Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Sci Total Environ ; 946: 174228, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914329

RESUMO

Growing awareness acknowledges ambient fine particulate matter (PM2.5) as an environmental risk factor for mental disorders, especially among older people. However, there remains limited evidence regarding which specific chemical components of PM2.5 may be more detrimental. This nationwide prospective cohort study included 22,126 middle-aged and older adult participants of the China Health and Retirement Longitudinal Study (CHARLS, 2011-2016), to explore the individual and joint associations between long-term exposure to various PM2.5 components (sulfate, nitrate, ammonium, organic matter, and black carbon) and depressive symptoms. The depressive symptoms were assessed using the 10-item Center for Epidemiological Studies-Depression Scale (CES-D-10). Using the novel quantile-based g-computation for multi-pollutant mixture analysis, we found that exposure to the mixture of major PM2.5 components was significantly associated with aggravating depressive symptoms, with the exposure-response curve exhibiting consistent linear or supra-linear shape without a lower threshold. The estimated weight index indicated that, among major PM2.5 components, only nitrate, sulfate, and black carbon significantly contributed to the exacerbation of depressive symptoms. Given the expanding aging population, stricter regulation on the emissions of particularly toxic PM2.5 components may mitigate the escalating disease burden of depression.

2.
Free Radic Biol Med ; 221: 40-51, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38759901

RESUMO

Fine particulate matter (PM2.5), a significant component of air pollution particulate matter, is inevitable and closely associated with increasing male reproductive disorder. However, the testicular targets of PM2.5 and its toxicity related molecular mechanisms are still not fully understood. In this study, the conditional knockout (cKO) mice and primary Leydig cells were used to explore the testicular targets of PM2.5 and the related underlying mechanisms. First, apparent the structure impairment of seminiferous tubules, Leydig cells vacuolization, decline of serum testosterone and sperm quality reduction were found in male wild-type (WT) and Sirt1 knockout mice after exposure to PM2.5. Enrichment analyses revealed that differentially expressed genes (DEGs) were enriched in steroid hormone biosynthesis, ferroptosis, and HIF-1 signaling pathway in the mice testes after exposure to PM2.5, which were subsequently verified by the molecular biological analyses. Notably, similar enrichment analyses results were also observed in primary Leydig cells after treatment with PM2.5. In addition, Knockdown of Sirt1 significantly increased PM2.5-induced expression and activation of HIF-1α, which was in parallel to the changes of cellular iron levels, oxidative stress indicators and the ferroptosis markers. In conclusion, this highlights that PM2.5 triggers ferroptosis via SIRT1/HIF-1α signaling pathway to inhibit testosterone synthesis in males. These findings provide a novel research support for the study that PM2.5 causes male reproductive injury.


Assuntos
Ferroptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Células Intersticiais do Testículo , Camundongos Knockout , Material Particulado , Transdução de Sinais , Sirtuína 1 , Testosterona , Animais , Masculino , Testosterona/metabolismo , Testosterona/sangue , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Transdução de Sinais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Testículo/metabolismo , Testículo/patologia , Testículo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Environ Pollut ; 352: 124128, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729510

RESUMO

Many environmental toxicants can cause systemic effects, such as fine particulate matter (PM2.5), which can penetrate the respiratory barrier and induce effects in multiple tissues. Although metabolomics has been used to identify biomarkers for PM2.5, its multi-tissue toxicology has not yet been explored holistically. Our objective is to explore PM2.5 induced metabolic alterations and unveil the intra-tissue responses along with inter-tissue communicational effects. In this study, following a single intratracheal instillation of multiple doses (0, 25, and 150 µg as the control, low, and high dose), non-targeted metabolomics was employed to evaluate the metabolic impact of PM2.5 across multiple tissues. PM2.5 induced tissue-specific and dose-dependent disturbances of metabolites and their pathways. The remarkable increase of both intra- and inter-tissue correlations was observed, with emphasis on the metabolism connectivity among lung, spleen, and heart; the tissues' functional specificity has marked their toxic modes. Beyond the inter-status comparison of the metabolite fold-changes, the current correlation network built on intra-status can offer additional insights into how the multiple tissues and their metabolites coordinately change in response to external stimuli such as PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Metabolômica , Material Particulado , Material Particulado/toxicidade , Animais , Camundongos , Poluentes Atmosféricos/toxicidade , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Biomarcadores/metabolismo , Masculino
4.
Toxicology ; 506: 153850, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821196

RESUMO

Fine particulate matter (PM2.5)-induced metabolic disorders have attracted increasing attention, however, the underlying molecular mechanism of PM2.5-induced hepatic bile acid disorder remains unclear. In this study, we investigated the effects of PM2.5 components on the disruption of bile acid in hepatocytes through farnesoid X receptor (FXR) pathway. The receptor binding assays showed that PM2.5 extracts bound to FXR directly, with half inhibitory concentration (IC50) value of 21.7 µg/mL. PM2.5 extracts significantly promoted FXR-mediated transcriptional activity at 12.5 µg/mL. In mouse primary hepatocytes, we found PM2.5 extracts (100 µg/mL) significantly decreased the total bile acid levels, inhibited the expression of bile acid synthesis gene (Cholesterol 7 alpha-hydroxylase, Cyp7a1), and increased the expression of bile acid transport genes (Multidrug resistance associated protein 2, Abcc2; and Bile salt export pump, Abcb11). Moreover, these alterations were significantly attenuated by knocking down FXR in hepatocytes. We further divided the organic components and water-soluble components from PM2.5, and found that two components bound to and activated FXR, and decreased the bile acid levels in hepatocytes. In addition, benzo[a]pyrene (B[a]P) and cadmium (Cd) were identified as two bioactive components in PM2.5-induced bile acid disorders through FXR signaling pathway. Overall, we found PM2.5 components could bind to and activate FXR, thereby disrupting bile acid synthesis and transport in hepatocytes. These new findings also provide new insights into PM2.5-induced toxicity through nuclear receptor pathways.

5.
Int J Environ Health Res ; : 1-12, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647234

RESUMO

The relationship between fine particulate matter (PM2.5) and blood pressure (BP) is a controversial issue. We conducted a two-sample Mendelian randomization (MR) analysis and identified 58 genome-wide significant single-nucleotide polymorphisms associated with PM2.5 as instrument variables. Inverse-variance weighted (IVW) was used as the primary analysis approach. MR-Egger, weighted median, simple model, and weighted model methods were selected for quality control. We found a significant negative causal association of higher genetically predicted PM2.5 levels with lower systolic BP (SBP), while no causal relationship was identified between PM2.5 and diastolic BP (DBP). For each 1 standard deviation increase in genetically predicted PM2.5 levels, the beta value (95% CI) of SBP was -0.14 (-0.25, -0.03) for IVW (p=0.02), and -0.13 (-0.22, -0.04) for weighted median (p=0.005). Increased PM2.5 concentrations can lead to decreased SBP levels. Our findings provided novel insights into the controversial topic on the causal relationship between PM2.5 and BP.

6.
Environ Pollut ; 347: 123699, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460588

RESUMO

As global air pollution, particularly fine particulate matter (PM2.5), has become a major environmental problem, various PM2.5 mitigation technologies including green infrastructure have received significant attention. However, owing to spatial constraints on urban greening, there is a lack of management plans for urban forests to efficiently mitigate PM2.5. In this study, we assessed the PM2.5 reduction capabilities of Pinus densiflora (Korean red pine) and Quercus acutissima (sawtooth oak) by measuring the changes of PM2.5 concentrations using an experimental chamber system. In addition, the PM2.5 reduction efficiency in 90 min (PMRE90) and the amount of PM2.5 reduction per leaf area (PMRLA) were compared based on arrangement structures and density levels. The results showed that the PM2.5 reduction by plants was significantly greater than that of the control experiment without any plants, and an additional reduction effect of approximately 1.38 times was induced by a 1.5 m s-1 air flow. The PMRE90 of Korean red pine was the highest at medium density. In contrast, the PMRE90 of sawtooth oak was the highest at high density. The PMRLA of both species was highest at low densities. The different responses of the species to total reduction were well explained by total leaf area (TLA). The PMRE90 of both species was positively correlated with TLA. The PMRLA of sawtooth oak was approximately 2.3 times greater than that of Korean red pine. However, there were no significant differences in both PMRE90 and PMRLA between the arrangement structures. Our findings reveal the potential mechanisms of vegetation in reducing PM2.5 according to arrangement structure and density. This highlights the importance of efficiently using urban green spaces with spatial constraints on PM2.5 mitigation in the future.


Assuntos
Poluentes Atmosféricos , Pinus , Quercus , Árvores/química , Material Particulado/análise , República da Coreia , Poluentes Atmosféricos/análise
7.
Photochem Photobiol ; 100(1): 172-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37365883

RESUMO

Continuous exposure of human skin to air pollution can result in a range of undesirable skin conditions. In our recent study, UV and visible light were found to increase cytotoxicity of fine particulate matter (PM2.5 ) against human keratinocytes. Since it is impossible to avoid exposure of human skin to PM2.5 , effective strategies are needed to reduce their damaging effects. l-ascorbic acid and resveratrol were tested as potential topical agents against pollution-related skin impairment. Although these agents were previously found to ameliorate PM-dependent damage, the effect of light and seasonal variation of particles were not previously studied. EPR spin-trapping, DPPH assay, and singlet oxygen phosphorescence were used to determine the scavenging activities of the antioxidants. MTT, JC-10 and iodometric assays were used to analyze the effect on PM2.5 -induced cytotoxicity, mitochondrial damage and oxidation of lipids. Live-cell imaging was employed to examine wound-healing properties of cells. Light-induced, PM2.5 -mediated oxidative damage was examined by immunofluorescent staining. Both antioxidants effectively scavenged free radicals and singlet oxygen produced by PM2.5 , reduced cell death and prevented oxidative damage to HaCaT cells. l-ascorbic acid and resveratrol, especially when applied in combination, can protect HaCaT cells against the dark and light induced toxicity of PM2.5 .


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Resveratrol/farmacologia , Células HaCaT , Oxigênio Singlete/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Ácido Ascórbico/farmacologia , Poluentes Atmosféricos/farmacologia , Poluentes Atmosféricos/toxicidade
8.
Environ Res ; 243: 117860, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072108

RESUMO

China and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM2.5 inorganic and organic species were determined in simultaneously collected PM2.5 integrated filters. The resulting data were used as inputs to positive matrix factorization, which identified nine sources at the ambient air monitoring sites in both sites. Secondary nitrate, secondary sulfate/oil combustion, soil, mobile, incinerator, biomass burning, and secondary organic carbon (SOC) were found to be sources at both sampling sites. Industry I and II were only identified in Seoul, whereas combustion and road dust sources were only identified in Beijing. A subset of samples was selected for exposure assessment. The expression levels of IL-8 were significantly higher in Beijing (167.7 pg/mL) than in Seoul (72.7 pg/mL). The associations between the PM2.5 chemical constituents and its contributing sources with PM2.5-induced inflammatory cytokine (interleukin-8, IL-8) levels in human bronchial epithelial cells were investigated. For Seoul, the soil followed by the secondary nitrate and the biomass burning showed increase with IL-8 production. However, for the Beijing, the secondary nitrate exhibited the highest association with IL-8 production and SOC and biomass burning showed modest increase with IL-8. As one of the highest contributing sources in both cities, secondary nitrate showed an association with IL-8 production. The soil source having the strongest association with IL-8 production was found only for Seoul, whereas SOC showed a modest association only for Beijing. This study can provide the scientific basis for identifying the sources to be prioritized for control to provide effective mitigation of particulate air pollution in each city and thereby improve public health.


Assuntos
Poluentes Atmosféricos , Humanos , Pequim , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/análise , Seul , Interleucina-8/análise , Citocinas , Nitratos/análise , Monitoramento Ambiental , Poeira/análise , China , República da Coreia , Solo , Carbono/análise , Estações do Ano
9.
Ecotoxicol Environ Saf ; 269: 115816, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091678

RESUMO

Autophagy mediates PM2.5-related lung injury (LI) and is tightly linked to inflammation and apoptosis processes. IL-37 has been demonstrated to regulate autophagy. This research aimed to examine the involvement of IL-37 in the progression of PM2.5-related LI and assess whether autophagy serves as a mediator for its effects.To create a model of PM2.5-related LI, this research employed a nose-only PM2.5 exposure system and utilized both human IL-37 transgenic mice and wild-type mice. The hIL-37tg mice demonstrated remarkable reductions in pulmonary inflammation and pathological LI compared to the WT mice. Additionally, they exhibited activation of the AKT/mTOR signaling pathway, which served to regulate the levels of autophagy and apoptosis.Furthermore, in vitro experiments revealed a dose-dependent upregulation of autophagy and apoptotic proteins following exposure to PM2.5 DMSO extraction. Simultaneously, p-AKT and p-mTOR expression was found to decrease. However, pretreatment with IL-37 demonstrated a remarkable reduction in the levels of autophagy and apoptotic proteins, along with an elevation of p-AKT and p-mTOR. Interestingly, pretreatment with rapamycin, an autophagy inducer, weakened the therapeutic impact of IL-37. Conversely, the therapeutic impact of IL-37 was enhanced when treated with 3-MA, a potent autophagy inhibitor. Moreover, the inhibitory effect of IL-37 on autophagy was successfully reversed by administering AKT inhibitor MK2206. The findings suggest that IL-37 can inhibit both the inflammatory response and autophagy, leading to the alleviation of PM2.5-related LI. At the molecular level, IL-37 may exert its anti autophagy and anti apoptosis effects by activating the AKT/mTOR signaling pathway.


Assuntos
Lesão Pulmonar , Material Particulado , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Autofagia/efeitos dos fármacos , Interleucinas/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Material Particulado/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
Environ Res ; 244: 117927, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103778

RESUMO

BACKGROUND: Ambient fine particulate matter (PM2.5) exposure has been associated with an increased risk of gastrointestinal cancer mortality, but the attributable constituents remain unclear. OBJECTIVES: To investigate the association of long-term exposure to PM2.5 constituents with total and site-specific gastrointestinal cancer mortality using a difference-in-differences approach in Jiangsu province, China during 2015-2020. METHODS: We split Jiangsu into 53 spatial units and computed their yearly death number of total gastrointestinal, esophagus, stomach, colorectum, liver, and pancreas cancer. Utilizing a high-quality grid dataset on PM2.5 constituents, we estimated 10-year population-weighted exposure to black carbon (BC), organic carbon (OC), sulfate, nitrate, ammonium, and chloride in each spatial unit. The effect of constituents on gastrointestinal cancer mortality was assessed by controlling time trends, spatial differences, gross domestic product (GDP), and seasonal temperatures. RESULTS: Overall, 524,019 gastrointestinal cancer deaths were ascertained in 84.77 million population. Each interquartile range increment of BC (0.46 µg/m3), OC (4.56 µg/m3), and nitrate (1.41 µg/m3) was significantly associated with a 27%, 26%, and 34% increased risk of total gastrointestinal cancer mortality, respectively, and these associations remained significant in PM2.5-adjusted models and constituent-residual models. We also identified robust associations of BC, OC, and nitrate exposures with site-specific gastrointestinal cancer mortality. The mortality risk generally displayed increased trends across the total exposure range and rose steeper at higher levels. We did not identify robust associations for sulfate, ammonium, or chlorine exposure. Higher mortality risk ascribed to constituent exposures was identified in total gastrointestinal and liver cancer among women, stomach cancer among men, and total gastrointestinal and stomach cancer among low-GDP regions. CONCLUSIONS: This study offers consistent evidence that long-term exposure to PM2.5-bound BC, OC, and nitrate is associated with total and site-specific gastrointestinal cancer mortality, indicating that these constituents need to be controlled to mitigate the adverse effect of PM2.5 on gastrointestinal cancer mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos de Amônio , Neoplasias Gástricas , Masculino , Feminino , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Nitratos/toxicidade , China/epidemiologia , Carbono , Fuligem , Sulfatos , Poluição do Ar/efeitos adversos
11.
Huan Jing Ke Xue ; 44(11): 5986-5996, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973083

RESUMO

The characteristics and main factors of causes of haze in Zhoukou in January 2022 were analyzed. Six air pollutants, water-soluble ions, elements, OC, EC, and other parameters in fine particulate matter were monitored and analyzed using a set of online high-time-resolution instruments in an urban area. The results showed that the secondary inorganic aerosols(SNA), carbonaceous aerosols(CA, including organic carbon OC and inorganic carbon EC), and reconstructed crustal materials(CM, such as Al2O3, SiO2, CaO, and Fe2O3, etc.) were the three main components, accounting for 61.3%, 24.3%, and 9.72% in PM2.5, respectively. The concentrations of SNA, CA, CM, and SOA were increased, accompanied with higher AQI. The sulfur oxidation rate(SOR) and nitrogen oxidation rate(NOR) in January were 0.53 and 0.46, respectively. The growth rates[µg·(m3·h)] of sulfate and nitrate were 0.027(-5.89-9.47, range) and 0.051(-23.1-12.4), respectively. During the haze period, the growth rates of sulfate and nitrate were 0.13 µg·(m3·h)-1and 0.24 µg·(m3·h)-1, which were 4.8 and 4.7 times higher than the average value of January, respectively. Although the sulfur oxidation rate was greater than the nitrogen oxidation rate, the growth rate of nitrate was approximately 1.8 times that of sulfate owing to the difference in the concentration of gaseous precursors and the influence of relative humidity. The growth rates of nitrate in SNA were significantly higher than those of sulfate on heavily polluted days. The values of SOR, NOR, and concentrations of SNA and SOA during higher AQI and humidity periods were higher than those in lower AQI and humidity periods. The Ox(NO2+O3) decreased with the increase in relative humidity. The SOA was higher at nighttime, increasing faster with the humidity than that in daytime. Under the situation of lower temperature, higher humidity, and lower wind speed, the emission of gaseous precursors of SNA requires further attention in Zhoukou in winter. Advanced control strategies of emissions of SO2 and NO2, such as mobile sources and coal-burning sources, could reduce the peak of haze in winter efficiently.

12.
Part Fibre Toxicol ; 20(1): 41, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919797

RESUMO

BACKGROUND: Epidemiological studies have demonstrated that individuals with preexisting conditions, including diabetes mellitus (DM), are more susceptible to air pollution. However, the underlying mechanisms remain unclear. In this study, we proposed that a high glucose setting enhances ambient fine particulate matter (PM2.5)-induced macrophage activation and secretion of the proinflammatory cytokine, IL-1ß, through activation of the NLRP3 inflammasome, altering the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). RESULTS: Exposure of mouse alveolar macrophages to non-cytotoxic doses of PM2.5 led to upregulation of IL-1ß, activation of the NLRP3 inflammasome, increased nuclear translocation of the transcription factor NF-κB, increased generation of reactive oxygen species (ROS), and increased expression and enzymatic activity of MMP-9; these effects were enhanced when cells were pretreated with high glucose. However, pretreatment in a high glucose setting alone did not induce significant changes. ROS generation following PM2.5 exposure was abolished when cells were pretreated with ROS scavengers such as Trolox and superoxide dismutase (SOD), or with an NADPH oxidase inhibitor, DPI. Pretreatment of cells with DPI attenuated the effects of a high glucose setting on PM2.5-induced upregulation of IL-1ß, activation of the NLRP3 inflammasome, and nuclear translocation of NF-κB. In addition, enhancement of PM2.5-induced expression and enzymatic activity of MMP-9 following high glucose pretreatment was not observed in primary alveolar macrophages obtained from NLRP3 or IL-1R1 knockout (KO) mice, where pro-IL-1ß cannot be cleaved to IL-1ß or cells are insensitive to IL-1ß, respectively. CONCLUSIONS: This study demonstrated that exposure of mouse alveolar macrophages to PM2.5 in a high glucose setting enhanced PM2.5-induced production of IL-1ß through activation of the NLRP3 inflammasome and nuclear translocation of NF-κB due to PM2.5-induced oxidative stress, leading to MMP-9 upregulation. The key role of NADPH oxidase in PM2.5-induced ROS generation and activation of the IL-1ß secretion pathway and the importance of IL-1ß secretion and signaling in PM2.5-induced increases in MMP-9 enzymatic activity were also demonstrated. This study provides a further understanding of the potential mechanisms underlying the susceptibility of individuals with DM to air pollution and suggests potential therapeutic targets.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Alveolares/metabolismo , Material Particulado/toxicidade , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz , Espécies Reativas de Oxigênio/metabolismo , Glucose , NADPH Oxidases , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
13.
Sci Total Environ ; 904: 166965, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699485

RESUMO

Ambient fine size fraction particulate matter (PM2.5) sources were resolved by positive matrix factorization at two Canadian cities on the Atlantic and Pacific coast over the 2010-2016 period, corresponding to implementation of the North American Emissions Control Area (NA ECA) low-sulphur marine fuel regulations. Source types contributing to local PM2.5 concentrations were: ECA regulation-related (residual oil, anthropogenic sulphate), urban transportation and residential (gasoline, diesel, secondary nitrate, biomass burning, road dust/soil), industry (refinery, Pb-enriched), and largely natural (biogenic sulphate, sea salt). Anthropogenic sources accounted for approximately 80 % of PM2.5 mass over 2010-2016. Anthropogenic and biogenic sources of PM2.5-sulphate were separated and apportioned. Anthropogenic PM2.5-sulphate was approximately 2-3 times higher than biogenic PM2.5-sulphate prior to implementation of the NA ECA low-S marine fuel regulations, decreasing to 1-2 times higher after regulation implementation. Non-marine anthropogenic sources (gasoline, road dust, local industry factors) were shown to together contribute 38 % - 45 % of urban PM2.5. At both coastal cities, the residual oil and anthropogenic sulphate factors clearly reflected the effects of the low-S fuel regulations at reducing primary and secondary sulphur-related PM2.5 emissions. Comparing a pre-regulation and post-regulation period, residual oil combustion PM2.5 decreased by 0.24-0.25 µg/m3 (94%-95 % decrease) in both cities and anthropogenic sulphate PM2.5 decreased by 0.78 µg/m3 in Halifax (47 % decrease) and 0.71 µg/m3 in Burnaby (58 % decrease). Regulation-related PM2.5 across these factors decreased by approximately 1 µg/m3 after regulation implementation, providing a quantified lower estimate of the beneficial influence of the regulations on urban ambient PM2.5 concentrations. Further reductions in coastal city ambient PM2.5 may best consider air quality strategies that include multiple sources, including marine shipping and non-marine anthropogenic source types given this analysis found that marine vessel emissions remain an important source of urban ambient PM2.5.

14.
Geohealth ; 7(9): e2023GH000834, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711364

RESUMO

In the United States, citizens and policymakers heavily rely upon Environmental Protection Agency mandated regulatory networks to monitor air pollution; increasingly they also depend on low-cost sensor networks to supplement spatial gaps in regulatory monitor networks coverage. Although these regulatory and low-cost networks in tandem provide enhanced spatiotemporal coverage in urban areas, low-cost sensors are located often in higher income, predominantly White areas. Such disparity in coverage may exacerbate existing inequalities and impact the ability of different communities to respond to the threat of air pollution. Here we present a study using cost-constrained multiresolution dynamic mode decomposition (mrDMDcc) to identify the optimal and equitable placement of fine particulate matter (PM2.5) sensors in four U.S. cities with histories of racial or income segregation: St. Louis, Houston, Boston, and Buffalo. This novel approach incorporates the variation of PM2.5 on timescales ranging from 1 day to over a decade to capture air pollution variability. We also introduce a cost function into the sensor placement optimization that represents the balance between our objectives of capturing PM2.5 extremes and increasing pollution monitoring in low-income and nonwhite areas. We find that the mrDMDcc algorithm places a greater number of sensors in historically low-income and nonwhite neighborhoods with known environmental pollution problems compared to networks using PM2.5 information alone. Our work provides a roadmap for the creation of equitable sensor networks in U.S. cities and offers a guide for democratizing air pollution data through increasing spatial coverage of low-cost sensors in less privileged communities.

15.
Huan Jing Ke Xue ; 44(8): 4250-4261, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694620

RESUMO

High levels of fine particulate matter (PM2.5) and ozone (O3) in ambient air affect climate change and also endanger human health and ecosystems. Air pollution in Nanjing has been improving since the implementation of the "Air Pollution Prevention and Control Action Plan" in 2013. However, Nanjing still faces PM2.5 and O3 pollution. Evaluating the response of pollutant concentrations to the reductions in precursor emissions is helpful to obtain effective strategies of emission reduction to improve pollution levels. The sensitive simulations of emission perturbation in atmospheric chemistry models directly demonstrate the response of pollution to the reductions in emissions. Nevertheless, these sensitive simulations are limited in computing time and resources. The random forest algorithm was trained by using the simulation results of the atmospheric chemical transport model (GEOS-Chem) in 2015. The changes in daily PM2.5 and daily maximum eight-hour O3 (MDA8 O3) concentrations in Nanjing in 2019 were efficiently predicted under different reduction scenarios of anthropogenic emissions. The simulations showed that the seasonal average of ρ(PM2.5) in Nanjing would decrease by 2-4 µg·m-3 with the reduction in anthropogenic emissions of 10% in 2019 in China. In the case of controlling only local emissions in Nanjing, the concentrations of PM2.5 in Nanjing decreased significantly without local anthropogenic emissions. Additionally, the simulations showed that the annual average of ρ(PM2.5) in Nanjing could be lower than the national secondary limit (35 µg·m-3) when the anthropogenic emission reduction in China was higher than 20% in 2019. For ozone, the equal proportional emission reductions in nitrogen oxides (NOx) and volatile organic pollutants (VOCs) of O3 precursors in China likely led to the increase in seasonal average concentrations of O3 in Nanjing. For the proportional reduction of anthropogenic emissions by 10%-50% in China, the seasonal average of ρ(MDA8 O3) in Nanjing in 2019 would increase by 1-3 µg·m-3 in spring, 1-4 µg·m-3 in autumn, and 3-11 µg·m-3 in winter, respectively, compared with that in the base simulation. With the reduction in anthropogenic NOx emission by 10% and VOCs by 20%, the seasonal average of ρ(MDA8 O3) in Nanjing would decrease by 3-6 µg·m-3. On this basis, further increasing the proportion (30%) of VOCs emission reduction could reduce the annual average of ρ(MDA8 O3) in Nanjing by 7 µg·m-3. However, the annual average of ρ(MDA8 O3) of Nanjing in 2019 increased by 1 µg·m-3, with the local emission reduction of NOx by 10% and VOCs by 30%. Therefore, this showed that the key to alleviate ozone pollution in Nanjing is a reasonable control ratio of ozone precursor emissions and the implementation of regional joint prevention and control. In order to effectively reduce the O3 pollution in Nanjing, the emission reduction ratio of NOx and VOCs in China should be less than 1:2. The response of pollutant concentrations to reductions in precursor emissions were efficiently obtained by the random forest algorithm and GEOS-Chem model. The simulations would provide the scientific basis for the emission control strategy to alleviate air pollution.

16.
Ecotoxicol Environ Saf ; 263: 115373, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619400

RESUMO

Fine particulate matter (PM2.5) is thought to exacerbate Parkinson's disease (PD) in the elderly, and early detection of PD progression may prevent further irreversible damage. Therefore, we used diffusion tensor imaging (DTI) for probing microstructural changes after late-life chronic traffic-related PM2.5 exposure. Herein, 1.5-year-old Fischer 344 rats were exposed to clean air (control), high-efficiency particulate air (HEPA)-filtered ambient air (HEPA group), and ambient traffic-related PM2.5 (PM2.5 group, 9.933 ± 1.021 µg/m3) for 3 months. Rotarod test, DTI tractographic analysis, and immunohistochemistry were performed in the end of study period. Aged rats exposed to PM2.5 exhibited motor impairment with decreased fractional anisotropy and tyrosine hydroxylase expression in olfactory and nigrostriatal circuits, indicating disrupted white matter integrity and dopaminergic (DA) neuronal loss. Additionally, increased radial diffusivity and lower expression of myelin basic protein in PM2.5 group suggested ageing progression of demyelination exacerbated by PM2.5 exposure. Significant production of tumor necrosis factor-α was also observed after PM2.5 exposure, revealing potential inflammation of injury to multiple fiber tracts of DA pathways. Microstructural changes demonstrated potential links between PM2.5-induced inflammatory white matter demyelination and behavioral performance, with indication of pre-manifestation of DTI-based biomarkers for early detection of PD progression in the elderly.


Assuntos
Poluição do Ar , Doenças Desmielinizantes , Substância Branca , Ratos , Animais , Imagem de Tensor de Difusão , Dopamina , Poeira , Material Particulado/toxicidade
17.
Environ Sci Pollut Res Int ; 30(45): 100584-100595, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639087

RESUMO

Fine particulate matter (PM2.5) seriously affects environmental air quality and human health, and antibiotic resistance genes (ARGs) in PM2.5 posed a great challenge to clinical medicine. The year of 2013-2017 was an important 5-year period for the implementation of Air Pollution Prevention and Control Action Plan (APPCAP) in China. Here, we took Handan, a PM2.5 polluted city in northern China, as the research object and analyzed ARGs in PM2.5 in winter (January) from 2013 to 2017. The results showed that the abundance of ARGs was the highest in 2013 (3.7 × 10-2 copies/16S rRNA), and ARGs were positively correlated with air quality index (AQI) (r = 0.328, P < 0.05) and PM2.5 concentration (r = 0.377, P = 0.020 < 0.05) in the 5-year period. The ARGs carried by PM2.5 in four functional regions of sewage treatment plant, steel works, university, and park showed that sul1 and qepA had higher abundance in each functional region, and the total ARG abundance in sewage treatment plant (1.3 × 10-1 copies/16S rRNA) was the highest, while lowest in park (2.0 × 10-3 copies/16S rRNA). Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) model were used to trace the pollutants at the sampling points, which indicated that the surrounding cities contributed more than quarter to the sampling points. Therefore, regional transportation reduces the spatial distribution difference of ARGs in PM2.5. The exposure dose of ARGs in different functional regions illustrated that the total inhaled dose of ARGs in sewage treatment plant (1.7 × 105 copies/d) was the highest, while lowest in park (3.2 × 104 copies/d). This study is of great significance for assessing the distribution and sources of ARGs under the clean air initiative in China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Esgotos/análise , China , Poluição do Ar/análise , Material Particulado/análise , Resistência Microbiana a Medicamentos/genética , Estações do Ano , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
18.
Environ Pollut ; 334: 122138, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453686

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have attracted worldwide attention as one of persistent organic pollutants; however, there is limited knowledge about the exposure concentrations of PFAS-contained ambient particulate matter and the related health risks. This study investigated the abundance and distribution of 32 PFAS in fine particulate matter (PM2.5) collected from 93 primary or secondary schools across the Pearl River Delta region (PRD), China. These chemicals comprise four PFAS categories which includes perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl acid (PFAA) precursors and PFAS alternatives. In general, concentrations of target PFAS ranged from 11.52 to 419.72 pg/m3 (median: 57.29 pg/m3) across sites. By categories, concentrations of PFSAs (median: 26.05 pg/m3) were the dominant PFAS categories, followed by PFCAs (14.25 pg/m3), PFAS alternatives (2.75 pg/m3) and PFAA precursors (1.10 pg/m3). By individual PFAS, PFOS and PFOA were the dominant PFAS, which average concentration were 24.18 pg/m3 and 6.05 pg/m3, respectively. Seasonal variation showed that the concentrations of PFCAs and PFSAs were higher in winter than in summer, whereas opposite seasonal trends were observed in PFAA precursors and PFAS alternatives. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human inhalation-based exposure risks to PFAS. Although the health risks of PFAS via inhalation were insignificant (HQ far less than one), sufficient attention should be levied to ascertain the human exposure risks through inhalation, given that exposure to PFAS through air inhalation is a long term and cumulative process.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Material Particulado , Monitoramento Ambiental , Fluorocarbonos/análise , Ácidos Sulfônicos , China , Ácidos Carboxílicos/análise , Ácidos Alcanossulfônicos/análise , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 895: 165195, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391138

RESUMO

The effects of the chemical components of fine particulate matter (PM2.5) have been drawing attention. However, information regarding the impact of low PM2.5 concentrations is limited. Hence, we aimed to investigate the short-term effects of the chemical components of PM2.5 on pulmonary function and their seasonal differences in healthy adolescents living on an isolated island without major artificial sources of air pollution. A panel study was repeatedly conducted twice a year for one month every spring and fall from October 2014 to November 2016 on an isolated island in the Seto Inland Sea, which has no major artificial sources of air pollution. Daily measurements of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) were performed in 47 healthy college students, and the concentrations of 35 chemical components of PM2.5 were analyzed every 24 h. Using a mixed-effects model, the relationship between pulmonary function values and concentrations of PM2.5 components was analyzed. Significant associations were observed between several PM2.5 components and decreased pulmonary function. Among the ionic components, sulfate was strongly related to decreases in PEF and FEV1 (-4.20 L/min [95 % confidence interval (CI): -6.40 to -2.00] and - 0.04 L [95 % CI: -0.05 to -0.02] per interquartile range increase, respectively). Among the elemental components, potassium induced the greatest reduction in PEF and FEV1. Therefore, PEF and FEV1 were significantly reduced as the concentrations of several PM2.5 components increased during fall, with minimal changes observed during spring. Several chemical components of PM2.5 were significantly associated with decreased pulmonary function among healthy adolescents. The concentrations of PM2.5 chemical components differed by season, suggesting the occurrence of distinct effects on the respiratory system depending on the type of component.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Adolescente , Material Particulado/análise , Poluentes Atmosféricos/análise , Exposição Ambiental , Pulmão
20.
Sci Total Environ ; 887: 164114, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37182762

RESUMO

Organosulfur compounds (OSCs) are important components of fine particulate matter (PM2.5); however, little information is available on OSCs in urban regions due to their chemical complexity, especially for novel species such as aromatic sulfonates. To supplement the detection technique and systematically identify OSCs, in this study we developed a nontargeted approach based on gas chromatography and high-resolution mass spectrometry (GC-HRMS) to screen OSCs in PM2.5 of urban Beijing and provide field evidence for their source and formation mechanism. 76 OSCs were found through mass difference of sulfur isotopes and characteristic sulfur-containing fragments. 6 species were confirmed as aromatic sulfonates by authentic standards. 32 OSCs showed higher levels in the heating season, presumably because of the intensive emission, especially from coal combustion. While certain species, with 2-sulfobenzoic acid as the representative, were 2.6-times higher in the non-heating season than in the heating season. Such species were significantly correlated with ozone and aerosol liquid water content (r = 0.2-0.8, p < 0.05), implying an oxidation-involved aqueous-phase formation in the atmosphere. In addition, with an average proportion of ∼95 % of the total sulfobenzoic acids, the predominance of the 2-substitution product over its isomers of 3- or 4-sulfobenzoic acid suggests a more plausible mechanism of radical-initiated reaction of phthalic acid followed by sulfonation, with atmospheric reactivity indicated by ozone and temperature as the determining factor. This study provided not only a nontargeted approach for OSCs in ambient PM2.5, but also field evidence on their secondary formation proposed in previous simulation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...