Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36832551

RESUMO

A discrete version of opinion dynamics systems, based on the Biswas-Chatterjee-Sen (BChS) model, has been studied on Barabási-Albert networks (BANs). In this model, depending on a pre-defined noise parameter, the mutual affinities can assign either positive or negative values. By employing extensive computer simulations with Monte Carlo algorithms, allied with finite-size scaling hypothesis, second-order phase transitions have been observed. The corresponding critical noise and the usual ratios of the critical exponents have been computed, in the thermodynamic limit, as a function of the average connectivity. The effective dimension of the system, defined through a hyper-scaling relation, is close to one, and it turns out to be connectivity-independent. The results also indicate that the discrete BChS model has a similar behavior on directed Barabási-Albert networks (DBANs), as well as on Erdös-Rènyi random graphs (ERRGs) and directed ERRGs random graphs (DERRGs). However, unlike the model on ERRGs and DERRGs, which has the same critical behavior for the average connectivity going to infinity, the model on BANs is in a different universality class to its DBANs counterpart in the whole range of the studied connectivities.

2.
Biol. Res ; 44(1): 107-112, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-591870

RESUMO

We analyzed the statistical distribution of intra-specific local abundances for a set North American breeding bird species. We constructed frequency plots for every species and found that they showed long-tail power-law behavior, truncated at an upper abundance cut-off value. Based on finite size scaling arguments, we investigated whether frequency curves may be considered scaled copies of each other. Data collapse was possible after taking powers of the total abundance of each species, in order to correct deviations from the underlying universal finite size scaling function (UFSS). The UFSS power law exponent oscillated in time within the regime of unbounded variance, which is consistent with the wild fluctuations that characterize ecological phenomena. We speculate that our results may eventually be linked to other law-like macroecological phenomena, such as energetic constraints reported in allometric scaling.


Assuntos
Animais , Aves/fisiologia , Modelos Biológicos , Aves/anatomia & histologia , Geografia , Densidade Demográfica , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA