Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1413690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948521

RESUMO

Objectives: The relationship between adiposity and sepsis has received increasing attention. This study aims to explore the causal relationship between life course adiposity and the sepsis incidence. Methods: Mendelian randomization (MR) method was employed in this study. Instrumental variants were obtained from genome-wide association studies for life course adiposity, including birth weight, childhood body mass index (BMI), childhood obesity, adult BMI, waist circumference, visceral adiposity, and body fat percentage. A meta-analysis of genome-wide association studies for sepsis including 10,154 cases and 454,764 controls was used in this study. MR analyses were performed using inverse variance weighted, MR Egger regression, weighted median, weighted mode, and simple mode. Instrumental variables were identified as significant single nucleotide polymorphisms at the genome-wide significance level (P < 5×10-8). The sensitivity analysis was conducted to assess the reliability of the MR estimates. Results: Analysis using the MR analysis of inverse variance weighted method revealed that genetic predisposition to increased childhood BMI (OR = 1.29, P = 0.003), childhood obesity (OR = 1.07, P = 0.034), adult BMI (OR = 1.38, P < 0.001), adult waist circumference (OR = 1.01, P = 0.028), and adult visceral adiposity (OR = 1.53, P < 0.001) predicted a higher risk of sepsis. Sensitivity analysis did not identify any bias in the MR results. Conclusion: The results demonstrated that adiposity in childhood and adults had causal effects on sepsis incidence. However, more well-designed studies are still needed to validate their association.


Assuntos
Adiposidade , Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Sepse , Humanos , Adiposidade/genética , Sepse/genética , Sepse/epidemiologia , Predisposição Genética para Doença , Obesidade Infantil/genética , Obesidade Infantil/epidemiologia , Obesidade Infantil/complicações , Adulto , Circunferência da Cintura , Criança , Masculino , Feminino
2.
Adv Exp Med Biol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38874889

RESUMO

To ensure optimum health and performance, lipid metabolism needs to be temporally aligned to other body processes and to daily changes in the environment. Central and peripheral circadian clocks and environmental signals such as light provide internal and external time cues to the body. Importantly, each of the key organs involved in insect lipid metabolism contains a molecular clockwork which ticks with a varying degree of autonomy from the central clock in the brain. In this chapter, we review our current knowledge about peripheral clocks in the insect fat body, gut and oenocytes, and light- and circadian-driven diel patterns in lipid metabolites and lipid-related transcripts. In addition, we highlight selected neuroendocrine signaling pathways that are or may be involved in the temporal coordination and control of lipid metabolism.

3.
J Agric Food Chem ; 72(23): 12935-12945, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38822796

RESUMO

Blister beetles of Epicauta impressicornis have attracted attention because they contain a large amount of cantharidin (CTD). To date, however, the synthesis and transfer of CTD in adults of E. impressicornis are largely unknown. Here, we showed that the larvae E. impressicornis are capable of synthesizing CTD and they consume CTD during pupation. Before sexual maturity, both male and female adults synthesized a small amount of CTD, while after sexual maturity, males produced larger amounts of CTD, but females did not. The newly synthesized CTD in males first appeared in the hemolymph and then accumulated in the reproductive system. During the mating, the males transferred CTD to the reproductive system of females. In addition, a farnesyl pyrophosphate synthase (FPPS) gene was identified in male E. impressicornis. RNA-seq analysis, quantitative RT-PCR, and RNA interference analyses were conducted to investigate expression patterns and the functional roles of E. impressicornis FPPS (EiFPPS). Our results indicate that EiFPPS is highly expressed in the fat body of males. Moreover, the knock-down of EiFPPS led to a significant decrease in CTD synthesis. The current study indicates that EiFPPS is expressed in the fat body to regulate CTD synthesis in male E. impressicornis blister beetles.


Assuntos
Cantaridina , Besouros , Corpo Adiposo , Geraniltranstransferase , Proteínas de Insetos , Animais , Besouros/genética , Besouros/metabolismo , Besouros/enzimologia , Cantaridina/metabolismo , Masculino , Corpo Adiposo/metabolismo , Corpo Adiposo/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Feminino , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo
4.
J Endocrinol Invest ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856966

RESUMO

PURPOSE: The aim of the study was to analyze the modification of total and regional body composition in early breast cancer patients treated with aromatase inhibitors (AIs). METHODS: This is a prospective, single-center, observational, longitudinal study. Four-hundred and twenty-eight patients treated with adjuvant aromatase inhibitors were enrolled at the Medical Oncology and Breast Unit of Spedali Civili Hospital in Brescia from September 2014 to June 2022. Several body composition parameters including total and regional fat and lean body mass were investigated with dual-energy X-ray absorptiometry (DXA) scan at baseline and after 18 months of treatment with aromatase inhibitors. RESULTS: A significant increase in fat body mass (mean + 7.2%, 95% confidence interval [CI]: 5.5;8.9%) and a reduction in lean body mass (mean -3.1%, 95% CI -3.9; -2.4) were documented in this population. The changes in fat and lean body mass varied considerably according to different body districts ranging between + 3.2% to + 10.9% and from-1.3% to -3.9%, respectively. CONCLUSION: Aromatase inhibitor adjuvant therapy in early breast cancer is associated with changes in body composition, with a wide variability among different body districts, leading to a risk of sarcopenic obesity. Supervised physical exercise that focuses on single body parts that may display detrimental variations may be beneficial for AIs treated patients.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38913262

RESUMO

The caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) is a prevalent pest in soybean plantations, managed using both natural and synthetic chemical products. However, the emergence of resistance in some populations emphasizes the need to explore alternative insecticides. Flupyradifurone, a neurotoxic insecticide, has not been previously used for controlling A. gemmatalis. This study evaluated the potential of flupyradifurone in the management of A. gemmatalis. Initially, the toxicity and anti-feeding effects, as well as histopathological and cytotoxic impacts, of flupyradifurone on A. gemmatalis were evaluated. Subsequently, the indirect effects of flupyradifurone on the midgut and fat body of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) were verified. The results indicate the susceptibility of caterpillars to flupyradifurone, with an LC50 of 5.10 g L-1. Furthermore, the insecticide adversely affects survival, induces an anti-feeding response, and inflicts damage on the midgut of the caterpillars. However, flupyradifurone also leads to side effects in the predator P. nigrispinus through indirect intoxication of the caterpillars, including midgut and fat body damage. While flupyradifurone demonstrates toxicity to A. gemmatalis, suggesting its potential for the chemical control of this pest, the indirect negative effects on the predator indicate the need for its controlled use in integrated pest management programs with the insecticide and the predator.

6.
Adv Exp Med Biol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38874891

RESUMO

Modern insects have inhabited the earth for hundreds of millions of years, and part of their successful adaptation lies in their many reproductive strategies. Insect reproduction is linked to a high metabolic rate that provides viable eggs in a relatively short time. In this context, an accurate interplay between the endocrine system and the nutrients synthetized and metabolized is essential to produce healthy offspring. Lipids guarantee the metabolic energy needed for egg formation and represent the main energy source consumed during embryogenesis. Lipids availability is tightly regulated by a complex network of endocrine signals primarily controlled by the central nervous system (CNS) and associated endocrine glands, the corpora allata (CA) and corpora cardiaca (CC). This endocrine axis provides hormones and neuropeptides that significatively affect tissues closely involved in successful reproduction: the fat body, which is the metabolic center supplying the lipid resources and energy demanded in egg formation, and the ovaries, where the developing oocytes recruit lipids that will be used for optimal embryogenesis. The post-genomic era and the availability of modern experimental approaches have advanced our understanding of many processes involved in lipid homeostasis; therefore, it is crucial to integrate the findings of recent years into the knowledge already acquired in the last decades. The present chapter is devoted to reviewing major recent contributions made in elucidating the impact of the CNS/CA/CC-fat body-ovary axis on lipid metabolism in the context of insect reproduction, highlighting areas of fruitful research.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38820803

RESUMO

The northern house mosquito, Culex pipiens, employs diapause as an essential survival strategy during winter, inducing important phenotypic changes such as enhanced stress tolerance, lipid accumulation, and extended longevity. During diapause, the cessation of reproductive development represents another distinctive phenotypic change, underlining the need for adjusted modulation of gene expressions within the ovary. Although considerable advancements in screening gene expression profiles in diapausing and non-diapausing mosquitoes, there remains a gap in tissue-specific transcriptomic profiling that could elucidate the complicated formation of diverse diapause features in Cx. pipiens. Here, we filled this gap by utilizing RNA sequencing, providing a detailed examination of gene expression patterns in the fat body and ovary during diapause compared to non-diapause conditions. Functional annotation of upregulated genes identified associations with carbohydrate metabolism, stress tolerance, immunity, and epigenetic regulation. The validation of candidate genes using quantitative real-time PCR verified the differentially expressed genes identified in diapausing mosquitoes. Our findings contribute novel insights into potential regulators during diapause in Cx. pipiens, thereby opening possible avenues for developing innovative vector control strategies.


Assuntos
Culex , Corpo Adiposo , Perfilação da Expressão Gênica , Ovário , Animais , Culex/genética , Culex/metabolismo , Culex/crescimento & desenvolvimento , Feminino , Corpo Adiposo/metabolismo , Ovário/metabolismo , Diapausa de Inseto , Redes e Vias Metabólicas , Transcriptoma , Especificidade de Órgãos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
8.
Fly (Austin) ; 18(1): 2352938, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38741287

RESUMO

To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.


Assuntos
Encéfalo , Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Mutação com Perda de Função , Interferência de RNA , Neurônios/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Mutação
9.
Artigo em Inglês | MEDLINE | ID: mdl-38649084

RESUMO

Melittin is a powerful toxin present in honeybee venom that is active in a wide range of animals, from insects to humans. Melittin exerts numerous biological, toxicological, and pharmacological effects, the most important of which is destruction of the cell membrane. The phospholipase activity of melittin and its ability to activate phospholipases in the venom contribute to these actions. Using analytical methods, we discovered that the honeybee Apis mellifera produces melittin not only in the venom gland but also in its fat body cells, which remain resistant to this toxin's effects. We suggest that melittin acts as an anti-bacterial agent, since its gene expression is significantly upregulated when honeybees are infected with Escherichia coli and Listeria monocytogenes bacteria; additionally, melittin effectively kills these bacteria in the disc diffusion test. We hypothesize that the chemical and physicochemical properties of the melittin molecule (hydrophilicity, lipophilicity, and capacity to form tetramers) in combination with reactive conditions (melittin concentration, salt concentration, pH, and temperature) are responsible for the targeted destruction of bacterial cells and apparent tolerance towards own tissue cells. Considering that melittin is an important current and, importantly, potential broad-spectrum medication, a thorough understanding of the observed phenomena may significantly increase its use in clinical practice.


Assuntos
Antibacterianos , Venenos de Abelha , Escherichia coli , Corpo Adiposo , Meliteno , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Venenos de Abelha/farmacologia , Venenos de Abelha/toxicidade , Abelhas , Escherichia coli/efeitos dos fármacos , Corpo Adiposo/metabolismo , Proteínas de Insetos/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Meliteno/farmacologia , Meliteno/toxicidade
10.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38646855

RESUMO

Ecdysone-induced protein 93 (E93), known as the 'adult-specifier' transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. Although E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discover that, in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNA is broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we reveal that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis that is necessary to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects, and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.


Assuntos
Metamorfose Biológica , Ovário , Reprodução , Animais , Feminino , Reprodução/genética , Metamorfose Biológica/genética , Ovário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Vitelogênese/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
11.
Insects ; 15(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667374

RESUMO

The morphological changes in fat body cells, tergal gland cells, and the surface areas of the cell nuclei were determined in queen bees of the subspecies Apis mellifera carnica. This study focused on 1-, 8-, and 20-day-old uninseminated females kept in colonies, analyzing cells from three locations in the abdomen: the sternite, and tergites III and V. The oenocytes in the sternites were large, oval/circular with a centrally located nucleus, while in tergites III and V, they were small and triangular in the 1-day-old queens. During the first week of life, these cells in tergites III and V change their shape to oval and increase their sizes. The initially light yellow and then dark yellow granularities in the oenocytes of the fat body appear along with the advancing age of the queens. The trophocytes (sternites, tergites III and V) in the 1-day-old queens were completely filled with droplets of different sizes. In the 8- and 20-day-old queens, the number and size of the droplets decreased in the trophocytes of tergites III and V. The tergal gland cells had a centrally located cell nucleus in the 1-, 8- and 20-day-old queens. The dark granularities in these cells were visible only in the 20-day-old queens. Different morphological images of the fat body at the sternite, and tergites III and V, and the difference in the size of the oenocyte cell nuclei may indicate various functions of the fat body depending on its location. Characterization of the changes in the morphology of the fat body, taking into account its segmental character, and the tergal glands requires further research in older queens, e.g., one-year-old, brooding queens.

12.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673813

RESUMO

We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.


Assuntos
Corpo Adiposo , Simbiose , Transcriptoma , Simbiose/genética , Animais , Corpo Adiposo/metabolismo , Feminino , Perfilação da Expressão Gênica , Sistema Imunitário/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/genética
13.
Front Insect Sci ; 4: 1360320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638680

RESUMO

In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.

14.
Artigo em Português | LILACS | ID: biblio-1556008

RESUMO

A gordofobia caracteriza-se pela discriminação e patologização do sujeito corpulento, ganhando intensidade pela veiculação midiática com discursos pautados nas ciências biomédicas que desconsideram individualidades e subjetividades. Este estudo tem como objetivo realizar um levantamento bibliográfico acerca desses discursos, entre 2002-2021, caracterizado como um estudo qualitativo do tipo Teoria do Estado do Conhecimento, com a busca nas bases de dados do SciELO (2 artigos); BDTD (3 dissertações e 1 tese) e OASISBR (2 artigos). Evidenciou-se que os saberes do modelo biomédico (normalidade e patologia) nas discursividades midiáticas têm enaltecido o corpo magro como "ideal", enquanto o corpo gordo tem sido visto como doente, impondo-se culpabilidade e estigmatização (AU).


Fatphobia is characterized by discrimination and patho-logization of the corpulent subject, gaining intensity through me-dia coverage with discourses based on biomedical sciences that disregard individualities and subjectivities. This study aimed to car-ry out a bibliographical survey regarding these speeches, between 2002-2021, characterized as a qualitative study of the Theory of the State of Knowledge type, with a search in the SciELO databases (2 articles); Brazilian Digital Library of Theses and Dissertations - (BDTD) (3 dissertations and 1 thesis) and Brazilian Open Access Publications and Scientific Data Portal - (OASISBR) (2 articles). It was evident that the knowledge of the biomedical model (norma-lity and pathology) in the media discourse has praised the thin body as "ideal", while the fat body has been seen as sick, imposing guilt and stigmatization (AU).


La gordofobia se caracteriza por la discriminación y pa-tologización del sujeto corpulento, cobrando intensidad a través de la divulgación mediática con discursos basados en las ciencias biomédicas que prescinden de individualidades y subjetividades. Este estudio tuvo como objetivo realizar un levantamiento biblio-gráfico sobre estos discursos, entre 2002-2021, caracterizado como un estudio cualitativo del tipo Teoría del Estado del Conocimiento, con búsqueda en las bases de datos SciELO (2 artículos); BDTD (3 disertaciones y 1 tesis) y OASISBR (2 artículos). Se evidenció que el conocimiento del modelo biomédico (normalidad y patología) en el discurso mediático ha elogiado el cuerpo delgado como "ideal", mientras que el cuerpo gordo ha sido visto como enfermo, impo-niendo culpa y estigmatización (AU).


Assuntos
Humanos , Mídias Sociais
15.
Genet Med ; 26(7): 101125, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522068

RESUMO

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report 3 unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay, and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type genomic rescue constructs can rescue the lethality and autophagic flux defects, whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles, and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).


Assuntos
Carcinoma Hepatocelular , Deficiências do Desenvolvimento , Homozigoto , Neoplasias Hepáticas , Mutação com Perda de Função , Mutação de Sentido Incorreto , Humanos , Mutação de Sentido Incorreto/genética , Animais , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Masculino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Feminino , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Hepatopatias/genética , Hepatopatias/patologia , Lactente , Proteínas de Transporte Vesicular/genética , Fenótipo , Drosophila/genética , Proteínas de Drosophila/genética , Alelos , Predisposição Genética para Doença
16.
Insect Biochem Mol Biol ; 168: 104108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552808

RESUMO

The immune system of Manduca sexta has been well studied to understand molecular mechanisms of insect antimicrobial responses. While evidence supports the existence of major immune signaling pathways in this species, it is unclear how induced production of defense proteins is specifically regulated by the Toll and Imd pathways. Our previous studies suggested that diaminopimelic acid-type peptidoglycans (DAP-PG) from Gram-negative and some Gram-positive bacteria, more than Lys-type peptidoglycans (Lys-PG) from other Gram-positive bacteria, triggers both pathways through membrane-bound receptors orthologous to Drosophila Toll and PGRP-LC. In this study, we produced M. sexta proSpätzle-1 and proSpätzle-2 in Sf9 cells, identified their processing enzymes, and used prophenoloxidase activating protease-3 to activate the cytokine precursors. After Spätzle-1 and -2 were isolated from the reaction mixtures, we separately injected the purified cytokines into larval hemocoel to induce gene transcription in fat body through the Toll pathway solely. On the other hand, we treated a M. sexta cell line with E. coli DAP-PG to only induce the Imd pathway and target gene expression. RNA-Seq analysis of the fat body and cultured cells collected at 0, 6, and 24 h after treatment indicated that expression of diapausin-4, -10, -12, -13, cecropin-2, -4, -5, attacin-5, -11, and lebocin D is up-regulated predominantly via Toll signaling, whereas transcription of cecropin-6, gloverin, lysozyme-1, and gallerimycin-2 is mostly induced by DAP-PG via Imd signaling. Other antimicrobial peptides are expressed in response to both pathways. Transcripts of most Toll-specific genes (e.g., lebocin D) peaked at 6 h, contrasting the gradual increase and plateauing of drosomycin mRNA level at 24-48 h in Drosophila. We also used T (oll)-I (md) ratios to estimate relative contributions of the two pathways to transcriptional regulation of other components of the immune system. The differences in pathway specificity and time course of transcriptional regulation call for further investigations in M. sexta and other insects.


Assuntos
Cecropinas , Manduca , Animais , Escherichia coli/genética , Manduca/metabolismo , Peptidoglicano , Cecropinas/metabolismo , Proteínas de Insetos/metabolismo , Citocinas/metabolismo , Drosophila/metabolismo
17.
J Agric Food Chem ; 72(11): 5725-5733, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452362

RESUMO

The destructive agricultural pest oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), has been causing huge damage to the fruits and vegetable industry. Although many pertinent studies have been conducted on B. dorsalis, the functions of fat body still remain largely unknown. To this end, the comparative transcriptome analysis between fat body and carcass was performed in an attempt to provide insights into functions of fat body of B. dorsalis in the present study. A total of 1431 upregulated and 2511 downregulated unigenes were discovered in the fat body vs carcass comparison, respectively. The enrichment analysis of differentially expressed genes (DEG) revealed that most of the enriched pathways were related to metabolism. The reliability of DEG analysis was validated by qRT-PCR measurements of 12 genes in starch and sucrose metabolism pathway, including the trehalose-6-phosphate synthase (BdTPS) which was highly expressed in eggs, 5 d-old adults, and fat body. The RNAi of BdTPS significantly affected trehalose and chitin metabolism, larval growth, and larva-pupa metamorphosis. Collectively, the findings in this study enriched our understanding of fat body functions in metabolism and demonstrated the indispensable roles of BdTPS in trehalose-related physiological pathways.


Assuntos
Corpo Adiposo , Glucosiltransferases , Tephritidae , Animais , Reprodutibilidade dos Testes , Trealose/metabolismo , Perfilação da Expressão Gênica , Tephritidae/genética , Tephritidae/metabolismo , Transcriptoma
18.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38516936

RESUMO

In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halt and the worker bees live for several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having large fat bodies, high expression levels of vitellogenin (a longevity-, nutrition- and immune-related gene), and large provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in autumn (i.e. lower brood area). We examined that theory here by assessing nurse bee physiology in both the summer and autumn, in colonies with varying levels of brood. We found that season is a better predictor of nurse bee physiology than brood area. This suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival.


Assuntos
Meio Social , Vitelogeninas , Abelhas , Animais , Humanos , Estações do Ano
19.
Arch Insect Biochem Physiol ; 115(3): e22096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500448

RESUMO

The microbial community structure plays an important role in the internal environment of brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), which is an indispensable part to reflect the internal environment of BPH. Wing dimorphism is a strategy for balancing flight and reproduction of insects. Here, quantitative fluorescence PCR was used to analyse the number and changes of the symbionts in the fat body of long- and short-winged BPHs at different developmental stages. A metagenomic library was constructed based on the 16 S rRNA sequence and internal transcribed spacer sequence for high-throughput sequencing, to analyze the community structure and population number of the symbionts of long- and short-winged BPHs, and to make functional prediction. This study enriches the connotation of BPH symbionts, and laid a theoretical foundation for the subsequent study of BPH-symbionts interaction and the function of symbionts in the host.


Assuntos
Corpo Adiposo , Hemípteros , Animais , Hemípteros/genética
20.
J Insect Physiol ; 154: 104617, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331091

RESUMO

In nectivorous pollinators, timing and pattern of allocation of consumed nectar affects fitness traits and foraging behavior. Differences in male and female behaviors can influence these allocation strategies. These physiological patterns are not well studied in Lepidoptera, despite them being important pollinators. In this study we investigate crop-emptying rate and nectar allocation in Manduca sexta (Sphingidae), and how sex and flight influence these physiological patterns. After a single feeding event, moths were dissected at fixed time intervals to measure crop volume and analyze sugar allocation to flight muscle and fat body. Then we compared sedentary and flown moths to test how activity may alter these patterns. Sedentary males and females emptied their crops six hours after a feeding event. Both males and females preferentially allocated these consumed sugars to fat body over flight muscle. Moths began to allocate to the fat body during crop-emptying and retained these nutrients long-term (four and a half days after a feeding event). Males allocated consumed sugar to flight muscles sooner and retained these allocated nutrients in the flight muscle longer than did females. Flight initiated increased crop-emptying in females, but had no effect on males. Flight did not significantly affect allocation to flight muscle or fat body in either sex. This study showed that there are inherent differences in male and female nectar sugar allocation strategies, but that male and female differences in crop-emptying rate are context dependent on flight activity. These differences in physiology may be linked to distinct ways males and females maximize their own fitness.


Assuntos
Manduca , Mariposas , Masculino , Feminino , Animais , Néctar de Plantas , Mariposas/fisiologia , Manduca/fisiologia , Comportamento Alimentar/fisiologia , Açúcares , Flores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...