Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Food Res Int ; 190: 114655, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945588

RESUMO

Kinema, a traditional fermented soybean food from the Himalayas, is well-liked for its sticky texture and flavourful umami taste. Among 175 bacterial strains from spontaneously fermented kinema samples, Bacillus subtilis Tamang strain stood out for its high stickiness and viscosity. The strain's Poly-γ-glutamic acid (γ-PGA) contains various groups of glutamic acid and has a molecular weight of 660 kDa. It demonstrates the ability to solubilize iron, preserve ferritin in Caco-2 cells, and exhibit antibacterial properties. The genome of B. subtilis Tamang is devoid of plasmid elements but does feature nine insert elements. Noteworthy is the presence of unique secondary metabolites with potential antimicrobial effects, such as amyloliquecidin GF610, bogorol A, and thermoactinoamide A. A total of 132 carbohydrate-active enzymes (CAZy) were identified, hinting at possible prebiotic characteristics. The genome analysis revealed genes responsible for γ-PGA production via the capBCA complex. Furthermore, genes associated with fibrinolytic activity, taste enhancement, biopeptides, immunomodulators, and vitamins like B12 and K2 were found, along with probiotics and various health benefits. The genetic material for L-asparaginase production, known for its anti-cancer properties, was also detected, as well as CRISPR-Cas systems. The absence of virulence factors and antimicrobial resistance genes confirms the safety of consuming B. subtilis Tamang as a food-grade bacterium.


Assuntos
Bacillus subtilis , Fermentação , Genoma Bacteriano , Ácido Poliglutâmico , Sequenciamento Completo do Genoma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Células CACO-2 , Humanos , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Alimentos de Soja/microbiologia , Antibacterianos/farmacologia
2.
Biomed Chromatogr ; : e5921, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886007

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disruption of synaptic communication among millions of neurons. Recent research has highlighted the potential therapeutic effectiveness of natural polyphenolic compounds in addressing AD. Soybeans are abundant in polyphenols, and their polyphenolic composition undergoes significant alteration through fermentation by Eurotium cristatum. Through comprehensive database searches, we identified active components within fermented soybean polyphenols and genes associated with AD. Subsequently, we utilized Venn diagrams to analyze the overlap between AD-related genes and these components. Furthermore, we visualized the network between intersecting targets and proteins using Cytoscape software. The anti-AD effects of soybeans were further explored through comprehensive analysis, including protein-protein interaction analysis, pathway enrichment analysis, and molecular docking studies. Our investigation unveiled 6-hydroxydaidzein as a major component of fermented soybean polyphenols, shedding light on its potential therapeutic significance in combating AD. The intersection between target proteins of fermented soybeans and disease-related targets in AD comprised 34 genes. Protein-protein interaction analysis highlighted key potential targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen synthase kinase 3 beta (GSK3B), amyloid precursor protein (APP), cyclin-dependent kinase 5 (CDK5), and beta-site APP cleaving enzyme 1 (BACE1). Molecular docking results demonstrated a robust binding effect between major components from fermented soybeans and the aforesaid key targets implicated in AD treatment. These findings suggest that fermented soybeans demonstrate a degree of efficacy and present promising prospects in the prevention of AD.

3.
Anim Nutr ; 17: 283-296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800738

RESUMO

This study was conducted to evaluate the effects of Monascus purpureus M-32 fermented soybean meal (MFSM) on growth, immunity, intestinal morphology, intestinal microbiota, and intestinal metabolome of Pacific white shrimp (Litopenaeus vannamei). Four groups of diets were formulated, including control group (30% fish meal and 30% soybean meal [SBM] included in the basal diet) and three experimental groups which MFSM replaced 20% (MFSM20), 40% (MFSM40), and 60% (MFSM60) of SBM in control group, respectively. Results showed that the soluble proteins larger than 49 kDa in MFSM were almost completely degraded. Meanwhile, the crude protein, acid-soluble protein, and amino acid in MFSM were increased. The results of shrimp culture experiment showed that the replacement of SBM with MFSM decreased FCR (P < 0.001) and content of malondialdehyde (P = 0.007) in the experimental groups, and increased weight gain rate (P = 0.006), specific growth rate (P = 0.002), survival rate (P = 0.005), intestinal villus height (P < 0.001), myenteric thickness (P = 0.002), the activities of superoxide dismutase (P = 0.002), and lysozyme (P = 0.006) in experimental groups, as well as increased content of calcium (Ca2+) and phosphorus (PO43-) in blood and muscle, and enhanced resistance to Vibrio parahaemolyticus infection. The gut microbiota of MFSM groups was significantly different from that of the control group, and the abundance of Actinobacteria and Verrucomicrobia increased significantly in the MFSM60 group, whereas Proteobacteria and Firmicutes decreased. Compared with the control group, there were significant changes in the levels of several intestinal metabolites in the MFSM60 group, including leukotriene C5, prostaglandin A1, taurochenodeoxycholic acid, carnosine, and itaconic acid. The fermentation of SBM by the strain M. purpureus M-32 has the potential to enhance the nutritional quality of SBM, promote the growth of L. vannamei, boost immune response, improve intestinal morphology and microbiota composition, as well as influence intestinal metabolites.

4.
Food Res Int ; 184: 114233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609217

RESUMO

Meju is essential for making diverse traditional fermented soybean foods in Korea. To understand the changes in carbohydrates during fermentation, we aimed to identify autochthonous microorganisms from spontaneously fermented meju and compare the alterations in monosaccharides and oligosaccharides throughout the fermentation process. Microbial diversity was determined using a metabarcoding approach, and monosaccharide and oligosaccharide profiles were obtained by HPLC-Q-TOF MS and HPLC-MS/MS analyses, respectively. The dominant bacterial genera were Weissella, Lactobacillus, and Leuconostoc, while Mucor was highly abundant in the fungal community. The total monosaccharide content increased from Day 0 to Day 50, with the highest amount being 4.37 mg/g. Oligosaccharide profiling revealed the degradation of soybean dietary fiber during fermentation, and novel oligosaccharide structures were also discovered. Correlation analysis revealed that the fungus Mucor was positively related to pentose-containing oligosaccharides, galactose, and galacturonic acid, indicating that Mucor may degrade soybean dietary fibers such as xylogalacturonan, arabinogalactan, and rhamnogalacturonan. The negative relationships between the abundances of Weissella and oligo- and monosaccharides suggested that the bacteria may utilize saccharides for fermentation. These findings provide insights into the mechanisms underlying carbohydrate degradation and utilization; the key components involved in saccharide transformation that contribute to the characteristics of traditional meju were subsequently identified.


Assuntos
Microbiota , Monossacarídeos , Glycine max , Fermentação , Espectrometria de Massas em Tandem , Oligossacarídeos , Fibras na Dieta
5.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38622951

RESUMO

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Assuntos
Aminoácidos , Alimentos Fermentados , Suínos , Animais , Feminino , Gravidez , Aminoácidos/metabolismo , Digestão/fisiologia , Glutamina/metabolismo , Triptofano/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Glycine max , Dieta/veterinária , Arginina/metabolismo , Serina , Ração Animal/análise , Íleo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
6.
Heliyon ; 10(4): e26135, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38379996

RESUMO

This study was conducted to mitigate the food safety risks related to biogenic amine (BA) by reducing the BA content in Cheonggukjang using applicable food additives. In in-vitro experiments, of the additives tested, tartaric acid (TA), potassium sorbate (PS), and sodium benzoate (SB) considerably inhibited tyramine production of strains of Bacillus spp. and Enterococcus faecium while less affecting their growth. In addition to these three additives, two additives, glycine (GL) and nicotinic acid (NA), reported to have significant inhibitory effects in previous studies, were applied to the Cheonggukjang fermentation with prolific tyramine-producing strains of B. subtilis and E. faecium. The content of tyramine in the Cheonggukjang samples treated with TA, PS, SB, GL, and NA was significantly reduced by 27.5%, 50.7%, 51.4%, 76.1%, and 100.0%, respectively, compared to the control sample. Additionally, the content of polyamines (putrescine, cadaverine, spermidine, and spermine) in the GL-treated sample was reduced by 42.6%-62.4%. The mode of action could be attributed to inhibiting the bacterial decarboxylase activity and/or growth. Consequently, excluding NA that interfered with Cheonggukjang fermentation, GL was the most outstanding additive with an inhibitory effect on tyramine formation in food, followed by SB and PS, all of which showed a more than 50% reduction. Therefore, the use of appropriate additives could be one of the promising strategies to avoid the food safety issues implicated in BAs in Cheonggukjang.

7.
Antioxidants (Basel) ; 12(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136216

RESUMO

The application of fermented soybean meal (FSBM) is an effective strategy to alleviate the shortage of fish meal (FM) in aquaculture. However, an excessive substitution ratio often reduces fish growth and induces liver oxidative stress, while the mechanism remains poorly understood. Here, an 8-week feeding trial was conducted in largemouth bass (initial weight: 6.82 ± 0.09 g) to establish an oxidative stress model by replacing 50% of FM with FSBM (fermented by Bacillus subtilis). The results showed that FSBM substitution significantly reduced the growth performance of largemouth bass, including the weight gain rate and specific growth rate. Moreover, FSBM significantly reduced the contents of essential amino acids and total free amino acids in muscle, along with the mRNA expression of amino acids and small peptide transporters. Enzyme activity detection and liver sections showed that FSBM substitution caused liver oxidative stress, indicating the successful construction of an oxidative stress model. An integrated analysis of transcriptomic and metabolomic data revealed that FSBM substitution impaired glycine, serine and threonine metabolism, as well as glutathione metabolism. In addition, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was decreased in the FSBM group, which may explain the mechanism of oxidative stress caused by FSBM substitution. Considering that glycine is an important component of glutathione synthesis, key genes involved in glycine metabolism (glya, gnmt and agxt) and dietary glycine supplementation should be valued to improve the availability of FSBM. This study reveals for the first time the importance of non-essential amino acids in improving the utilization of plant-based protein sources and provides original insight for the optimization of aquatic feeds.

8.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37962419

RESUMO

The macromolecular proteins, anti-nutritional factors, and allergens contained in soybean meal (SBM) have a negative impact on the growth of weaned piglets. The objective of this study was to investigate the effects of heating, microbial fermentation, and enzymatically hydrolyzed SBM on the growth performance, nutrient digestibility, serum biochemistry, intestinal morphology, volatile fatty acids, and microbiota of weaned piglets. After the preparation of soaked SBM (SSBM), enzymatically hydrolyzed SBM (ESBM), and microbial fermented and enzymatically hydrolyzed SBM (MESBM), 72 weaned piglets were randomly allocated to three groups for a 21-d trial. In the three groups, 17% of conventional SBM in basal corn-soybean meal diet was replaced by an equivalent amount of SSBM (control group), ESBM, or MESBM. The results showed that the contents of glycinin, ß-conglycinin, trypsin inhibitor, and proteins above 20 kDa were significantly decreased in ESBM and MESBM, compared with SSBM, and the surface of ESBM and MESBM had more pores and fragmented structure. In the second week and throughout the entire experimental period, the diarrhea index was reduced (P < 0.01) in ESBM and MESBM in contrast with SSBM. Furthermore, the inclusion of ESBM and MESBM in the diet improved the apparent total tract digestibility of dry matter and crude protein (P < 0.05), and increased the abundances of the genera Lactobacillus and Clostridium_sensu_stricto_1, respectively. Metagenomic sequencing further identified that members of six species of Proteobacteria, four species of Clostridiales, and three species of Negativiautes were enriched in the colon of piglets fed MESBM, while two bacterial species, Lachnoclostridium and Lactobacillus_points, were enriched in the colon of piglets fed ESBM. In conclusion, replacing SSBM with ESBM or MESBM in the diet decreased the diarrhea index, which could be associated with improved nutrient digestibility and microbial composition.


With the development of pig industry, liquid feeding is becoming more widely used. Therefore, this study explores that liquid-state fermentation through enzymatic hydrolysis and microbial fermentation reduces the level of antigenic protein in soybean meal (SBM). In the present study, dietary supplementation with enzymatically hydrolyzed SBM (ESBM) or microbial fermented and enzymatically hydrolyzed SBM (MESBM) effectively decreased diarrhea index, enhanced nutrient digestibility, and improved the composition and stability of intestinal flora in weaning piglets. Our study not only contributes to the efficient utilization of SBM, but also provides new insights into its application in liquid feeding for livestock farming.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Fermentação , Calefação , Farinha , Hidrólise , Digestão , Ração Animal/análise , Glycine max , Dieta/veterinária , Nutrientes , Diarreia/veterinária
9.
Trop Anim Health Prod ; 55(6): 420, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999775

RESUMO

Fermented soybean grain (FSBG) is considered improper to use as a protein source in animal nutrition, since it is assumed that defects cause changes on its chemical composition and favor mycotoxins production, but chemical composition data does not support this theory and in vivo studies are missing. Thus, this study aimed to evaluate the effects of FSBG in feedlot lamb diets. For that, two types of FSBG (partially fermented and completely fermented, PFSBG and CFSBG) and one standard soybean grain (SSBG) were obtained and evaluated alone or as a component of experimental diets by in vitro and in vivo studies, where FSBG totally replaced SSBG in feedlot lamb diets, which was included in the experimental diets in 17.4% on dry matter basis as protein source. Before the studies, both soybeans were sent to a specialized laboratory where no mycotoxins were detected. As a result, lower DM and carbohydrate contents but higher crude protein, fiber, and indigestible NDF contents were measured in CFSBG than in SSBG. Furthermore, both types of FSBG showed lower digestibility in vitro dry matter (IVDMD) than SSBG when evaluated separately; however, when evaluated in experimental diets, the substitution of SSBG for FSBG did not affect IVDMD. It was also observed that FSBG also had less rumen-degradable protein than SSBG (mean 47.9 vs 86.4%). In the in vivo study, FSBG did not affect nutrient intake, apparent digestibility, or animal performance (i.e., average daily gain and carcass gain). Thus, mycotoxins-free FSBG may be an alternative to totally replace SSBG in feedlot lamb diets.


Assuntos
Alimentos Fermentados , Glycine max , Ovinos , Animais , Ração Animal/análise , Digestão , Dieta/veterinária , Rúmen/metabolismo , Grão Comestível , Ruminantes , Valor Nutritivo , Zea mays/metabolismo
10.
Front Microbiol ; 14: 1253480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840737

RESUMO

Spore-forming probiotic bacteria offer interesting properties as they have an intrinsic high stability, and when consumed, they are able to survive the adverse conditions encountered during the transit thorough the host gastrointestinal (GI) tract. A traditional healthy food, natto, exists in Japan consisting of soy fermented by the spore-forming bacterium Bacillus subtilis natto. The consumption of natto is linked to many beneficial health effects, including the prevention of high blood pressure, osteoporosis, and cardiovascular-associated disease. We hypothesize that the bacterium B. subtilis natto plays a key role in the beneficial effects of natto for humans. Here, we present the isolation of B. subtilis DG101 from natto and its characterization as a novel spore-forming probiotic strain for human consumption. B. subtilis DG101 was non-hemolytic and showed high tolerance to lysozyme, low pH, bile salts, and a strong adherence ability to extracellular matrix proteins (i.e., fibronectin and collagen), demonstrating its potential application for competitive exclusion of pathogens. B. subtilis DG101 forms robust liquid and solid biofilms and expresses several extracellular enzymes with activity against food diet-associated macromolecules (i.e., proteins, lipids, and polysaccharides) that would be important to improve food diet digestion by the host. B. subtilis DG101 was able to grow in the presence of toxic metals (i.e., chromium, cadmium, and arsenic) and decreased their bioavailability, a feature that points to this probiotic as an interesting agent for bioremediation in cases of food and water poisoning with metals. In addition, B. subtilis DG101 was sensitive to antibiotics commonly used to treat infections in medical settings, and at the same time, it showed a potent antimicrobial effect against pathogenic bacteria and fungi. In mammalians (i.e., rats), B. subtilis DG101 colonized the GI tract, and improved the lipid and protein serum homeostasis of animals fed on the base of a normal- or a deficient-diet regime (dietary restriction). In the animal model for longevity studies, Caenorhabditis elegans, B. subtilis DG101 significantly increased the animal lifespan and prevented its age-related behavioral decay. Overall, these results demonstrate that B. subtilis DG101 is the key component of natto with interesting probiotic properties to improve and protect human health.

11.
Foods ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685116

RESUMO

Peony seed meal (PSM) is the by-product obtained from peony seeds after oil extraction. In this study, PSM was incorporated into traditional koji-making, and its impacts on koji enzyme activities and flavor compounds in final products were investigated. In the process of koji fermentation, the optimal addition ratio of PSM to soybean was determined as 7:3. Under this ratio, the maximum enzyme activities of neutral protease, amylase, and glucoamylase were 1177.85, 686.58, and 1564.36 U/g, respectively, and the koji obtained was subjected to maturation. During post-fermentation, changes in the fermentation characteristics of the paste samples were monitored, and it was found that compared to the soybean paste without PSM, the enzyme activities maintained at a relatively good level. The PSM soybean paste contained a total of 80 flavor compounds and 11 key flavor compounds (OAV ≥ 1), including ethyl isovalerate, isovaleric acid, hexanal, phenylacetaldehyde, 3-Methyl-1-butanol 4-heptanone, 2-pentylfuran, methanethiol ester caproate, isoamyl acetate, 3-methyl-4-heptanone, and isovaleraldehyde. These findings could be used to improve the quality of traditional fermented paste, enrich its flavor, and simultaneously promote PSM as a valuable resource for fermented foods.

12.
World J Microbiol Biotechnol ; 39(11): 315, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736853

RESUMO

Preparation of traditionally fermented soybeans varies across ethnicities with distinct tastes, flavour, and nutritional values. The fermented soybean varieties Hawaijar, Bekang, and Akhone of north-east India are associated with diverse ethnic groups from Manipur, Mizoram, and Nagaland, respectively. These varieties differ in substrate and traditional practice that exerts differential bacterial-metabolite profile, which needs an in-depth analysis i. Culture-dependent and independent techniques investigated the bacterial diversity of the fermented soybean varieties. Gas chromatography and mass spectroscopy (GC-MS) studied these varieties' metabolite profiles. The common dominant bacterial genera detected in Hawaijar, Bekang, and Akhone were Bacillus, Ignatzschinaria, and Corynebacterium, with the presence of Brevibacillus and Staphylococcus exclusively in Hawaijar and Oceanobacillus in Bekang and Akhone. The metabolite analysis identified a higher abundance of essential amino acids, amino and nucleotide sugars, and vitamins in Hawaijar, short-chain fatty acids in Bekang, polyunsaturated fatty acids in Akhone and Hawaijar, and prebiotics in Akhone. The bacteria-metabolite correlation analysis predicted four distinct bacterial clusters associated with the differential synthesis of the functional metabolites. While B. subtilis is ubiquitous, cluster-1 comprised B. thermoamylovorans/B. amyloliquefaciens, cluster-2 comprised B. tropicus, cluster-3 comprised B. megaterium/B. borstelensis, and cluster-4 comprised B. rugosus. To the best of our knowledge, this is the first comparative study on traditional fermented soybean varieties of north-east India linking bacterial-metabolite profiles which may help in designing starters for desired functionalities in the future.


Assuntos
Brevibacillus , Besouros , Alimentos Fermentados , Humanos , Animais , Glycine max , Índia , Etnicidade
13.
Int J Food Microbiol ; 407: 110417, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37774634

RESUMO

Grep-chhurpi, peha, peron namsing and peruñyaan are lesser-known home-made fermented soybean foods prepared by the native people of Arunachal Pradesh in India. Present work aims to study the microbiome, their functional annotations, metabolites and recovery of metagenome-assembled genomes (MAGs) in these four fermented soybean foods. Metagenomes revealed the dominance of bacteria (97.80 %) with minor traces of viruses, eukaryotes and archaea. Bacillota is the most abundant phylum with Bacillus subtilis as the abundant species. Metagenome also revealed the abundance of lactic acid bacteria such as Enterococcus casseliflavus, Enterococcus faecium, Mammaliicoccus sciuri and Staphylococcus saprophyticus in all samples. B. subtilis was the major species found in all products. Predictive metabolic pathways showed the abundance of genes associated with metabolisms. Metabolomics analysis revealed both targeted and untargeted metabolites, which suggested their role in flavour development and therapeutic properties. High-quality MAGs, identified as B. subtilis, Enterococcus faecalis, Pediococcus acidilactici and B. velezensis, showed the presence of several biomarkers corresponding to various bio-functional properties. Gene clusters of secondary metabolites (antimicrobial peptides) and CRISPR-Cas systems were detected in all MAGs. This present work also provides key elements related to the cultivability of identified species of MAGs for future use as starter cultures in fermented soybean food product development. Additionally, comparison of microbiome and metabolites of grep-chhurpi, peron namsing and peruñyaan with that of other fermented soybean foods of Asia revealed a distinct difference.


Assuntos
Alimentos Fermentados , Microbiota , Humanos , Metagenoma , Glycine max/microbiologia , Microbiota/genética , Alimentos Fermentados/microbiologia , Metaboloma , Metagenômica
14.
Microorganisms ; 11(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37763976

RESUMO

Bisphenol A (BPA), one of the most widely used plasticizers, is an endocrine-disrupting chemical that is released from plastic products. The aim of this study was to screen and characterize bacteria with excellent BPA-degrading abilities for application in foods. BPA degradation ability was confirmed in 127 of 129 bacterial strains that were isolated from fermented soybean foods. Among the strains, B. subtilis P74, which showed the highest BPA degradation performance, degraded 97.2% of 10 mg/L of BPA within 9 h. This strain not only showed a fairly stable degradation performance (min > 88.2%) over a wide range of temperatures (30-45 °C) and pH (5.0-9.0) but also exhibited a degradation of 63% against high concentrations of BPA (80 mg/L). The metabolites generated during the degradation were analyzed using high-performance liquid chromatography-mass spectrometry, and predicted degradation pathways are tentatively proposed. Finally, the application of this strain to soybean fermentation was conducted to confirm its applicability in food.

15.
Front Physiol ; 14: 1194071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469566

RESUMO

This study explored the role of replacing fish meal protein with fermented soybean meal (FSBM) protein on the growth performance and intestinal morphology, immunity, and microbiota of the pearl gentian grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). Three isonitrogenous and isolipidic diets with increasing levels of FSBM (0%, 20% and 40%; referred to as FM, FSBM20 and FSBM40 diets, respectively) as a replacement for fish meal were selected for this study. The pearl gentian grouper were fed these diets for 10 weeks. The findings revealed that the growth of fish fed the FSBM diets (FSBM20 and FSBM40) were remarkably lower than the fish fed the FM diet. Pathological manifestations of intestinal inflammation, such as shortened intestinal mucosal folds and thickened lamina propria, were observed in the fish fed the FSBM diets. Moreover, the gene expression levels of IL1ß, IL12, IL17, and TNFα were remarkably upregulated in fish fed the FSBM40 diet, in contrast to the gene expression levels of IL4, IL5, IL10, and TGFß1, which were remarkably downregulated (p < 0.05). The FSBM diets significantly affected the stability of the fish gut microbiota. Photobacterium was the dominant phylum in all experimental groups, and the proportion of these bacteria gradually decreased with increasing FSBM substitution. The composition of intestinal flora at the genus level was not the same in the three experimental groups, with a richer composition of intestinal bacteria detected in the FSBM20 and FSBM40 groups (p < 0.05). The correlation between intestinal flora balance and immune gene expression revealed that only Photobacterium was negatively correlated with the above upregulated genes, while other bacteria were positively correlated with these pro-inflammatory factors (p < 0.05). Photobacterium was positively correlated with the above downregulated genes, while other bacteria were negatively correlated with these anti-inflammatory factors (p < 0.05). In conclusion, high levels of substitution of FSBM for fish meal causes intestinal inflammation in pearl gentian grouper. This is likely associated with changes to the intestinal flora. More attention should be paid to the negative role of dietary FSBM on intestinal flora.

16.
Plant Foods Hum Nutr ; 78(2): 261-269, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37410257

RESUMO

Fermented soybean foods with a long history are popular worldwide because of rich nutrition. However, many traditional fermented soybean foods have unacceptable bitterness, which mostly comes from the bitter peptides produced from the hydrolysis of soybean proteins. In this review, the bitter peptides in fermented soybean foods is briefly reviewed. The structural properties of bitter receptors and bitter peptides were reviewed. Bitterness is perceived through the binding between bitter compounds and specific sites of bitter receptors (25 hTAS2Rs), which further activate the downstream signal pathway mediated by G-protein. And it converts chemical signals into electrical signals, and transmit them to the brain. In addition, the influencing factors of bitter peptides in fermented soybean foods were summarized. The bitterness of fermented soybean foods primarily results from the raw materials, microbial metabolism during fermentation, unique techniques, and interactions of various flavor compounds. Moreover, the structure-bitterness relationship of bitter peptides was also discussed in this review. The bitterness degree of the bitter peptide is related to the polypeptide hydrophobicity, amino acids in the peptide, peptide molecular weight and polypeptide spatial structure. Studying the bitter peptides and their bitter characteristics in fermented soybean foods is beneficial for improving the sensory quality of fermented soybean foods and prompting more consumers accept them.


Assuntos
Alimentos Fermentados , Glycine max , Peptídeos/metabolismo , Paladar , Proteínas de Soja
17.
Food Chem ; 427: 136742, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393638

RESUMO

Wuhan stinky sufu is a traditional fermented soybean product with a short ripening period and unique flavor. The aim of this study was to explore the characteristic flavor compounds and core functional microbiota of naturally fermented Wuhan stinky sufu. The results indicated that 11 volatile compounds including guaiacol, 2-pentylfuran, dimethyl trisulfide, dimethyl disulfide, acetoin, 1-octen-3-ol, (2E)-2-nonenal, indole, propyl 2-methylbutyrate, ethyl 4-methylvalerate, nonanal were characteristic aroma compounds, and 6 free amino acids (Ser, Lys, Arg, Glu, Met and Pro) were identified as taste-contributing compounds. 4 fungal genera (Kodamaea, unclassified_Dipodascaceae, Geotrichum, Trichosporon), and 9 bacterial genera (Lysinibacillus, Enterococcus, Acidipropionibacterium, Bifidobacterium, Corynebacterium, Lactococcus, Pseudomonas, Enterobacter, and Acinetobacter) were identified as the core functional microbiota with positive effects on the production of flavor compounds. These findings would enhance the understanding of core flavor-producing microorganisms in naturally fermented soybean products and potentially provide guidance for enhancing the quality of sufu.


Assuntos
Microbiota , Bactérias/metabolismo , Glycine max/metabolismo , Aminoácidos/metabolismo , Paladar , Fermentação
18.
J Anim Sci Biotechnol ; 14(1): 89, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37393326

RESUMO

BACKGROUND: Soy protein supplements, with high crude protein and less antinutritional factors, are produced from soybean meal by different processes. This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status, intestinal oxidative stress, mucosa-associated microbiota, and growth performance of nursery pigs. METHODS: Sixty nursery pigs (6.6 ± 0.5 kg BW) were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks. Pigs were fed for 39 d in 3 phases (P1, P2, and P3). Treatments were: Control (CON), basal diet with fish meal 4%, 2%, and 1%, poultry meal 10%, 8%, and 4%, and blood plasma 4%, 2%, and 1% for P1, P2, and P3, respectively; basal diet with soy protein concentrate (SPC), enzyme-treated soybean meal (ESB), fermented soybean meal with Lactobacillus (FSBL), and fermented soybean meal with Bacillus (FSBB), replacing 1/3, 2/3, and 3/3 of animal protein supplements for P1, P2, and P3, respectively. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS: The SPC did not affect the BW, ADG, and G:F, whereas it tended to reduce (P = 0.094) the ADFI and tended to increase (P = 0.091) crypt cell proliferation. The ESM did not affect BW, ADG, ADFI, and G:F, whereas tended to decrease (P = 0.098) protein carbonyl in jejunal mucosa. The FSBL decreased (P < 0.05) BW and ADG, increased (P < 0.05) TNF-α, and Klebsiella and tended to increase MDA (P = 0.065) and IgG (P = 0.089) in jejunal mucosa. The FSBB tended to increase (P = 0.073) TNF-α, increased (P < 0.05) Clostridium and decreased (P < 0.05) Achromobacter and alpha diversity of microbiota in jejunal mucosa. CONCLUSIONS: Soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33% until 7 kg body weight, up to 67% from 7 to 11 kg body weight, and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs. Fermented soybean meal with Lactobacillus, however, increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.

19.
Foods ; 12(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37107500

RESUMO

The quality and safety of sufu fermented using Mucor racemosa M2 was studied and compared with naturally fermented sufu. After 90 days post-fermentation, both naturally fermented and inoculated fermented sufu reached the maturity standard of sufu, and the degree of protein hydrolysis of natural sufu (WP/TP: 34% ± 1%; AAN/TN: 33% ± 1%) was slightly higher than that of the inoculated sufu (WP/TP: 28.2% ± 0.4%; AAN/TN: 27% ± 1%). The hardness and adhesiveness of inoculated sufu (Hadness: 1063 g ± 211 g; Adhesiveness: -80 g ± 47 g) were significantly greater than those of natural sufu (Hadness: 790 g ± 57 g; Adhesiveness: -23 g ± 28 g), and the internal structure of natural sufu was denser and more uniform than that of inoculated sufu. A total of 50 aroma compounds were detected in natural and inoculated sufu. The total number of bacterial colonies in naturally fermented sufu was significantly higher than that in inoculated sufu, and the pathogenic bacteria in both types of fermented sufu were lower than the limit of pathogenic bacteria required in fermented soybean products. The content of biogenic amines in sufu was determined by high performance liquid chromatography (HPLC), and the results showed that the content of biogenic amines (Putrescine, Cadaverine, Histamine, Tyramine, etc.) in naturally fermented sufu was significantly higher than that in inoculated fermented sufu. Especially the histamine content, after 90 days of fermentation, was found to be 64.95 ± 4.55 for inoculated fertilization and 44.24 ± 0.71 for natural fertilization. Overall, the quality of inoculated sufu was somewhat better than that of natural sufu, and the M2 strain can be used to ferment sufu.

20.
Microorganisms ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36985222

RESUMO

Northern Thailand, the main part of the Lanna region, is home to a diverse range of ethnic groups, each with their own food and cultural heritage. The bacterial compositions in fermented soybean (FSB) products indigenous to three Lanna ethnolinguistic groups, including Karen, Lawa, and Shan, were investigated in this study. Bacterial DNA was extracted from the FSB samples and subjected to 16S rRNA gene sequencing using the Illumina sequencing platform. Metagenomic data showed that the predominant bacteria in all FSBs were members of the genus Bacillus (49.5-86.8%), and the Lawa FSB had the greatest bacterial diversity. The presence of genera Ignatzschineria, Yaniella, Atopostipes in the Karen and Lawa FSBs and Proteus in the Shan FSB might be indicators of food hygiene problems during processing. The network analysis predicted antagonistic effects of Bacillus against some indicator and pathogenic bacteria. The functional prediction revealed some potential functional properties of these FSBs. The presence of Bacillus in all FSBs and Vagococcus in the Shan FSB suggests that these FSBs could potentially be good sources of beneficial bacteria, and they should be conserved and promoted for health and food security reasons. However, food processing hygiene measures should be introduced and monitored to warrant their properties as health foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...