Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(16): 19836-19844, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32221833

RESUMO

Catalytic wet peroxide oxidation (CWPO) is a novel, alternative technology to conventional disinfection methods that are widely used to control microbial parameters in drinking water. To assess its effectiveness, new studies revealing the kinetics of MS2 coliphage inactivation by CWPO technology are required. This investigation therefore aimed to perform mathematical modelling of MS2 inactivation through CWPO technology activated by an Al/Fe-pillared clay catalyst (Al/Fe-PILC) in the presence of a synthetic surrogate of dissolved natural organic matter. The inactivation constant was obtained from two different statistical approaches, and the experimental data were better fitted to the pseudo-first-order Chick-Watson model in which the inactivation rate is constant. For this model, the maximum inactivation rate was k = 0.1648 min-1, which was achieved in the MS2-3 catalytic test using an initial mass ratio of peroxide to active iron (Feact) of 1.2 mg H2O2/mg Feact. To estimate the inactivation rate due to reactive oxygen species (ROS), we supposed that the inactivation constant depends on both ROS and Feact. In this case, the maximum inactivation rate due to ROS was kr = 2.4 × 10-9 min-1 (using 1.17 mg H2O2/mg Feact), which was achieved in the MS2-10 trial; both cases led to the conclusion that the optimal initial ratio of peroxide to active Fe in the catalyst in CWPO activated by Al/Fe-PILC was close to 1.2 mg H2O2/mg Feact. These kinetic studies showed that rapid inactivation takes place very early in the reaction, followed by slow inactivation during the remaining period of the recorded reaction time. This research revealed the strong potential of CWPO technology to improve microbiological parameters in drinking water due to the high catalytic performance in the heterogeneous Fenton reaction displayed by Fe sites incorporated in the Al/Fe-PILCs.


Assuntos
Argila , Peróxido de Hidrogênio , Catálise , Ferro , Cinética , Oxirredução , Peróxidos , Inativação de Vírus
2.
Front Chem ; 7: 772, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799238

RESUMO

The catalytic wet peroxide oxidation (CWPO) of the industrial azo-dye methyl orange (MO) activated by an Al/Fe-pillared clay catalyst was optimized by the Response-Surface Methodology (RSM). Three sequential sets of factorial 2k central composite experiments were required for the full optimization of the process; catalyst loading and stoichiometric dose of hydrogen peroxide were the experimental factors studied through different times of reaction by means of all, Dissolved Organic Carbon (DOC) removal, Total Nitrogen (TN) removal, reacted fraction of hydrogen peroxide, and decolorization as experimental responses to be maximized. The resulting single-response RSM optimums were combined in a multi-response Desirability function ruling out the differential effect of adsorption on the catalyst's surface by defining all responses per gram of clay catalyst. Former two statistical sets of experiments (DOE-1 and DOE-2) showed the CWPO degradation of MO to get favored at increasing both catalyst loading and time of reaction (up to 180 min). Afterwards, third final design of experiments (DOE-3) displayed 75% of DOC removal, 78% of TN removal, 97% of reacted H2O2, and 95% of decolorization by using a catalyst loading of 5.0 g/L of Al/Fe-PILC together with just 50% of the stoichiometric amount of H2O2. The multi-response optimum conditions based on the Desirability function showed excellent fitting explaining at least 99.3% of the optimal overall responses at 95% of confidence. A further analysis revealed that no one of the non-controllable variables under real conditions of industrial wastewater treatment (covariates): starting total organic carbon (TOC) (2.0-20 mg/L), temperature (5.0-25°C) or circumneutral pH (6.0-9.0), exhibited statistically significant effect (P > 0.05), suggesting the system to be almost insensitive against them within studied range of close to ambient conditions in the tropic. Finally, HPLC/PDA and GC/FID measurements identified phenol, cyclohexa-2,5-diene-1,4-dione, phenylamine, N-methylaniline and N,N-dimethylaniline in very low concentrations as main intermediates in the CWPO degradation of MO, which nevertheless disappeared over 90 min of treatment. Meanwhile, 4-aminobenzenesulfonic and oxalic acids were recorded as unique by-products at final time of reaction, but both of them fairly less toxic than the starting azo-dye.

3.
Environ Sci Pollut Res Int ; 26(13): 12720-12730, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30877547

RESUMO

A regional raw clay was used as the starting material to prepare iron-pillared clays with different iron contents. The catalytic activity of these materials was tested in the heterogeneous photo-Fenton process, applied to the degradation of 2-chlorophenol chosen as the model pollutant. Different catalyst loads between 0.2 and 1.0 g L-1 and pH values between 3.0 and 7.0 were studied. The local volumetric rate of photon absorption (LVRPA) in the reactor was evaluated solving the radiative transfer equation applying the discrete ordinate method and using the optical properties of the catalyst suspensions. The photonic and quantum efficiencies of the 2-chlorophenol degradation depend on both the catalyst load and the iron content of the catalyst. The higher values for these parameters, 0.080 mol Einstein-1 and 0.152 mol Einstein-1, respectively, were obtained with 1.0 g L-1 of the catalyst with the higher iron content (17.6%). For the mineralization process, photonic and quantum efficiencies depend mainly on the catalyst load. Therefore, it was possible to employ a natural and cheap resource from the region to obtain pillared clay-based catalysts to degrade organic pollutants in water.


Assuntos
Argila/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Clorofenóis/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Fótons , Purificação da Água/instrumentação
4.
Sci Total Environ ; 569-570: 830-840, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392336

RESUMO

The aim of this study was to evaluate the biological hazard of a pharmaceutical effluent before and after treatment. For the former, the determined 96h-LC50 value was 1.2%. The photo-Fenton treatment catalyzed with an iron-pillared clay reduced this parameter by 341.7%. Statistically significant increases with respect to the control group (P<0.05) were observed at 12, 24, 48 and 72h in HPC (50.2, 30.4, 66.9 and 43.3%), LPX (22, 83.2, 62.7 and 59.5%) and PCC (14.6, 23.6, 24.4 and 25.6%) and antioxidant enzymes SOD (29.4, 38.5, 32.7 and 49.5%) and CAT (48.4, 50.3, 38.8 and 46.1%) in Hyalella azteca before treatment. Also increases in damage index were observed before treatment of 53.1, 59.9, 66.6 and 72.1% at 12, 24, 48 and 72h, respectively. After treatment the same biomarkers of oxidative stress decreased with respect to before treatment being to HPC (29.3, 22.5, 41.6 and 31.7%); LPX (14.2, 43.1, 30.7 and 35.5%); PCC (12.6, 21.3, 24.2 and 23.9%); SOD (39.2, 33.9, 49.5 and 37.9%) and CAT (28.6, 35.8, 33.7 and 31.7) at 12, 24, 48 and 72h, respectively (P<0.05). The damage index were decreased at 12, 24, 48 and 72h in 48.9, 57.8, 67.3 and 72.1%, respectively. In conclusion, the obtained results demonstrate the need of performing bioassays in order to characterize an effluent before discharge and not base such a decision only upon current normativity. In addition, it was also concluded that the heterogeneous photo-Fenton process decreases the presence of PCT, oxidative stress, genotoxic damage and LC50 in Hyalella azteca.


Assuntos
Acetaminofen/toxicidade , Anfípodes/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Indústria Farmacêutica , México , Testes de Mutagenicidade , Oxirredução , Estresse Oxidativo , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA