RESUMO
BACKGROUND: Oral cancer has a high prevalence worldwide, and this disease is caused by genetic, immunological, and environmental factors. The main risk factors associated with oral cancer are smoking and alcohol. RESULTS: There are various strategies to reduce risk factors, including prevention programs as well as the consumption of an adequate diet that includes phytochemical compounds derived from cranberries (Vaccinium macrocarpon A.) and blueberries (Vaccinium corymbosum L.); these compounds exhibit antitumor properties. RESULTS: The main outcome of this review is as follows: the properties of phytochemicals derived from cranberries were evaluated for protection against risk factors associated with oral cancer. CONCLUSIONS: The secondary metabolites of cranberries promote biological effects that provide protection against smoking and alcoholism. An alternative for the prevention of oral cancer can be the consumption of these cranberries and blueberries.
RESUMO
This study aimed to determine the stability of PCs in grape canes extracts stored at different temperatures and light conditions. The PCs composition was monitored every-two weeks during three months by liquid chromatography coupled to diode array and fluorescence detectors (LC-DAD-FLD). Initially, stilbenes represented 87 % of total PCs. Storage at -20 and 5 °C reduced PCs 8 and 6 %, respectively. When extracts were exposed to 25 and 40 °C, the degradation of (+)-catechin and (-)-epicatechin was faster than under lower temperatures, and light accelerated the degradation kinetics. trans-piceatannol showed particularly sensitive to temperature increase, being mostly degraded after two weeks stored at 40 °C. Conversely, degradation of trans-resveratrol and ε-viniferin was mostly catalyzed by light, since nearly 70 % of them were degraded at 40 °C under light, in comparison with a 23 % reduction of trans-resveratrol and no changes of ε-viniferin at 40 °C in darkness.
Assuntos
Estilbenos , Vitis , Vitis/química , Temperatura , Resveratrol/análise , Bengala , Estilbenos/química , Fenóis/análiseRESUMO
BACKGROUND: Osteoporosis is the most common skeletal disorder worldwide. Flavonoids have the potential to alleviate bone alterations in osteoporotic patients with the advantage of being safer and less expensive than conventional therapies. OBJECTIVE: The main objective is to analyze the molecular mechanisms triggered in bone by different subclasses of flavonoids. In addition, this review provides an up-to-date overview of the cellular and molecular aspects of osteoporotic bones versus healthy bones, and a brief description of some epidemiological studies indicating that flavonoids could be useful for osteoporosis treatment. METHODS: The PubMed database was searched in 2001- 2021 using the keywords osteoporosis, flavonoids, and their subclasses such as flavones, flavonols, flavanols, isoflavones, flavanones and anthocyanins, focusing the data on the molecular mechanisms triggered in bone. RESULTS: Although flavonoids comprise many compounds that differ in structure, their effects on bone loss in postmenopausal women or in ovariectomized-induced osteoporotic animals are quite similar. Most of them increase bone mineral density and bone strength, which occur through an enhancement of osteoblastogenesis and osteoclast apoptosis, a decrease in osteoclastogenesis, as well as an increase in neovascularization on the site of the osteoporotic fracture. CONCLUSION: Several molecules of signaling pathways are involved in the effect of flavonoids on osteoporotic bone. Whether all flavonoids have a common mechanism or they act as ligands of estrogen receptors remains to be established. More clinical trials are necessary to know better their safety, efficacy, delivery and bioavailability in humans, as well as comparative studies with conventional therapies.
Assuntos
Flavonas , Osteoporose , Animais , Antocianinas/uso terapêutico , Feminino , Flavonas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonóis/uso terapêutico , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controleRESUMO
This work aimed to verify the feasibility of using alcoholic solvents under atmospheric pressure for the simultaneous extraction of fat and bioactive compounds from cocoa shell (CS), a byproduct of the cocoa industry, as well as to determine the influence of processing on the characteristics of defatted solids (DS). To this end, CS fat (CSF) extraction kinetics using ethanol or isopropanol as solvents were determined at 75 and 90 °C. Relative extraction yields of flavanols and alkaloids were determined, and protein functionalities such as the nitrogen solubility index were evaluated. CSF extraction yields from 36 to 70% were obtained with the highest figures related to absolute solvents. Conversely, hydrated alcohols were suitable to extract bioactive compounds, especially alkaloids, with extraction yields up to 73%. The best values of DS functionalities were obtained with the use of isopropanol, with a foaming capacity of (34 ± 2)% and stability of (57 ± 3)%; regarding emulsifying capability, the highest value was (126 ± 2) m2/g with a stability of (53 ± 4) min. CSF with a fatty acid composition similar to that of cocoa butter and DS with interesting protein functionalities were achieved, indicating that CS can be applied in food systems.
Assuntos
Alcaloides , Cacau , Chocolate , Polifenóis/análise , SolventesRESUMO
Oxidative stress may cause functional disorders of vascular endothelia which can lead to endothelial apoptosis and thus alter the function and structure of the vascular tissues. Plant antioxidants protect the endothelium against oxidative stress and then become an effective option to treat vascular diseases. Cocoa flavanols have been proven to protect against oxidative stress in cell culture and animal models. In addition, epidemiological and interventional studies strongly suggest that cocoa consumption has numerous beneficial effects on cardiovascular health. The objective of this study was to test the chemo-protective effect of realistic concentrations of a cocoa phenolic extract and its main monomeric flavanol epicatechin on cultured human endothelial cells submitted to an oxidative challenge. Both products efficiently restrained stress-induced reactive oxygen species and biomarkers of oxidative stress such as carbonyl groups and malondialdehyde, and recovered depleted glutathione, antioxidant defences and cell viability. Our results demonstrate for the first time that a polyphenolic extract from cocoa and its main flavonoid protect human endothelial cells against an oxidative insult by modulating oxygen radical generation and antioxidant enzyme and non-enzyme defences.
Assuntos
Cacau , Células Endoteliais , Animais , Endotélio , Humanos , Estresse Oxidativo , PolifenóisRESUMO
The effects of cocoa-derived polyphenols on cognitive functions have been analyzed through numerous studies using different interventions (doses, vehicles, time frame, cognition tests, and characteristics of participants) which may hamper the interpretation and comparison of findings across investigations. Thus, a systematic review was conducted to analyze the effects of cocoa-derived polyphenols intake on human cognition and discuss the methodological aspects that may contribute to the heterogeneity of findings. Randomized clinical trials evaluating the effect of cocoa polyphenols on cognitive function in healthy subjects were selected according to selection criteria. Twelve studies were selected. Quality was assessed according to the Cochrane risk for bias tool. The most common risk for bias was the lack of information about the sequence generation process. Effects on cognitive function were observed after consumption of 50 mg/day of (-)-epicatechin and in studies using a component-matched placebo and cocoa as the polyphenol vehicle given to healthy adults (18-50 years). Memory (n = 5) and executive function (n = 4) showed the most significant effects with medium and large effect sizes after intake of intermediate doses of cocoa flavanols (500-750 mg/day). Overall, this set of studies suggest a positive effect of cocoa polyphenols on memory and executive function. However, the available evidence is very diverse and future studies may address the identified sources of variation to strengthen current evidence on this promising field.
Assuntos
Cacau , Chocolate , Cognição , Adulto , Pressão Sanguínea , Humanos , PolifenóisRESUMO
The interest in cacao flavanols is still growing, as bioactive compounds with potential benefits in the prevention of chronic diseases associated with inflammation, oxidative stress and metabolic disorders. Several analytical methodologies support that the flavanols in cacao-derived products can be absorbed, have bioactive properties, and thus can be responsible for their beneficial effects on human health. However, it must be considered that their biological actions and underlying molecular mechanisms will depend on the concentrations achieved in their target tissues. Based on the antioxidant properties of cacao flavanols, this review focuses on recent advances in research regarding their potential to improve metabolic syndrome risk factors. Additionally, it has included other secondary plant metabolites that have been investigated for their protective effects against metabolic syndrome. Studies using laboratory animals or human subjects represent strong available evidence for biological effects of cacao flavanols. Nevertheless, in vitro studies are also included to provide an overview of these phytochemical mechanisms of action. Further studies are needed to determine if the main cacao flavanols or their metabolites are responsible for the observed health benefits and which are their precise molecular mechanisms.
Assuntos
Antioxidantes/farmacologia , Cacau/química , Flavonóis/farmacologia , Síndrome Metabólica/prevenção & controle , Compostos Fitoquímicos/farmacologia , Animais , Humanos , Síndrome Metabólica/etiologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de RiscoRESUMO
Schinopsis brasiliensis is a plant typically found in the caatinga biome (northeastern Brazil). Its leaves and bark have been used for the treatment of health dysfunctions such as cough, influenza, diarrhea, throat inflammation, and sexual impotence. However, there is a lack of knowledge regarding the chemical composition and pharmacological activities of this plant. High-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-QTOF-MSE) allowed the partial identification of 33 compounds, including isomers from leaf, branch, and bark samples, with 16 compounds reported for the first time (corilagin, chlorogenic acid, and quercetin derivatives) in S. brasiliensis. Principal component analysis efficiently distinguished the respective parts of the plant. Orthogonal partial least squares discriminatory analysis, together with the variable importance in projection and S-Plot graphs were used to identify 23 biomarker compounds associated with cytotoxic activity against a colorectal cancer cell line.
Assuntos
Anacardiaceae/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Flavonóis/análise , Compostos Fitoquímicos/análise , Anacardiaceae/química , Animais , Brasil , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Flavonóis/metabolismo , Flavonóis/toxicidade , Humanos , Espectrometria de Massas , Metaboloma/fisiologia , Camundongos , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/toxicidade , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Análise de Componente PrincipalRESUMO
Carménère is the emblematic grape of Chile. Recent studies indicate that it has a different polyphenolic profile than other commercial varieties of grape among other factors, due to its long maturation period. The grape and wine of Carménère stand out for having high concentrations of anthocyanins (malvidin), flavonols (quercetin and myricetin) and flavanols (catechin, epicatechin and epigallocatechin). These compounds are related to the distinctive characteristic of Carménère wine regarding astringency and color. In vivo and in vitro models suggest some positive effects of these polyphenols in the treatment and prevention of chronic diseases, such as atherosclerosis and cancer. Therefore, there is a high level of interest to develop scalable industrial methods in order to obtain and purify Carménère grape polyphenol extracts that could be used to improve the characteristics of wines from other varieties or produce nutraceuticals or functional foods for preventing and treating various chronic diseases.
RESUMO
This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and ß-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit.
Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Arecaceae/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Antioxidantes/química , Brasil , Cromatografia Líquida de Alta Pressão , Etanol/química , Frutas , Metanol/química , Oxirredução , Fenóis/química , Compostos Fitoquímicos/química , Fitoterapia , Plantas Medicinais , Solventes/química , Espectrofotometria , Água/químicaRESUMO
Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-ß-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology.
Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Proantocianidinas/metabolismo , Western Blotting , Células CACO-2 , Detergentes , Ativação Enzimática , Humanos , Lipossomos , Sistema de Sinalização das MAP Quinases , Transdução de SinaisRESUMO
BACKGROUND: Type 2 diabetes (T2D) and heart failure (HF) are associated with high levels of skeletal muscle (SkM) oxidative stress (OS). Health benefits attributed to flavonoids have been ascribed to antioxidation. However, for flavonoids with similar antioxidant potential, end-biological effects vary widely suggesting other mechanistic venues for reducing OS. Decreases in OS may follow the modulation of key regulatory pathways including antioxidant levels (e.g. glutathione) and enzymes such as mitochondrial superoxide dismutase (SOD2) and catalase. METHODS: We examined OS-related alterations in SkM in T2D/HF patients (as compared vs. healthy controls) and evaluated the effects of three-month treatment with (-)-epicatechin (Epi) rich cocoa (ERC). To evidence Epi as the mediator of the improved OS profile we examined the effects of pure Epi (vs. water) on SkM OS regulatory systems in a mouse model of insulin resistance and contrasted results vs. normal mice. RESULTS: There were severe alterations in OS regulatory systems in T2D/HF SkM as compared with healthy controls. Treatment with ERC induced recovery in glutathione levels and decreases in the nitrotyrosilation and carbonylation of proteins. With treatment, key transcriptional factors translocate into the nucleus leading to increases in SOD2 and catalase protein expression and activity levels. In insulin resistant mice, there were alterations in muscle OS and pure Epi replicated the beneficial effects of ERC found in humans. CONCLUSIONS: Major perturbations in SkM OS can be reversed with ERC in T2D/HF patients. Epi likely mediates such effects and may provide an effective means to treat conditions associated with tissue OS.
Assuntos
Cacau , Catequina/administração & dosagem , Diabetes Mellitus Tipo 2/metabolismo , Insuficiência Cardíaca/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Idoso , Animais , Bebidas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Projetos PilotoRESUMO
The concentration of polyphenolic compounds, such as flavanols and anthocyanins, and the antioxidant activity in apples (Malus domestica Borkh) seem to differ with cultivar, maturity stage, environmental conditions and the part of the fruit. In this work, the total phenolic, flavanol and anthocyanin content and antioxidant activity were measured in the flesh, whole fruit and peel from apple cultivars Fuji, Epagri COOP24 and Epagri F5P283 cultivated in Southern Brazil. Total phenolic content assayed by Folin-Ciocalteu method, flavanol by modified p-dimethylaminocinnamaldehyde method, anthocyanin content by pH differential method and antioxidant activity measured using ABTS assay. One-way analysis of variance, Tukeys test and correlation analysis were performed. Within each cultivar, the total phenolic, flavanol and anthocyanin contents and antioxidant activity were highest in the peels, followed by the whole fruit and the flesh. In the peel, whole fruit and flesh the Epagri F5P283 apple had the highest total phenolic contents and the highest total antioxidant activity, while that Epagri COOP24 was highest in flavanols and anthocyanins. Total phenolic content was positively associated with total antioxidant activity in flesh, whole fruit and peel. These results demonstrate that phenolic compounds have a significant contribution to the total antioxidant activity which varies considerably depending of the part of the fruit and of the apple cultivar analyzed.
La concentración de compuestos polifenoles, como flavanoles y antocianinas, y la actividad antioxidante en manzanas (Malus domestica Borkh) parecen diferir con la cultivar, etapa de madurez, condiciones ambientales y la parte de la fruta. En este trabajo, el contenido de fenoles, flavanoles y antocianinas totales y la actividad antioxidante fueron medidos en fruta entera, pulpa y cáscara de las cultivares de manzana Fuji, Epagri COOP24 y Epagri F5P283 cultivadas en el sur de Brasil. El contenido de fenoles totales se midió con el método Folin-Ciocalteu, flavanoles con el método modificado p-dimetilaminocinamaldehido, antocianinas con el método de diferencia de pH y actividad antioxidante fue medida aplicando el método ABTS. Se realizó análisis de varianza de un factor, prueba de Tukey y análisis de correlación. Dentro de cada cultivar, el contenido de fenoles, flavanoles y antocianinas totales y la actividad antioxidante fueron más alto en las cáscaras, seguidas por la fruta entera y pulpa. En la cáscara, en la fruta entera y pulpa, manzana Epagri F5P283 presentó el contenido de fenoles totales y actividad antioxidante total más alto, mientras que la Epagri COOP24 presentó valores más alto de flavanoles y antocianinas. El contenido de fenoles totales fue asociado positivamente a actividad antioxidante total en la pulpa, fruta entera y cáscara. Estos resultados demuestran que los compuestos polifenoles tienen una contribución significativa a la actividad antioxidante total, los cuales varían considerablemente de acuerdo al de la parte de la fruta y cultivar de manzana analizada.