 M-1. However, the ITC studies reported significantly different binding constants (103 M-1) compared with the results obtained through spectrophotometric methods. The suspected binding mode is supported by molecular dynamics simulations, where the predominant interactions were hydrogen bonds and hydrophobic interactions (mainly π-π stacking interactions between the phenyl ring of FXa inhibitors and the indole moiety of Trp214). Finally, the possible implications of the obtained results regarding pathologies such as hypoalbuminemia are briefly discussed.


Assuntos
Fator X , Albumina Sérica Humana , Tromboembolia Venosa , Humanos , Anticoagulantes , Sítios de Ligação , Calorimetria/métodos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Termodinâmica , Fator X/antagonistas & inibidores
10.
Front Pharmacol ; 14: 1105880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909153

RESUMO

As a pathological coagulation process, thrombus can lead to many serious diseases, including ischemic stroke, acute myocardial infarction (AMI), acute coronary syndrome (ACS), and deep venous thrombosis (DVT). And anticoagulant drugs are one of the most effective ways to prevent and treat these diseases. Although macromolecular anticoagulant drugs such as low molecular weight heparins (LMWHs) are widely used in the clinic, their characteristics of requiring injectable use hinder their further promotion in the clinic, and the disadvantages of oral anticoagulant drugs, such as warfarin and dabigatran etexilate, which can easily cause bleeding adverse effects, are also not addressed. Factor Xa (FXa) has gained attention because it lies at the intersection of the coagulation cascade pathways, whereas subsequently introduced Factor Xa inhibitors such as rivaroxaban and apixaban, among others, have gained market popularity because of their high potency for anticoagulation and high specificity for Factor Xa when administered orally. But some of the drawbacks that these Factor Xa inhibitors have simultaneously such as fewer indications and the lack of an effective reversal drug when bleeding occurs are urgently addressed. The development of new Factor Xa inhibitors therefore becomes one means of addressing these questions. This article summarizes the small molecule Factor Xainhibitors developed from 2015 to 2022, classifies them according to their scaffolds, focuses on the analysis of their structure-activity relationships, and provides a brief assessment of them.

11.
J Biomol Struct Dyn ; 41(24): 15569-15583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994880

RESUMO

Snake venom C-type lectins (Snaclecs) display anticoagulant and platelet-modulating activities; however, their interaction with the critical components of blood coagulation factors was unknown. Computational analysis revealed that Echicetin (Snaclec from Echis carinatus venom) interacted with heavy chain of thrombin, and heavy and light chains of factor Xa (FXa). Based on FXa and thrombin binding regions of Echicetin, the two synthetic peptides (1A and 1B) were designed. The in silico binding studies of the peptides with thrombin and FXa showed that peptide 1B interacted with both heavy and light chains of thrombin and, peptide 1A interacted with only heavy chain of thrombin. Similarly, peptide 1B interacted with both heavy and light chains of FXa; however, peptide 1A interacted only with heavy chain of FXa. Alanine screening predicted the hot-spots residues for peptide 1A (Aspartic acid6, Valine8, Valine9, and Tyrosine17 with FXa, and Isoleucine14, Lysine15 with thrombin) and peptide 1B (Valine16 with FXa). Spectrofluorometric interaction study showed a lower Kd value for peptide 1B binding with both FXa and thrombin than peptide 1A, indicating higher binding strength of the former peptide. The circular dichroism spectroscopy also established the interaction between thrombin and the custom peptides. The in vitro study demonstrated higher anticoagulant activity of peptide 1B than peptide 1A due to higher inhibition of thrombin and FXa. Inhibition of anticoagulant activity of the peptides by respective anti-peptide antibodies corroborates our hypothesis that peptides 1A and 1B represent the anticoagulant regions of Echicetin and may be developed as antithrombotic peptide drug prototypes.Communicated by Ramaswamy H. Sarma.


Assuntos
Anticoagulantes , Lectinas Tipo C , Anticoagulantes/farmacologia , Anticoagulantes/química , Trombina , Venenos de Víboras/química , Peptídeos/farmacologia
12.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838931

RESUMO

Radix Vicatia thibetica de Boiss (RVT) is locally known as "Xigui" or "Dujiao-danggui" in Tibetan medicine and is often used as a substitute for Radix Angelica sinensis (RAS) in daily nourishing diets and clinical applications. In this study, we determined and compared the contents of polysaccharides, total coumarins, ferulic acid, total phenols, total flavonoids, chlorogenic acid, protein, and amino acids, and the composition of volatile oil in RVT and RAS. Biological activities, including antioxidants, scavenging of nitrite, inhibition of tyrosinase, thrombin, and coagulation FXa, were comparatively evaluated. Results showed that RVT contains more polysaccharides, phenols, flavonoids, proteins, glutamic acid, and lysine as compared to RAS. Among volatile compounds, 14 species are similar, and 20 species are different in RVT and RAS. Overall, among volatile compounds, the content of 3-N-Butylphthalide was higher, whereas the content of ligustilide was lower in RVT volatile oil. A significant difference was reported in the bioactivity of RVT and RAS. The biological activity of RVT had higher antioxidant, nitrite scavenging, and tyrosinase inhibitory activities, whereas it showed much lower thrombin and FXa inhibitory activities. Correlation analysis showed that the antioxidant, nitrite scavenging, and tyrosinase inhibitory activities were related to the phenol and flavonoid content, whereas the thrombin and FXa inhibitory activities were related to ferulic acid and volatile oil content. This study presents a comparative analysis of RAS and RVT's chemical compositions of antioxidant, nitrite-scavenging, inhibition of tyrosinase, thrombin, and coagulation FXa activities. It was found that both RVT and RAS have their unique advantages, and RVT has the potential to be utilized as functional foods, cosmetics, and medical products.


Assuntos
Angelica sinensis , Óleos Voláteis , Antioxidantes/química , Angelica sinensis/química , Nitritos , Monofenol Mono-Oxigenase , Trombina , Fenóis , Flavonoides/farmacologia , Óleos Voláteis/química , Extratos Vegetais/química , Polissacarídeos
13.
Bioorg Med Chem Lett ; 80: 129127, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634753

RESUMO

A series of pyrrolo[3,2-d]pyrimidineone compounds have been designed and synthesized as novel FXa inhibitors. Bioassay of the tested compounds showed moderate to excellent anticoagulant potency in vitro. Further FXa inhibitory and bioactivity evaluation in rats, the FeCl3-induced venous thrombosis model, showed that the compound 17a has good FXa inhibitory activity (IC50 = 1.57 nM) and in vivo antithrombotic potency. The anticoagulant effects of compound 17a were dose dependent whether in vitro or in vivo. The results further confirmed our hypothesis that the large conjugated structure is an ideal skeleton binding FXa.


Assuntos
Inibidores do Fator Xa , Trombose Venosa , Ratos , Animais , Fator Xa/metabolismo , Anticoagulantes
14.
Clin Chim Acta ; 538: 216-220, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574540

RESUMO

BACKGROUND: Direct oral anticoagulants (DOACs) may cause falsely increased levels of antithrombin (AT) activity depending on the AT activity method and the specific target of the DOAC. Activated carbon (AC) has proven to remove DOAC interference on PT, aPTT and LA assays. We evaluate whether AC could be useful to resolve DOAC interference on AT assays. METHODS: Normal pooled plasma (NPP) was diluted to obtain AT activity of 25 %, 50 % and 75 % respectively. The diluted NPPs were spiked with DOACs (apixaban, edoxaban, dabigatran and rivaroxaban) in concentrations of respectively 100, 250 and 500 ng/ml. DOAC concentrations and AT activity were tested at baseline and after treatment with 20 mg/ml AC. AT activity was measured with a FXa-based method (HemosIL Liquid Antithrombin®, Werfen). RESULTS: All DOAC concentrations were below the limit of quantification (LoQ) after addition of AC. DOAC interference on AT activity testing was removed by adding AC, resulting in correctly diagnosing low levels of AT for all dilutions. The influence of DOACs on AT activity was directly correlated to the concentration of the DOAC. As expected, only the anti-FXa DOACs influenced the used assay. CONCLUSIONS: AC effectively removes anti-FXa DOAC interference on FXa-based AT assays.


Assuntos
Antitrombinas , Carvão Vegetal , Humanos , Antitrombinas/farmacologia , Inibidores do Fator Xa/farmacologia , Inibidores do Fator Xa/uso terapêutico , Anticoagulantes/uso terapêutico , Testes de Coagulação Sanguínea , Rivaroxabana , Administração Oral
15.
Acta Haematol ; 146(2): 137-143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36538914

RESUMO

BACKGROUND: Management of anticoagulant therapy in COVID-19 patients is critical. Low-molecular-weight heparin (LMWH) thromboprophylaxis is already recommended, and anti-Factor Xa (anti-FXa) monitoring has been used to titrate LMWH doses. METHODS: Through a cross-sectional study, we evaluated anti-FXa activity in patients admitted to the ICU, receiving intermediate dose (30, 40, 50 mg, subcutaneously [SC], twice daily) or therapeutic dose (1 mg/kg, SC, Q12h) of enoxaparin to find whether the patients in these two groups achieved anti-FXa levels in the accepted thromboprophylaxis range. RESULTS: The occurrence of deep vein thrombosis was 26% in the therapeutic-dose group and 17% in the intermediate-dose group. D-dimer values were nearly 3.5-fold higher in those who received a therapeutic dose of anticoagulants than in those who received intermediate-dose thromboprophylaxis. Patients in the therapeutic-dose group had significantly higher IL-6 levels (p ≤ 0.001). More than one-third of the patients in the therapeutic-dose group (n = 8; 42.18%) and approximately half of the patients in the intermediate-dose group (n = 12; 52.2%) achieved the target range level of anti-FXa. Patients who received therapeutic doses were more likely to have anti-FXa levels above the expected range (47.4 vs 13% in the intermediate-dose group; p < 0.05). CONCLUSION: Therapeutic dose of enoxaparin in critically ill COVID-19-infected patients did not reduce the incidence of thromboembolic events and, on the other hand, may predispose these patients to increased risk of bleeding by increasing anti-FXa activity above the desired level. Administration of intermediate-dose thromboprophylaxis is suggested to achieve anti-FXa levels in the accepted thromboprophylaxis range.


Assuntos
COVID-19 , Tromboembolia Venosa , Humanos , Enoxaparina/uso terapêutico , Enoxaparina/farmacologia , Anticoagulantes , Heparina de Baixo Peso Molecular/uso terapêutico , Fator Xa , Estudos Transversais , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Tromboembolia Venosa/tratamento farmacológico , Inibidores do Fator Xa/uso terapêutico
16.
Front Cardiovasc Med ; 9: 991675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419490

RESUMO

Background: In case of bleeding patients and in acute care, the assessment of residual direct oral anticoagulant (DOAC) activity is essential for evaluating the potential impact on hemostasis, especially when a timely decision on urgent surgery or intervention is required. Viscoelastic tests are crucial in a modern goal-directed coagulation management to assess patients' coagulation status. However, the role of viscoelastic test to detect and quantify residual DOAC plasma levels is controversially discussed. The aim of this review was to systematically summarize the evidence of viscoelastic tests for the assessment of residual DOAC activity. Method: PubMed, Embase, Scopus, and the Cochrane Library were searched for original articles investigating the effect of rivaroxaban, apixaban, edoxaban, or dabigatran plasma levels on different viscoelastic tests of the adult population from database inception to December 31, 2021. Results: We included 53 studies from which 31 assessed rivaroxaban, 22 apixaban, six edoxaban, and 29 dabigatran. The performance of viscoelastic tests varied across DOACs and assays. DOAC specific assays are more sensitive than unspecific assays. The plasma concentration of rivaroxaban and dabigatran correlates strongly with the ROTEM EXTEM, ClotPro RVV-test or ECA-test clotting time (CT) and TEG 6s anti-factor Xa (AFXa) or direct thrombin inhibitor (DTI) channel reaction time (R). Results of clotting time (CT) and reaction time (R) within the normal range do not reliable exclude relevant residual DOAC plasma levels limiting the clinical utility of viscoelastic assays in this context. Conclusion: Viscoelastic test assays can provide fast and essential point-of-care information regarding DOAC activity, especially DOAC specific assays. The identification and quantification of residual DOAC plasma concentration with DOAC unspecific viscoelastic assays are not sensitive enough, compared to recommended anti-Xa activity laboratory measurements. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=320629], identifier [CRD42022320629].

17.
J Clin Lab Anal ; 36(10): e24695, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36099012

RESUMO

BACKGROUND: The high concentrated thrombin time (hcTT), a thrombin time modified by increasing the thrombin concentration, is a possible alternative assay to activated partial thromboplastin time (aPTT) in unfractionated heparin (UFH) monitoring. This study aimed to determine the optimal thrombin concentration used in the hcTT assay for UFH monitoring. METHODS: A total of 30 blood samples obtained from healthy volunteers were included in this study. Thrombin concentrations of 10.0, 15.0, 20.0, and 25.0 IU/ml were used in the hcTT assay. The consistency between the hcTT and anti-FXa assays was evaluated. To validate the hcTT assay, linearity, repeatability, reproducibility, and diagnostic performance of the assay were assessed. RESULTS: The hcTT assay using thrombin concentration of 15.0 IU/ml showed a strong correlation to the anti-FXa assay with R2 of 0.72 and the Spearman's correlation coefficient (rs ) of 0.97 (95% CI, 0.96-0.98). Within-run and day-to-day run variabilities of the assay were satisfactory (all coefficients of variation <10%). We found an excellent correlation between the results which were measured using different reagents with intra- or inter-laboratory instruments. Notably, as compared to the aPTT assay, the hcTT assay showed a significantly better performance in identifying the samples which contain UFH at the supratherapeutic level, with an AUC of 0.97 vs. 0.91, p = 0.049. CONCLUSION: The hcTT assay can be used as an alternative assay for UFH therapy monitoring. A further study using clinical samples is recommended to confirm the appropriateness of the hcTT assay for clinical application.


Assuntos
Heparina , Trombina , Anticoagulantes/uso terapêutico , Monitoramento de Medicamentos/métodos , Humanos , Tempo de Tromboplastina Parcial , Reprodutibilidade dos Testes , Tempo de Trombina
18.
Nutrients ; 14(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079779

RESUMO

Stevioside, one of the natural sweeteners extracted from stevia leaves, and its derivatives are considered to have numerous beneficial pharmacological properties, including the inhibition of activated coagulation factor X (FXa). FXa-PAR signaling is a possible therapeutic target to enhance impaired metabolism and insulin resistance in obesity. Thus, the goal of the investigation was a QSAR analysis using multivariate adaptive regression splines (MARSplines) applied to a data set of 20 isosteviol derivatives bearing thiourea fragments with possible FXa inhibitory action. The best MARS submodel described a strong correlation between FXa inhibitory activity and molecular descriptors, such as: B01[C-Cl], E2m, L3v, Mor06i, RDF070i and HATS7s. Five out of six descriptors included in the model are geometrical descriptors quantifying three-dimensional aspects of molecular structure, which indicates that the molecular three-dimensional conformation is of high significance for the MARSplines modeling procedure and obviously for FXa inhibitory activity. High model performance was confirmed through an extensive validation protocol. The results of the study not only confirmed the enhancement in pharmacological activity by the presence of chlorine in a phenyl ring, but also, and primarily, may provide the basis for searching for new active isosteviol analogues, which may serve as drugs or health-beneficial food additives in patients suffering from obesity and comorbidities.


Assuntos
Fator X , Relação Quantitativa Estrutura-Atividade , Diterpenos do Tipo Caurano , Humanos , Estrutura Molecular , Obesidade , Relação Estrutura-Atividade
19.
Molecules ; 27(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35807514

RESUMO

The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure-activity relationship (SAR) studies aimed at investigating para- or meta-benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments. To this end, twenty-three malonamide derivatives were synthesized and tested as inhibitors of fXa and thrombin (thr); the molecular determinants behind potency and selectivity were also studied by employing molecular docking. The malonamide linker, compared to the glycinamide one, does significantly increase anti-fXa potency and selectivity. The meta-benzamidine (P1) derivatives bearing 2',4'-difluoro-biphenyl as the P4 moiety proved to be highly potent reversible fXa-selective inhibitors, achieving inhibition constants (Ki) in the low nanomolar range. The most active compounds were also tested against cholinesterase (ChE) isoforms (acetyl- or butyrylcholinesterase, AChE, and BChE), and some of them returned single-digit micromolar inhibition potency against AChE and/or BChE, both being drug targets for symptomatic treatment of mild-to-moderate Alzheimer's disease. Compounds 19h and 22b were selected as selective fXa inhibitors with potential as multimodal neuroprotective agents.


Assuntos
Benzamidinas , Inibidores da Colinesterase , Inibidores do Fator Xa , Malonatos , Acetilcolinesterase , Benzamidinas/química , Butirilcolinesterase , Inibidores da Colinesterase/química , Desenho de Fármacos , Fator Xa , Inibidores do Fator Xa/química , Fibrinolíticos/química , Glicina/análogos & derivados , Glicina/química , Malonatos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
20.
J Cell Physiol ; 237(8): 3369-3380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675485

RESUMO

Cardiovascular disease (CVD) is the leading cause of death in various complications of type 2 diabetes mellitus (T2DM). Rivaroxaban (Xarelto; Bayer), an oral direct factor Xa (FXa) inhibitor, prevents the activation of the coagulation cascade in CVD. Considering its anticoagulant and anti-inflammatory effects, we assessed the hypothesis that rivaroxaban treatment may attenuate the vascular lesion and dysfunction in T2DM mice. C57BL/6, BKS-db/db, BKS-db/+, wild-type (WT), and NLRP3-/- mice were fed with standard chow or high-fat diet (HFD). Biochemical indexes, vascular lesions, and protein expression were evaluated using Western blot analysis, immunofluorescent staining, and RNA interference. Rivaroxaban presented favorable protection of vascular dysfunction in T2DM mice with significantly relieved vascular tension, intima-media thickness, and collagen deposition. Similar improvements in NLR family pyrin domain containing 3 (NLRP3) knockout groups and rivaroxaban pointed to the positive role of rivaroxaban against vascular dysfunction in diabetic mice by ameliorating NLRP3 inflammasome activation. Furthermore, the augmentation of inflammation and cell dysfunction in mice aortic endothelial cells (MAECs) and smooth muscle cells (MOVASs) induced by soluble FXa may be blocked by rivaroxaban via protease-activated receptors (PAR-1, PAR-2), mitogen-activated protein kinase (MAPK), and nuclear factor κ-B (NF-κB) pathway. The data indicate that the development of vascular dysfunction and inflammation in T2DM mice may be blocked by rivaroxaban in vivo and in vitro. Rivaroxaban treatment may also attenuate NLRP3 inflammasome activation via PARs, MAPK, and NF-κB pathway. This study provides mechanistic evidence of rivaroxaban therapies for vascular complications of T2DM.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inflamassomos , Rivaroxabana , Animais , Doenças Cardiovasculares/prevenção & controle , Espessura Intima-Media Carotídea , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Rivaroxabana/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...