Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.085
Filtrar
1.
Heliyon ; 10(12): e32558, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975108

RESUMO

The application of human induced pluripotent stem cells (hiPSCs) provides tremendous opportunities in cell therapy. However, culturing these cells faces many practical challenges, including costs associated with cell culture media and the optimization of cell culture conditions. Providing an optimized culture platform for hiPSCs to maintain pluripotency and self-renewal and generate cost-effective and robust therapeutics is an immediate requirement. This study used the design of experiments and the response surface methodology, a powerful statistical tool, to generate empirical models for predicting the optimal culture conditions of the hiPSCs. Pluripotency and cell proliferation were applied as read-outs to determine the optimal concentration of basic fibroblast growth factor (bFGF) and cell density. One model was defined to predict pluripotency and cell proliferation in terms of the predictor variables of the bFGF concentration and cell seeding density. Predicted culture conditions to maximize maintaining cell pluripotency were successfully validated. The present study's findings provide a novel approach that can potentially allow controllable hiPSC culture routine in translational research.

2.
Neurotherapeutics ; : e00383, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955643

RESUMO

Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.

3.
Front Public Health ; 12: 1366838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947357

RESUMO

Background: In recent years, the prevalence of obesity has continued to increase as a global health concern. Numerous epidemiological studies have confirmed the long-term effects of exposure to ambient air pollutant particulate matter 2.5 (PM2.5) on obesity, but their relationship remains ambiguous. Methods: Utilizing large-scale publicly available genome-wide association studies (GWAS), we conducted univariate and multivariate Mendelian randomization (MR) analyses to assess the causal effect of PM2.5 exposure on obesity and its related indicators. The primary outcome given for both univariate MR (UVMR) and multivariate MR (MVMR) is the estimation utilizing the inverse variance weighted (IVW) method. The weighted median, MR-Egger, and maximum likelihood techniques were employed for UVMR, while the MVMR-Lasso method was applied for MVMR in the supplementary analyses. In addition, we conducted a series of thorough sensitivity studies to determine the accuracy of our MR findings. Results: The UVMR analysis demonstrated a significant association between PM2.5 exposure and an increased risk of obesity, as indicated by the IVW model (odds ratio [OR]: 6.427; 95% confidence interval [CI]: 1.881-21.968; P FDR = 0.005). Additionally, PM2.5 concentrations were positively associated with fat distribution metrics, including visceral adipose tissue (VAT) (OR: 1.861; 95% CI: 1.244-2.776; P FDR = 0.004), particularly pancreatic fat (OR: 3.499; 95% CI: 2.092-5.855; PFDR =1.28E-05), and abdominal subcutaneous adipose tissue (ASAT) volume (OR: 1.773; 95% CI: 1.106-2.841; P FDR = 0.019). Furthermore, PM2.5 exposure correlated positively with markers of glucose and lipid metabolism, specifically triglycerides (TG) (OR: 19.959; 95% CI: 1.269-3.022; P FDR = 0.004) and glycated hemoglobin (HbA1c) (OR: 2.462; 95% CI: 1.34-4.649; P FDR = 0.007). Finally, a significant negative association was observed between PM2.5 concentrations and levels of the novel obesity-related biomarker fibroblast growth factor 21 (FGF-21) (OR: 0.148; 95% CI: 0.025-0.89; P FDR = 0.037). After adjusting for confounding factors, including external smoke exposure, physical activity, educational attainment (EA), participation in sports clubs or gym leisure activities, and Townsend deprivation index at recruitment (TDI), the MVMR analysis revealed that PM2.5 levels maintained significant associations with pancreatic fat, HbA1c, and FGF-21. Conclusion: Our MR study demonstrates conclusively that higher PM2.5 concentrations are associated with an increased risk of obesity-related indicators such as pancreatic fat content, HbA1c, and FGF-21. The potential mechanisms require additional investigation.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade , Material Particulado , População Branca , Humanos , Obesidade/genética , População Branca/genética , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos
4.
J Vet Intern Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952053

RESUMO

BACKGROUND: Plasma total magnesium concentration (tMg) is a prognostic indicator in cats with chronic kidney disease (CKD), shorter survival time being associated with hypomagnesemia. Whether this risk factor is modifiable with dietary magnesium supplementation remains unexplored. OBJECTIVES: Evaluate effects of a magnesium-enriched phosphate-restricted diet (PRD) on CKD-mineral bone disorder (CKD-MBD) variables. ANIMALS: Sixty euthyroid client-owned cats with azotemic CKD, with 27 and 33 allocated to magnesium-enriched PRD or control PRD, respectively. METHODS: Prospective double-blind, parallel-group randomized trial. Cats with CKD, stabilized on a PRD, without hypermagnesemia (tMg >2.43 mg/dL) or hypercalcemia (plasma ionized calcium concentration, (iCa) >6 mg/dL), were recruited. Both intention-to-treat and per-protocol (eating ≥50% of study diet) analyses were performed; effects of dietary magnesium supplementation on clinicopathological variables were evaluated using linear mixed effects models. RESULTS: In the per-protocol analysis, tMg increased in cats consuming a magnesium-enriched PRD (ß, 0.25 ± .07 mg/dL/month; P < .001). Five magnesium supplemented cats had tMg >2.92 mg/dL, but none experienced adverse effects. Rate of change in iCa differed between groups (P = .01), with decreasing and increasing trends observed in cats fed magnesium-enriched PRD and control PRD, respectively. Four control cats developed ionized hypercalcemia versus none in the magnesium supplemented group. Log-transformed plasma fibroblast growth factor-23 concentration (FGF23) increased significantly in controls (ß, 0.14 ± .05 pg/mL/month; P = .01), but remained stable in the magnesium supplemented group (ß, 0.05±.06 pg/mL/month; P =.37). CONCLUSIONS AND CLINICAL IMPORTANCE: Magnesium-enriched PRD is a novel therapeutic strategy for managing feline CKD-MBD in cats, further stabilizing plasma FGF23 and preventing hypercalcemia.

6.
Front Immunol ; 15: 1390453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962005

RESUMO

Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.


Assuntos
Fatores de Crescimento de Fibroblastos , Macrófagos , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Ativação de Macrófagos/imunologia , Inflamação/imunologia , Inflamação/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; : 167329, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960053

RESUMO

Gestational diabetes mellitus (GDM) disrupts glucolipid metabolism, endangering maternal and fetal health. Despite limited research on its pathogenesis and treatments, we conducted a study using serum samples from GDM-diagnosed pregnant women. We performed metabolic sequencing to identify key small molecule metabolites and explored their molecular interactions with FGF21. We also investigated FGF21's impact on GDM using blood samples from affected women. Our analysis revealed a novel finding: elevated levels of L-Cystine in GDM patients. Furthermore, we observed a positive correlation between L-Cystine and FGF21 levels, and found that L-Cystine induces NRF2 expression via FGF21 for a period of 96 h. Under high glucose (HG) conditions, FGF21 upregulates NRF2 and downstream genes NQO1 and EPHX1 via AKT phosphorylation induced by activation of IRS1, enhancing endothelial function. Additionally, we confirmed that levels of FGF21, L-Cystine, and endothelial function at the third trimester were effectively enhanced through appropriate exercise and diet during pregnancy in GDM patients (GDM + ED). These findings suggest FGF21 as a potential therapeutic agent for GDM, particularly in protecting endothelial cells. Moreover, elevated L-Cystine via appropriate exercise and diet might be a potential strategy to enhance FGF21's efficacy.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38894596

RESUMO

AIM: We aimed to assess the role of FGF21 in metabolic dysfunction-associated steatotic liver disease (MASLD) at a multi-scale level. METHODS: We used human MASLD pathology samples for FGF21 gene expression analyses (qPCR and RNAseq), serum to measure circulating FGF21 levels and DNA for genotyping the FGF21 rs838133 variant in both estimation and validation cohorts. A hepatocyte-derived cell line was exposed to free fatty acids at different timepoints. Finally, C57BL/6J mice were fed a high-fat and choline-deficient diet (CDA-HFD) for 16 weeks to assess hepatic FGF21 protein expression and FGF21 levels by ELISA. RESULTS: A significant upregulation in FGF21 mRNA expression was observed in the liver analysed by both qPCR (fold change 5.32 ± 5.25 vs. 0.59 ± 0.66; p = 0.017) and RNA-Seq (3.5 fold; FDR: 0.006; p < 0.0001) in MASLD patients vs. controls. Circulating levels of FGF21 were increased in patients with steatohepatitis vs. bland steatosis (386.6 ± 328.9 vs. 297.9 ± 231.5 pg/mL; p = 0.009). Besides, sex, age, A-allele from FGF21, GG genotype from PNPLA3, ALT, type 2 diabetes mellitus and BMI were independently associated with MASH and significant fibrosis in both estimation and validation cohorts. In vitro exposure of Huh7.5 cells to high concentrations of free fatty acids (FFAs) resulted in overexpression of FGF21 (p < 0.001). Finally, Circulating FGF21 levels and hepatic FGF21 expression were found to be significantly increased (p < 0.001) in animals under CDA-HFD. CONCLUSIONS: Hepatic and circulating FGF21 expression was increased in MASH patients, in Huh7.5 cells under FFAs and in CDA-HFD animals. The A-allele from the rs838133 variant was also associated with an increased risk of steatohepatitis and significant and advanced fibrosis in MASLD patients.

9.
Nutrients ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38892505

RESUMO

Several studies show that gut microbiotas in patients with nonalcoholic fatty liver disease (NAFLD) differ from those in a healthy population, suggesting that this alteration plays a role in NAFLD pathogenesis. We investigated whether prebiotic administration affects liver fat content and/or liver-related and metabolic parameters. Patients with NAFLD and metabolic syndrome (age: 50 ± 11; 79% men) were randomized to receive either 16 g/day of prebiotic (ITFs-inulin-type fructans) (n = 8) or placebo (maltodextrin) (n = 11) for 12 weeks. Patients were instructed to maintain a stable weight throughout the study. Liver fat content (measured by H1MRS), fecal microbiota, and metabolic, inflammatory, and liver parameters were determined before and after intervention. Fecal samples from patients who received the prebiotic had an increased content of Bifidobacterium (p = 0.025), which was not observed with the placebo. However, the baseline and end-of-study liver fat contents did not change significantly in the prebiotic and placebo groups, neither did the liver function tests' metabolic and inflammatory mediators, including fibroblast growth factor-19 and lipopolysaccharide-binding protein. Body weight remained stable in both groups. These findings suggest that prebiotic treatment without weight reduction is insufficient to improve NAFLD.


Assuntos
Fezes , Microbioma Gastrointestinal , Fígado , Hepatopatia Gordurosa não Alcoólica , Prebióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Prebióticos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Feminino , Projetos Piloto , Adulto , Fígado/metabolismo , Fezes/microbiologia , Bifidobacterium , Método Duplo-Cego , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/terapia
10.
J Clin Med ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38892751

RESUMO

Background: The risk of impaired bone-pin interface strength in titanium (Ti) pins coated with fibroblast growth factor (FGF)-calcium phosphate (CP) composite layers is yet to be evaluated in a clinical study. This retrospective study used Weibull plot analysis to evaluate bone-pin interface strength in Ti pins coated with FGF-CP layers for external distal radius fracture fixation. Methods: The distal radial fractures were treated with external fixation. The FGF-CP group comprised five patients (all women, aged 70.4 ± 5.9 (range: 62-77) years), and the uncoated pin group comprised ten patients (eight women and two men, aged 64.4 ± 11.7 (range: 43-83) years). The pins were removed after six weeks. The insertion and extraction peak torques were measured. The extraction peak torque was evaluated using Weibull plot analysis. Results: We compared the extraction torque of the two groups at or below 506 Nmm for a fair comparison using Weibull plot analysis. The Weibull plots were linear for both the FGF-CP and uncoated pin groups. The slope of the regression line was significantly higher in the FGF-CP group (1.7343) than in the uncoated pin group (1.5670) (p = 0.011). The intercept of the regression line was significantly lower in the FGF-CP group (-9.847) than in the uncoated pin group (-8.708) (p = 0.002). Thus, the two regression lines significantly differed. Conclusions: Ti pins coated with FGF-CP layers exhibit the potential to reduce the risk of impaired bone-pin interface strength in the external fixation of distal radius fractures.

11.
Stem Cell Res Ther ; 15(1): 176, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886861

RESUMO

AIMS AND OBJECTIVES: The aim of this study is to systematically review randomized controlled clinical trials (RCTs) studying various types of regenerative medicine methods (such as platelet-rich plasma, stromal vascular fraction, cell therapy, conditioned media, etc.) in treating specific dermatologic diseases. Rejuvenation, scarring, wound healing, and other secondary conditions of skin damage were not investigated in this study. METHOD: Major databases, including PubMed, Scopus, and Web of Science, were meticulously searched for RCTs up to January 2024, focusing on regenerative medicine interventions for specific dermatologic disorders (such as androgenetic alopecia, vitiligo, alopecia areata, etc.). Key data extracted encompassed participant characteristics and sample sizes, types of regenerative therapy, treatment efficacy, and adverse events. RESULTS: In this systematic review, 64 studies involving a total of 2888 patients were examined. Women constituted 44.8% of the study population, while men made up 55.2% of the participants, with an average age of 27.64 years. The most frequently studied skin diseases were androgenetic alopecia (AGA) (45.3%) and vitiligo (31.2%). The most common regenerative methods investigated for these diseases were PRP and the transplantation of autologous epidermal melanocyte/keratinocyte cells, respectively. Studies reported up to 68.4% improvement in AGA and up to 71% improvement in vitiligo. Other diseases included in the review were alopecia areata, melasma, lichen sclerosus et atrophicus (LSA), inflammatory acne vulgaris, chronic telogen effluvium, erosive oral lichen planus, and dystrophic epidermolysis bullosa. Regenerative medicine was found to be an effective treatment option in all of these studies, along with other methods. The regenerative medicine techniques investigated in this study comprised the transplantation of autologous epidermal melanocyte/keratinocyte cells, isolated melanocyte transplantation, cell transplantation from hair follicle origins, melanocyte-keratinocyte suspension in PRP, conditioned media injection, a combination of PRP and basic fibroblast growth factor, intravenous injection of mesenchymal stem cells, concentrated growth factor, stromal vascular fraction (SVF), a combination of PRP and SVF, and preserving hair grafts in PRP. CONCLUSION: Regenerative medicine holds promise as a treatment for specific dermatologic disorders. To validate our findings, it is recommended to conduct numerous clinical trials focusing on various skin conditions. In our study, we did not explore secondary skin lesions like scars or ulcers. Therefore, assessing the effectiveness of this treatment method for addressing these conditions would necessitate a separate study.


Assuntos
Ensaios Clínicos Controlados Aleatórios como Assunto , Medicina Regenerativa , Dermatopatias , Adulto , Feminino , Humanos , Masculino , Plasma Rico em Plaquetas , Medicina Regenerativa/métodos , Dermatopatias/terapia
12.
Arch Dermatol Res ; 316(7): 405, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878084

RESUMO

Basic fibroblast growth factor (FGF2 or bFGF) is critical for optimal wound healing. Experimental studies show that local application of FGF2 is a promising therapeutic approach to stimulate tissue regeneration, including for the treatment of chronic wounds that have a low healing potential or are characterised by a pathologically altered healing process. However, the problem of low efficiency of growth factors application due to their rapid loss of biological activity in the aggressive proteolytic environment of the wound remains. Therefore, ways to preserve the efficacy of FGF2 for wound treatment are being actively developed. This review considers the following strategies to improve the effectiveness of FGF2-based therapy: (1) use of vehicles/carriers for delivery and gradual release of FGF2; (2) chemical modification of FGF2 to increase the stability of the molecule; (3) use of genetic constructs encoding FGF2 for de novo synthesis of protein in the wound. In addition, this review discusses FGF2-based therapeutic strategies that are undergoing clinical trials and demonstrating the efficacy of FGF2 for skin wound healing.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Pele , Cicatrização , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Cicatrização/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Pele/metabolismo , Animais , Terapia Genética/métodos , Portadores de Fármacos
14.
Heliyon ; 10(11): e30887, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841436

RESUMO

Fibroblast growth factors and their receptors (FGFR) have major roles in both human growth and oncogenesis. In adults, therapeutic FGFR inhibitors have been successful against tumors that carry somatic FGFR mutations. In pediatric patients, trials testing these anti-tumor FGFR inhibitor therapeutics are underway, with several recent reports suggesting modest positive responses. Herein, we report an unforeseen outcome in a pre-pubescent child with an FGFR1-mutated glioma who was successfully treated with FDA-approved erdafitinib, a pan-FGFR inhibitor approved for treatment of Bladder tumors. While on treatment with erdafitinib, the patient experienced rapid skeletal and long bone overgrowth resulting in kyphoscoliosis, reminiscent of patients with congenital loss-of-function FGFR3 mutations. We utilized normal dermal fibroblast cells established from the patient as a surrogate model to demonstrate that insulin-like growth factor 1 (IGF-1), a factor important for developmental growth of bones and tissues, can activate the PI3K/AKT pathway in erdafitinib-treated cells but not the MAPK/ERK pathway. The IGF-I-activated PI3K/AKT signaling rescued normal fibroblasts from the cytotoxic effects of erdafitinib by promoting cell survival. We, therefore, postulate that IGF-I-activated P13K/AKT signaling likely continues to promote bone elongation in the growing child, but not in adults, treated with therapeutic pan-FGFR inhibitors. Importantly, since activated MAPK signaling counters bone elongation, we further postulate that prolonged blockage of the MAPK pathway with pan-FGFR inhibitors, together with actions of growth-promoting factors including IGF-1, could explain the abnormal skeletal and axial growth suffered by our pre-pubertal patient during systemic therapeutic use of pan-FGFR inhibitors. Further studies to find more targeted, and/or appropriate dosing, of pan-FGFR inhibitor therapeutics for children are essential to avoid unexpected off-target effects as was observed in our young patient.

15.
Mil Med Res ; 11(1): 40, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902808

RESUMO

Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.


Assuntos
Fatores de Crescimento de Fibroblastos , Osteoartrite , Transdução de Sinais , Humanos , Fatores de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Osteoartrite/fisiopatologia , Fator de Crescimento de Fibroblastos 23 , Degeneração do Disco Intervertebral/fisiopatologia , Osteoporose/fisiopatologia , Osteoporose/etiologia , Sarcopenia/fisiopatologia , Envelhecimento/fisiologia , Animais
16.
Gene ; 927: 148717, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908457

RESUMO

Fibroblast growth factor receptors (Fgfrs) are involved in cell proliferation, differentiation, and migration via complex signaling pathways in different tissues. Our previous studies showed that fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL) for growth traits. However, studies focusing on the function of fgfr4 on the growth of bony fish are still limited. In this study, we identified seven fgfr genes in spotted sea bass (Lateolabrax maculatus) genome, namely fgfr1a, fgfr1b, fgfr2, fgfr3, fgfr4, fgfr5a, and fgfr5b. Phylogenetic analysis, syntenic analysis and gene structure analysis were conducted to further support the accuracy of our annotation and classification results. Additionally, fgfr4 showed the highest expression levels among fgfrs during the proliferation and differentiation stages of spotted sea bass myoblasts. To further study the function of fgfr4 in myogenesis, dual-fluorescence in situ hybridization (ISH) assay was conducted, and the results showed co-localization of fgfr4 with marker gene of skeletal muscle satellite cells. By treating differentiating myoblasts cultured in vitro with BLU-554, the mRNA expressions of myogenin (myog) and the numbers of myotubes formed by myoblasts increased significantly compared to negative control group. These results indicated that Fgfr4 inhibits the differentiation of myoblasts in spotted sea bass. Our findings contributed to filling a research gap on fgfr4 in bony fish myogenesis and the theoretical understanding of growth trait regulation of spotted sea bass.

17.
Endocr J ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38910123

RESUMO

Fibroblast growth factor (FGF) 21, a hormone produced by the liver, improves glucose and lipid metabolism. We recently demonstrated that the FGF21 gene (Fgf21) underwent DNA demethylation in the mouse liver via peroxisome proliferator-activated receptor (PPAR) α during the fetal to lactation periods. Furthermore, we found that the DNA methylation state of Fgf21 was involved in obesity in adult animals. In the present study, we analyzed the DNA methylation state of the FGF21 gene (FGF21) in obese patients using genomic DNA extracted from human monocytes and macrophages and investigated the pathophysiological significance of the FGF21 expression response to pemafibrate (PM), a PPARα ligand. We examined 67 patients with obesity stratified into in- and outpatient cohorts. A positive correlation was observed between serum FGF21 levels and triglyceride (TG) levels before PM administration. However, changes in serum FGF21 levels following PM administration did not correlate with the FGF21 DNA methylation rate, except at one CpG site. The body mass index (BMI) and serum TG levels positively correlated with the FGF21 DNA methylation rate, particularly at different CpG positions. A negative correlation was observed between absolute changes in serum FGF21 levels and the ratio of change in serum TG levels after PM administration. Collectively, these results indicate the potential of FGF21 DNA methylation as a surrogate indicator of BMI and serum TG levels, while absolute changes in serum FGF21 levels after PM administration may offer prognostic insights into the efficacy of reducing serum TG levels through PM administration.

18.
ESMO Open ; 9(6): 103488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838500

RESUMO

BACKGROUND: Fibroblast growth factor receptor 2 (FGFR2) fusions and rearrangements are clinically actionable genomic alterations in cholangiocarcinoma (CCA). Pemigatinib is a selective, potent, oral inhibitor of FGFR1-3 and demonstrated efficacy in patients with previously treated, advanced/metastatic CCA with FGFR2 alterations in FIGHT-202 (NCT02924376). We report final outcomes from the extended follow-up period. PATIENTS AND METHODS: The multicenter, open-label, single-arm, phase II FIGHT-202 study enrolled patients ≥18 years old with previously treated advanced/metastatic CCA with FGFR2 fusions or rearrangements (cohort A), other FGF/FGFR alterations (cohort B), or no FGF/FGFR alterations (cohort C). Patients received once-daily oral pemigatinib 13.5 mg in 21-day cycles (2 weeks on, 1 week off) until disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR) in cohort A assessed as per RECIST v1.1 by an independent review committee; secondary endpoints included duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: FIGHT-202 enrolled 147 patients (cohort A, 108; cohort B, 20; cohort C, 17; unconfirmed FGF/FGFR alterations, 2). By final analysis, 145 (98.6%) had discontinued treatment due to progressive disease (71.4%), withdrawal by patient (8.2%), or adverse events (AEs; 6.8%). Median follow-up was 45.4 months. The ORR in cohort A was 37.0% (95% confidence interval 27.9% to 46.9%); complete and partial responses were observed in 3 and 37 patients, respectively. Median DOR was 9.1 (6.0-14.5) months; median PFS and OS were 7.0 (6.1-10.5) months and 17.5 (14.4-22.9) months, respectively. The most common treatment-emergent AEs (TEAEs) were hyperphosphatemia (58.5%), alopecia (49.7%), and diarrhea (47.6%). Overall, 15 (10.2%) patients experienced TEAEs leading to pemigatinib discontinuation; intestinal obstruction and acute kidney injury (n = 2 each) occurred most frequently. CONCLUSIONS: Pemigatinib demonstrated durable response and prolonged OS with manageable AEs in patients with previously treated, advanced/metastatic CCA with FGFR2 alterations in the extended follow-up period of FIGHT-202.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Pirimidinas , Humanos , Colangiocarcinoma/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Neoplasias dos Ductos Biliares/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Idoso de 80 Anos ou mais , Morfolinas , Pirróis
19.
J Cosmet Laser Ther ; : 1-8, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943685

RESUMO

Microneedle fractional radiofrequency (MFRF) has been used to improve photoaging and scars. This study aimed to evaluate the efficacy and safety of MFRF with basic fibroblast growth factor (bFGF) for facial atrophic acne scars and skin rejuvenation by blinded visual evaluation, self-report, and reflective confocal microscopy (RCM). Fifteen subjects were randomized to the MFRF with bFGF group and fifteen to the MFRF group. All subjects underwent three-session therapy and a follow-up period. Significant group differences were in ECCA, global improvement score, satisfaction, and downtime before and after treatment. Combination therapy could be more effective than monotherapy for acne scars and facial rejuvenation. In addition, RCM can be used to observe the changes in skin collagen before and after treatment in evaluating cosmetic efficacy.

20.
Poult Sci ; 103(8): 103889, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38861844

RESUMO

Previous studies with broiler breeders indicate a P retention threshold when fed daily dietary levels of non-phytate P (NPP) exceeding 320 mg. Fibroblast growth factor 23 (FGF23) is a hormone secreted by osteocytes which modulates P retention and could be the biological agent which controls the P threshold in breeders. To evaluate the relationship between FGF23 and the P retention threshold, a 4-wk study with 32-wk-old breeders was conducted with 6 dietary treatments with daily NPP intake of 216 to 576 mg/d/h with increments of 80 mg/kg diet. The goals were 1) to elucidate how plasma FGF23 corresponds with the P retention threshold in broiler breeders and 2) to determine the amount of P for optimal egg production and bone health. Results showed that between daily 288 mg and 360 mg dietary NPP intake, P retention decreased from 33 to 26% but FGF23 levels increased from 130 pg/mL to 220 pg/mL with increasing NPP. The elevation of plasma FGF23 between the range of 288 mg to 360 mg dietary NPP/d intake suggests that FGF23 is related to the P retention threshold and may be the major hormone for regulating physiological P levels when intake of daily dietary P levels are increased above 288 mg NPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...