Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Cureus ; 16(5): e59452, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826987

RESUMO

Patients with Marfan syndrome have a constellation of clinical features and a heterogeneous phenotype. The purpose of this study is to report a 47-year-old male patient with an unusual variant in the FBN1 gene causing Marfan syndrome. The patient with musculoskeletal, cardiovascular, and ocular findings compatible with Marfan syndrome had an unusual pathogenic mutation on the FBN1 gene. The patient was examined by at least one of the authors (NJI). The patient's clinical findings were compatible with Marfan syndrome. Our patient had a unique mutation in the FBN1 gene (c.8054A>G p.His2685Arg) located on exon 65. Next-generation sequencing was done using the Invitae panel. This variant was categorized as one of uncertain significance. This patient's variant on the FBN1 gene leading to the syndrome has scant data associated with it and this is the first time it is reported from Puerto Rico.

2.
Arch Dermatol Res ; 316(6): 333, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844593

RESUMO

BACKGROUND: Stiff skin syndrome (SSS) is a rare disease characterized by thickened, indurated skin and limited joint movement. Multiple diverse phenotypes have been reported, and the correlation of severity with the clinical heterogeneity and histopathological findings of SSS needs to be refined. OBJECTIVE: To define subtypes based on clinical features and predict the prognosis of a new SSS classification. METHODS: Eighty-three patients with SSS were retrospectively reviewed for clinicopathological manifestations and routine laboratory workup, including 59 cases obtained from a PubMed search between 1971 and 2022 and 24 cases diagnosed in our department between 2003 and 2022. RESULTS: Among the 83 patients, 27.7, 41, and 31.3% had classic widespread, generalized segmental, and localized SSS, respectively. Joint immobility was present in 100, 71, and 20% of classic, generalized, and localized cases, respectively. Histopathologic findings were common among the 3 groups, and based on that, we further found a difference in the distribution of proliferative collagen. 54.5% of classic and 50% of generalized cases occurred throughout the dermis or the subcutis, whereas 76% of localized cases were mainly involved in the reticular dermis or subcutis. In patients with incipient localized SSS, 42% (21/50) developed generalized SSS, and only 6% (3/50) progressed to classic SSS, whereas more than half of the incipient generalized SSS cases (60.6%, 20/33) developed classic SSS. LIMITATIONS: This retrospective study was limited to previously published cases with limited data. CONCLUSIONS: We propose a distinct clinical classification characterized by lesion distribution, including classic widespread, generalized segmental, and localized SSS, associated with disease severity and prognosis.


Assuntos
Pele , Humanos , Feminino , Masculino , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Adolescente , Pele/patologia , Adulto Jovem , Criança , Prognóstico , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/classificação , Dermatopatias Genéticas/patologia , Idoso , Índice de Gravidade de Doença , Pré-Escolar , Colágeno/metabolismo , Contratura
3.
Eur Spine J ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615299

RESUMO

PURPOSE: Dural ectasia (DE) may significantly impact Marfan syndrome (MFS) patients' quality of life due to chronic lower back pain, postural headache and urinary disorders. We aimed to evaluate the association of quantitative measurements of DE, and their evolution over time, with demographic, clinical and genetic characteristics in a cohort of MFS patients. METHODS: We retrospectively included 88 consecutive patients (39% females, mean age 37.1 ± 14.2 years) with genetically confirmed MFS who underwent at least one MRI or CT examination of the lumbosacral spine. Vertebral scalloping (VS) and dural sac ratio (DSR) were calculated from L3 to S3. Likely pathogenic or pathogenic FBN1 variants were categorized as either protein-truncating or in-frame. The latter were further classified according to their impact on the cysteine content of fibrillin-1. RESULTS: Higher values of the systemic score (revised Ghent criteria) were associated with greater DSR at lumbar (p < 0.001) and sacral (p = 0.021) levels. Patients with protein-truncating variants exhibited a greater annual increase in lumbar (p = 0.039) and sacral (p = 0.048) DSR. Mutations affecting fibrillin-1 cysteine content were linked to higher VS (p = 0.009) and DSR (p = 0.038) at S1, along with a faster increase in VS (p = 0.032) and DSR (p = 0.001) in the lumbar region. CONCLUSION: Our study shed further light on the relationship between genotype, dural pathology, and the overall clinical spectrum of MFS. The identification of protein-truncating variants and those impacting cysteine content may therefore suggest closer patient monitoring, in order to address potential complications associated with DE.

4.
Front Cardiovasc Med ; 11: 1319164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545339

RESUMO

Introduction: Ascending thoracic aortic aneurysms arise from pathological tissue remodeling that leads to abnormal wall dilation and increases the risk of fatal dissection/rupture. Large variability in disease manifestations across family members who carry a causative genetic variant for thoracic aortic aneurysms suggests that genetic modifiers may exacerbate clinical outcomes. Decreased perlecan expression in the aorta of mgΔlpn mice with severe Marfan syndrome phenotype advocates for exploring perlecan-encoding Hspg2 as a candidate modifier gene. Methods: To determine the effect of concurrent Hspg2 and Fbn1 mutations on the progression of thoracic aortopathy, we characterized the microstructure and passive mechanical response of the ascending thoracic aorta in female mice of four genetic backgrounds: wild-type, heterozygous with a mutation in the Fbn1 gene (mgΔlpn), heterozygous with a mutation in the Hspg2 gene (Hspg2+/-), and double mutants carrying both the Fbn1 and Hspg2 variants (dMut). Results: Elastic fiber fragmentation and medial disarray progress from the internal elastic lamina outward as the ascending thoracic aorta dilates in mgΔlpn and dMut mice. Concurrent increase in total collagen content relative to elastin reduces energy storage capacity and cyclic distensibility of aortic tissues from mice that carry the Fbn1 variant. Inherent circumferential tissue stiffening strongly correlates with the severity of aortic dilatation in mgΔlpn and dMut mice. Perlecan haploinsufficiency superimposed to the mgΔlpn mutation curbs the viability of dMut mice, increases the occurrence of aortic enlargement, and reduces the axial stretch in aortic tissues. Discussion: Overall, our findings show that dMut mice are more vulnerable than mgΔlpn mice without an Hspg2 mutation, yet later endpoints and additional structural and functional readouts are needed to identify causative mechanisms.

5.
Matrix Biol ; 126: 14-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224822

RESUMO

Pathogenic variants in the FBN1 gene, which encodes the extracellular matrix protein fibrillin-1, cause Marfan syndrome (MFS), which affects multiple organ systems, including the cardiovascular system. Myocardial dysfunction has been observed in a subset of patients with MFS and in several MFS mouse models. However, there is limited understanding of the intrinsic consequences of FBN1 variants on cardiomyocytes (CMs). To elucidate the CM-specific contribution in Marfan's cardiomyopathy, cardiosphere cultures of CMs and cardiac fibroblasts (CFs) are used. CMs and CFs were derived by human induced pluripotent stem cell (iPSC) differentiation from MFS iPSCs with a pathogenic variant in FBN1 (c.3725G>A; p.Cys1242Tyr) and the corresponding CRISPR-corrected iPSC line (Cor). Cardiospheres containing MFS CMs show decreased FBN1, COL1A2 and GJA1 expression. MFS CMs cultured in cardiospheres have fewer binucleated CMs in comparison with Cor CMs. 13% of MFS CMs in cardiospheres are binucleated and 15% and 16% in cardiospheres that contain co-cultures with respectively MFS CFs and Cor CFs, compared to Cor CMs, that revealed up to 23% binucleation when co-cultured with CFs. The sarcomere length of CMs, as a marker of development, is significantly increased in MFS CMs interacting with Cor CF or MFS CF, as compared to monocultured MFS CMs. Nuclear blebbing was significantly more frequent in MFS CFs, which correlated with increased stiffness of the nuclear area compared to Cor CFs. Our cardiosphere model for Marfan-related cardiomyopathy identified a contribution of CFs in Marfan-related cardiomyopathy and suggests that abnormal early development of CMs may play a role in the disease mechanism.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Animais , Camundongos , Humanos , Miócitos Cardíacos/metabolismo , Técnicas de Cocultura , Síndrome de Marfan/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Mutação
6.
Genetics ; 226(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37972149

RESUMO

The fibrillinopathies represent a group of diseases in which the 10-12 nm extracellular microfibrils are disrupted by genetic variants in one of the genes encoding fibrillin molecules, large glycoproteins of the extracellular matrix. The best-known fibrillinopathy is Marfan syndrome, an autosomal dominant condition affecting the cardiovascular, ocular, skeletal, and other systems, with a prevalence of around 1 in 3,000 across all ethnic groups. It is caused by variants of the FBN1 gene, encoding fibrillin-1, which interacts with elastin to provide strength and elasticity to connective tissues. A number of mouse models have been created in an attempt to replicate the human phenotype, although all have limitations. There are also natural bovine models and engineered models in pig and rabbit. Variants in FBN2 encoding fibrillin-2 cause congenital contractural arachnodactyly and mouse models for this condition have also been produced. In most animals, including birds, reptiles, and amphibians, there is a third fibrillin, fibrillin-3 (FBN3 gene) for which the creation of models has been difficult as the gene is degenerate and nonfunctional in mice and rats. Other eukaryotes such as the nematode C. elegans and zebrafish D. rerio have a gene with some homology to fibrillins and models have been used to discover more about the function of this family of proteins. This review looks at the phenotype, inheritance, and relevance of the various animal models for the different fibrillinopathies.


Assuntos
Caenorhabditis elegans , Modelos Genéticos , Animais , Bovinos , Humanos , Camundongos , Ratos , Coelhos , Suínos , Mutação , Peixe-Zebra/genética , Fibrilinas
7.
Ann Lab Med ; 44(3): 271-278, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37840311

RESUMO

Background: Marfan syndrome (MFS) is caused by fibrillin-1 gene (FBN1) variants. Mutational hotspots and/or well-established critical functional domains of FBN1 include cysteine residues, calcium-binding consensus sequences, and amino acids related to interdomain packaging. Previous guidelines for variant interpretation do not reflect the features of genes or related diseases. Using the Clinical Genome Resource (ClinGen) FBN1 variant curation expert panel (VCEP), we re-evaluated FBN1 germline variants reported as variants of uncertain significance (VUSs). Methods: We re-evaluated 26 VUSs in FBN1 reported in 161 patients with MFS. We checked the variants in the Human Genome Mutation Database, ClinVar, and VarSome databases and assessed their allele frequencies using the gnomAD database. Patients' clinical information was reviewed. Results: Four missense variants affecting cysteines (c.460T>C, c.1006T>C, c.5330G>C, and c.8020T>C) were reclassified as likely pathogenic and were assigned PM1_strong or PM1. Two intronic variants were reclassified as benign by granting BA1 (stand-alone). Four missense variants were reclassified as likely benign. BP5 criteria were applied in cases with an alternate molecular basis for disease, one of which (c.7231G>A) was discovered alongside a pathogenic de novo COL3A1 variant (c.1988G>T, p.Gly633Val). Conclusions: Considering the high penetrance of FBN1 variants and clinical variability of MFS, the detection of pathogenic variants is important. The ClinGen FBN1 VCEP encompasses mutational hotspots and/or well-established critical functional domains and adjusts the criteria specifically for MFS; therefore, it is beneficial not only for identifying pathogenic FBN1 variants but also for distinguishing these variants from those that cause other connective tissue disorders with overlapping clinical features.


Assuntos
Síndrome de Marfan , Humanos , Fibrilina-1/genética , Mutação , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Mutação de Sentido Incorreto , Frequência do Gene , Cisteína/genética
8.
Am J Med Genet A ; 194(2): 368-373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840436

RESUMO

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder due to pathogenic variants in Fibrillin-1 (FBN1) affecting nearly one in every 10,000 individuals. We report a 16-month-old female with early-onset MFS heterozygous for an 11.2 kb de novo duplication within the FBN1 gene. Tandem location of the duplication was further confirmed by optical genome mapping in addition to genetic sequencing and chromosomal microarray. This is the third reported case of a large multi-exon duplication in FBN1, and the only one confirmed to be in tandem. As the vast majority of pathogenic variants associated with MFS are point mutations, this expands the landscape of known FBN1 pathogenic variants and supports consistent use of genetic testing strategies that can detect large, indel-type variants.


Assuntos
Síndrome de Marfan , Humanos , Feminino , Lactente , Fibrilina-1/genética , Mutação , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Testes Genéticos , Mutação Puntual , Fibrilinas/genética , Adipocinas/genética
9.
Exp Eye Res ; 239: 109724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981180

RESUMO

Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetic retinopathy. To investigate the proteomic profiles of the aqueous humor (AH) of individuals with diabetic macular edema (DME), AH samples were collected from patients with non-diabetes mellitus (NDM), DM, nonproliferative diabetic retinopathy (NPDR), and DME. We performed comparative proteomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. We identified 425 proteins in these AH samples, of which 113 showed changes in expression in DME compared with NDM, 95 showed changes in expression in DME vs. DM, and 84 showed changes in expression in DME compared with NPDR. The bioinformatics analysis suggested that DME is closely associated with platelet degranulation, oxidative stress-related pathway, and vascular-related pathways. Upregulation of haptoglobin (HP) and downregulation of fibrillin 1 (FBN1) were validated by ELISA. Receiver operating characteristic (ROC) analysis showed that HP and FBN1 could distinguish DME from NPDR with areas under the curve of 0.987 (p = 0.00608) and 0.791 (p = 0.00629), respectively. The findings provide potential clues for further analysis of the molecular mechanisms and the development of new treatments for DME. HP and FBN1 may be potential key proteins and therapeutic targets in human DME. The proteomics dataset generated has been deposited to the ProteomeXchange/iProX Consortium with Identifier: PXD033404/IPX0004353001.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Retinopatia Diabética/metabolismo , Edema Macular/metabolismo , Humor Aquoso/metabolismo , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diabetes Mellitus/metabolismo
10.
Organ Transplantation ; (6): 257-262, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1012497

RESUMO

Objective To investigate the feasibility and clinical experience of kidney transplantation from donors with Marfan syndrome (MFS). Methods Clinical data of 2 recipients undergoing kidney transplantation from the same MFS patient were retrospectively analyzed and literature review of 2 cases was conducted. Characteristics and clinical diagnosis and treatment of kidney transplantation from MFS patients were summarized. Results The Remuzzi scores of the left and right donor kidneys of the MFS patient during time-zero biopsy were 1 and 2. No significant difference was observed in the renal arteriole wall compared with other donors of brain death and cardiac death. Two recipients who received kidney transplantation from the MFS patient suffered from postoperative delayed graft function. After short-term hemodialysis, the graft function of the recipients received the left and right kidney began to gradually recover at postoperative 10 d and 20 d. After discharge, serum creatinine level of the recipient received the left kidney was ranged from 80 to 90 μmol/L, whereas that of the recipient received the right kidney kept declining, and the lowest serum creatinine level was 232 μmol/L before the submission date (at postoperative 43 d). Through literature review, two cases successfully undergoing kidney transplantation from the same MFS donor were reported. Both two recipients experienced delayed graft function, and then renal function was restored to normal. Until the publication date, 1 recipient has survived for 6 years, and the other recipient died of de novo cerebrovascular disease at postoperative 2 years. Conclusions MFS patients may serve as an acceptable source of kidney donors. However, the willingness and general conditions of the recipients should be carefully evaluated before kidney transplantation. Intraoperatively, potential risk of tear of renal arterial media should be properly treated. Extensive attention should be paid to the incidence of postoperative complications.

11.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958946

RESUMO

Human skin aging is associated with functional deterioration on multiple levels of physiology, necessitating the development of effective skin senotherapeutics. The well-tolerated neurohormone melatonin unfolds anti-aging properties in vitro and in vivo, but it remains unclear whether these effects translate to aged human skin ex vivo. We tested this in organ-cultured, full-thickness human eyelid skin (5-6 donors; 49-77 years) by adding melatonin to the culture medium, followed by the assessment of core aging biomarkers via quantitative immunohistochemistry. Over 6 days, 200 µM melatonin significantly downregulated the intraepidermal activity of the aging-promoting mTORC1 pathway (as visualized by reduced S6 phosphorylation) and MMP-1 protein expression in the epidermis compared to vehicle-treated control skin. Conversely, the transmembrane collagen 17A1, a key stem cell niche matrix molecule that declines with aging, and mitochondrial markers (e.g., TFAM, MTCO-1, and VDAC/porin) were significantly upregulated. Interestingly, 100 µM melatonin also significantly increased the epidermal expression of VEGF-A protein, which is required and sufficient for inducing human skin rejuvenation. In aged human dermis, melatonin significantly increased fibrillin-1 protein expression and improved fibrillin structural organization, indicating an improved collagen and elastic fiber network. In contrast, other key aging biomarkers (SIRT-1, lamin-B1, p16INK4, collagen I) remained unchanged. This ex vivo study provides proof of principle that melatonin indeed exerts long-suspected but never conclusively demonstrated and surprisingly differential anti-aging effects in aged human epidermis and dermis.


Assuntos
Melatonina , Envelhecimento da Pele , Humanos , Idoso , Melatonina/farmacologia , Melatonina/metabolismo , Pele/metabolismo , Epiderme/metabolismo , Envelhecimento , Colágeno/metabolismo , Biomarcadores/metabolismo , Pálpebras
12.
Vascul Pharmacol ; 153: 107215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640090

RESUMO

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in fibrillin 1 (FBN1) gene. These mutations result in defects in the skeletal, ocular, and cardiovascular systems. Aortic aneurysm is the leading cause of premature mortality in untreated MFS patients. Elastic fiber fragmentation in the aortic vessel wall is a hallmark of MFS-associated aortic aneurysms. FBN1 mutations result in FBN1 fragments that also contribute to elastic fiber fragmentation. Although recent research has advanced our understanding of MFS, the contribution of elastic fiber fragmentation to the pathogenesis of aneurysm formation remains poorly understood. This review provides a comprehensive overview of the molecular mechanisms of elastic fiber fragmentation and its role in the pathogenesis of aortic aneurysm progression. Increased comprehension of elastic fragmentation has significant clinical implications for developing targeted interventions to block aneurysm progression, which would benefit not only individuals with Marfan syndrome but also other patients with aneurysms. Moreover, this review highlights an overlooked connection between inhibiting aneurysm and the restoration of elastic fibers in the vessel wall with various aneurysm inhibitors, including drugs and chemicals. Investigating the underlying molecular mechanisms could uncover innovative therapeutic strategies to inhibit elastin fragmentation and prevent the progression of aneurysms.


Assuntos
Aneurisma Aórtico , Síndrome de Marfan , Humanos , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/terapia , Tecido Elástico/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/terapia , Aorta/patologia , Fibrilina-1/genética
13.
Health Sci Rep ; 6(7): e1434, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37469709

RESUMO

Background: Fibrillin is one of the extracellular matrix glycoproteins and participates in forming microfibrils found in many connective tissues. The microfibrils enable the elasticity and stretching properties of the ligaments and support connective tissues. There are three isoforms of fibrillin molecules identified in mammals: fibrillin 1 (FBN1), fibrillin 2 (FBN2), and fibrillin 3. Objective: Multiple studies have shown that mutations in these genes or changes in their expression levels can be related to various diseases, including cancers. In this study, we focus on reviewing the role of the fibrillin family in multiple cancers. Methods and Results: We performed a comprehensive literature review to search PubMed and Google Scholar for studies published so far on fibrillin gene expression and its role in cancers. In this review, we have focused on the expression of FBN1 and FBN2 genes in cancers such as the lung, intestine, ovary, pancreatic ductal, esophagus, and thyroid. Conclusion: Altogether various studies showed higher expression of fibrillins in different tumor tissues correlated with the patient's survival. However, there are controversial findings, as some other cancers showed hypermethylated FBN promoters with lower gene expression levels.

14.
Arterioscler Thromb Vasc Biol ; 43(9): e358-e372, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470181

RESUMO

BACKGROUND: Transmural failure of the aorta is responsible for substantial morbidity and mortality; it occurs when mechanical stress exceeds strength. The aortic root and ascending aorta are susceptible to dissection and rupture in Marfan syndrome, a connective tissue disorder characterized by a progressive reduction in elastic fiber integrity. Whereas competent elastic fibers endow the aorta with compliance and resilience, cross-linked collagen fibers confer stiffness and strength. We hypothesized that postnatal reductions in matrix cross-linking increase aortopathy when turnover rates are high. METHODS: We combined ex vivo biaxial mechanical testing with multimodality histological examinations to quantify expected age- and sex-dependent structural vulnerability of the ascending aorta in Fbn1C1041G/+ Marfan versus wild-type mice without and with 4-week exposures to ß-aminopropionitrile, an inhibitor of lysyl oxidase-mediated cross-linking of newly synthesized elastic and collagen fibers. RESULTS: We found a strong ß-aminopropionitrile-associated sexual dimorphism in aortic dilatation in Marfan mice and aortic rupture in wild-type mice, with dilatation correlating with compromised elastic fiber integrity and rupture correlating with compromised collagen fibril organization. A lower incidence of rupture of ß-aminopropionitrile-exposed Marfan aortas associated with increased lysyl oxidase, suggesting a compensatory remodeling of collagen that slows disease progression in the otherwise compromised Fbn1C1041G/+ aorta. CONCLUSIONS: Collagen fiber structure and function in the Marfan aorta are augmented, in part, by increased lysyl oxidase in female and especially male mice, which improves structural integrity, particularly via fibrils in the adventitia. Preserving or promoting collagen cross-linking may represent a therapeutic target for an otherwise vulnerable aorta.


Assuntos
Síndrome de Marfan , Animais , Feminino , Masculino , Camundongos , Aminopropionitrilo/toxicidade , Colágeno , Dilatação , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibrilina-1/genética , Síndrome de Marfan/complicações , Síndrome de Marfan/patologia , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética
15.
J Agric Food Chem ; 71(30): 11740-11750, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471694

RESUMO

In this study, the N-glycosylated protein profiles of cattle-yak longissimus thoracis (CYLT) and yak longissimus thoracis (YLT) were comparatively analyzed using quantitative proteomics techniques. A total of 76 differential N-glycosylated proteins (DGPs) were screened from 181 quantified N-glycoproteins, indicating that differences in N-glycosylation levels are key to the differences between CYLT and YLT. In particular, a variety of N-glycoproteins involved in the extracellular matrix were differentially N-glycosylated between CYLT and YLT, mainly including fibrillin-1, fibromodulin, collagen, and laminins. In addition, the N-glycosylation levels of several lysosomal-related proteolytic enzymes (cathepsin D, dipeptidyl peptidase 1, legumain, and aminopeptidases, etc.) were significantly higher in CYLT. These results indicated that the N-glycosylation of CYLT and YLT proteins plays a crucial role in the regulation of extracellular matrix organization (muscle fiber structure) and lysosomal activity (postmortem meat tenderness). The results remind us that posttranslation modifications, especially N-glycosylation, are still icebergs beneath the surface.


Assuntos
Colágeno , Músculo Esquelético , Animais , Bovinos , Colágeno/metabolismo , Músculo Esquelético/metabolismo , Carne/análise
16.
Diagnostics (Basel) ; 13(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37443678

RESUMO

Marfan syndrome (MFS) is a rare inherited autosomic disorder, which encompasses a variety of systemic manifestations caused by mutations in the Fibrillin-1 encoding gene (FBN1). Cardinal clinical phenotypes of MFS are highly variable in terms of severity, and commonly involve cardiovascular, ocular, and musculoskeletal systems with a wide range of manifestations, such as ascending aorta aneurysms and dissection, mitral valve prolapse, ectopia lentis and long bone overgrowth, respectively. Of note, an accurate and prompt diagnosis is pivotal in order to provide the best treatment to the patients as early as possible. To date, the diagnosis of the syndrome has relied upon a systemic score calculation as well as DNA mutation identification. The aim of this review is to summarize the latest MFS evidence regarding the definition, differences and similarities with other connective tissue pathologies with severe systemic phenotypes (e.g., Autosomal dominant Weill-Marchesani syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome) and clinical assessment. In this regard, the management of MFS requires a multidisciplinary team in order to accurately control the evolution of the most severe and potentially life-threatening complications. Based on recent findings in the literature and our clinical experience, we propose a multidisciplinary approach involving specialists in different clinical fields (i.e., cardiologists, surgeons, ophthalmologists, orthopedics, pneumologists, neurologists, endocrinologists, geneticists, and psychologists) to comprehensively characterize, treat, and manage MFS patients with a personalized medicine approach.

17.
Mol Biol (Mosk) ; 57(3): 503-504, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37326054

RESUMO

Cisplatin (DDP) is widely used in the chemotherapy of cervical cancer (CC), the fourth most common female malignancy worldwide. However, some patients progress to chemotherapy resistance, which leads to chemotherapy failure, tumor recurrence, and poor prognosis. Therefore, strategies to identify the regulatory mechanisms underlying CC development and increase tumor sensitivity to DDP will help improve patient survival. This research was designed to ascertain the mechanism of EBF1-dependent regulation of FBN1 which promotes chemosensitivity of CC cells. The expression of EBF1 and FBN1 was measured in CC tissues resistant or sensitive to chemotherapy and in DDP-sensitive or -resistant cells (SiHa and SiHa-DDP cells). SiHa-DDP cells were transduced with lentiviruses encoding EBF1 or FBN1 to evaluate the influence of these two proteins on cell viability, expression of MDR1 and MRP1, and cell aggressiveness. Moreover, the interaction between EBF1 and FBN1 was predicted and demonstrated. Finally, to further verify the EBF1/FB1-dependent mechanism of DDP sensitivity regulation in CC cells a xenograft mouse model of CC was established using SiHa-DDP cells transduced with lentiviruses carrying EBF1 gene and shRNA directed to FBN1 EBF1 and FBN1 showed decreased expression in CC tissues and cells, particularly in those resistant to chemotherapy. Transduction of SiHa-DDP cells with lentiviruses encoding EBF1 or FBN1 lead to decreased viability, IC50, proliferation capacity, colony formation ability, aggressiveness, and increased cell apoptosis. We have shown that EBF1 activates FBN1 transcription by binding to FBN1 promoter region. Additionally, it was revealed that FBN1 silencing reversed the promoting effect of EBF1 overexpression on chemosensitivity of CC cells in vivo. EBF1 facilitated chemosensitivity in CC cells by activating FBN1 transcription.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Cisplatino/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Resistencia a Medicamentos Antineoplásicos/genética , RNA Interferente Pequeno/genética , Proliferação de Células , Apoptose/genética , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Transativadores/genética , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-1/uso terapêutico
18.
Domest Anim Endocrinol ; 84-85: 106791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167929

RESUMO

Recent studies have reported hormonal regulation of expression of fibrillin 1 (FBN1), the gene that encodes asprosin, in bovine theca cells, however, hormonal regulation of gene expression of FBN1 and the asprosin receptor, olfactory receptor 4M1 (OR4M1), has not been evaluated in granulosa cells (GC). This study was designed to characterize FBN1 and OR4M1 gene expression in GC during development of bovine dominant ovarian follicles, and to determine the hormonal regulation of FBN1 and OR4M1 mRNA expression in GC. GC FBN1 mRNA abundance was greater (P < 0.05) in medium (5.1-8 mm) estrogen inactive (EI) follicles than in large (>8.1 mm) or small (1-5 mm) EI follicles. In comparison, GC OR4M1 mRNA abundance was greater (P < 0.05) in small EI follicles than in large or medium EI follicles. Abundance of OR4M1 mRNA in GC of follicles collected on days 3 to 4 (early growth phase) and on days 5 to 6 (late growth phase) was similar, whereas FBN1 mRNA abundance was greater (P < 0.05) on days 5 to 6 vs days 3 to 4. Hormonal regulators for FBN1 mRNA abundance in cultured small-follicle GC were identified: TGFß1 causing a 2.45-fold increase, WNT3A causing a 1.45-fold increase, and IGF1 causing a 65% decrease. Steroids, leptin, insulin, growth hormone, follicle stimulating hormone, fibroblast growth factor 9 and epidermal growth factor had no effect on FBN1 mRNA abundance. Abundance of OR4M1 mRNA in GC was regulated by progesterone with 3.55-fold increase, but other hormones did not affect GC OR4M1 mRNA abundance. Findings indicate that both FBN1 and OR4M1 gene expression are hormonally and developmentally regulated in bovine follicles, and thus may affect asprosin production and its subsequent role in ovarian follicular function in cattle.


Assuntos
Receptores Odorantes , Feminino , Bovinos , Animais , Receptores Odorantes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Células Tecais/metabolismo , Estrogênios , Hormônio Foliculoestimulante/metabolismo , Estradiol/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(23): e2221742120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252964

RESUMO

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.


Assuntos
Fibrilina-1 , Síndrome de Marfan , Animais , Camundongos , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
World J Clin Cases ; 11(9): 2036-2042, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36998968

RESUMO

BACKGROUND: Acromicric dysplasia (AD) is a rare skeletal dysplasia. Its incidence is < 1/1000000, and only approximately 60 cases are reported worldwide. It is a disease characterized by severe short stature, short hands and feet, facial abnormalities, normal intelligence, and bone abnormalities. Unlike other skeletal dysplasia, AD has a mild clinical phenotype, mainly characterized by short stature. Extensive endocrine examination has not revealed a potential cause. The clinical effect of growth hormone therapy is still uncertain. CASE SUMMARY: We report a clinical phenotype of AD associated with mutations in the fibrillin 1 (FBN1) (OMIM 102370) gene c.5183C>T (p. Ala1728Val) in three people from a Chinese family. A 4-year-old member of the family first visited the hospital because of slow growth and short stature for 2 years, but no abnormalities were found after a series of laboratory tests, echocardiography, pituitary magnetic resonance imaging, and ophthalmological examination. Recombinant human growth hormone (rhGH) was used to treat the patient for > 5 years. The efficacy of rhGH was apparent in the first year of treatment; the height increased from -3.64 standard deviation score (SDS) to -2.88 SDS, while the efficacy weakened from the second year. However, long-term follow-up is required to clarify the efficacy of rhGH. CONCLUSION: FBN1-related AD has genetic heterogeneity and/or clinical variability, which brings challenges to the evaluation of clinical treatment. rhGH is effective for treatment of AD, but long-term follow-up is needed to clarify the effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...