Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytochemistry ; 224: 114142, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762152

RESUMO

Deceptive flowers, unlike in mutualistic pollination systems, mislead their pollinators by advertising rewards which ultimately are not provided. Although our understanding of deceptive pollination systems increased in recent years, the attractive signals and deceptive strategies in the majority of species remain unknown. This is also true for the genus Aristolochia, famous for its deceptive and fly-pollinated trap flowers. Representatives of this genus were generally assumed to be oviposition-site mimics, imitating vertebrate carrion or mushrooms. However, recent studies found a broader spectrum of strategies, including kleptomyiophily and imitation of invertebrate carrion. A different deceptive strategy is presented here for the western Mediterranean Aristolochia baetica L. We found that this species is mostly pollinated by drosophilid flies (Drosophilidae, mostly Drosophila spp.), which typically feed on fermenting fruit infested by yeasts. The flowers of A. baetica emitted mostly typical yeast volatiles, predominantly the aliphatic compounds acetoin and 2,3-butandiol, and derived acetates, as well as the aromatic compound 2-phenylethanol. Analyses of the absolute configurations of the chiral volatiles revealed weakly (acetoin, 2,3-butanediol) to strongly (mono- and diacetates) biased stereoisomer-ratios. Electrophysiological (GC-EAD) experiments and lab bioassays demonstrated that most of the floral volatiles, although not all stereoisomers of chiral compounds, were physiologically active and attractive in drosophilid pollinators; a synthetic mixture thereof successfully attracted them in field and lab bioassays. We conclude that A. baetica chemically mimics yeast fermentation to deceive its pollinators. This deceptive strategy (scent chemistry, pollinators, trapping function) is also known from more distantly related plants, such as Arum palaestinum Boiss. (Araceae) and Ceropegia spp. (Apocynaceae), suggesting convergent evolution. In contrast to other studies working on floral scents in plants imitating breeding sites, the present study considered the absolute configuration of chiral compounds.


Assuntos
Aristolochia , Fermentação , Flores , Polinização , Flores/química , Flores/metabolismo , Animais , Aristolochia/química , Drosophila
2.
Plants (Basel) ; 12(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840051

RESUMO

BACKGROUND: Catasetum Rich. ex Kunth is a genus of Neotropical orchids distributed in Central and South American regions. In the Brazilian Amazon, there are more than 60 species of Catasetum. The floral aromas of orchids are little known, particularly of Catasetum species. This work aimed to analyze the chemical constituents of the volatile concentrates of eight Catasetum specimens from the Amazon: C. alatum (1), C. albovirens (2), C. barbatum (1), C. ciliatum (2), C. galeritum (1), and C. gnomus (1). METHODS: Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyzed and identified the constituents of the volatile concentrates, and principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used in the multivariate statistical analysis. RESULTS: The Catasetum main constituents in descending order and above 10% were trans-geranylgeraniol, 1,4-dimethoxybenzene, linalool, 2-phenylethyl acetate, geraniol, 7-epi-1,2-dehydro-sesquicineole, 1,8-cineole, benzyl acetate, limonene, methyl salicylate, (E)-ß-farnesene, anisyl butyrate, cis-carvone oxide, cadin-4-en-10-ol, indole, α-pinene, and δ-cadinene. CONCLUSIONS: Multivariate statistical analysis of Catasetum species showed that C. barbatum, C. albovirens, and C. gnomus are distinct from the other studied species, while C. alatum, C. ciliatum, and C. galeritum presented the same primary classes of compounds. These results contribute to a better understanding of the genus Catasetum chemotaxonomy.

3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887360

RESUMO

Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.


Assuntos
Odorantes , Rosa , Bases de Dados Genéticas , Flores/metabolismo , Feromônios/metabolismo , Rosa/genética , Rosa/metabolismo
4.
Naturwissenschaften ; 109(3): 30, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35643865

RESUMO

Volatile odors from flowers play an important role in plant-pollinator interaction. The honeybee is an important generalist pollinator of many plants. Here, we explored whether any components of the odors of a range of honeybee-pollinated plants are commonly involved in the interaction between plants and honeybees. We used a needle trap system to collect floral odors, and GC-MS analysis revealed nonanal was the only component scent detected in 12 different honeybee-pollinated flowers and not present in anemophilous plant species. For Ligustrum compactum, blooming flowers released significantly more nonanal than buds and faded flowers. For Sapium sebiferum, nonanal release through the day correlated with nectar secretion. Experimentally increasing nectar load in flowers of Sapium sebiferum, Ligustrum compactum, and Castanea henryi increased nonanal levels also. Nonanal was also detected in flower nectar and honeys from experimental colonies. Electroantennogram recordings and behavioral observations showed that untrained honeybees could detect and were strongly attracted to nonanal. We argue that nonanal persists in both honey and nectar odors facilitating a learned association between nonanal and food reward in honeybees.


Assuntos
Odorantes , Néctar de Plantas , Animais , Abelhas , Flores , Feromônios , Plantas , Polinização
5.
New Phytol ; 234(2): 527-544, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075650

RESUMO

High-throughput single-cell RNA sequencing (scRNA-Seq) identifies distinct cell populations based on cell-to-cell heterogeneity in gene expression. By examining the distribution of the density of gene expression profiles, we can observe the metabolic features of each cell population. Here, we employ the scRNA-Seq technique to reveal the entire biosynthetic pathway of a flower volatile. The corolla of the wild tobacco Nicotiana attenuata emits a bouquet of scents that are composed mainly of benzylacetone (BA). Protoplasts from the N. attenuata corolla limbs and throat cups were isolated at three different time points, and the transcript levels of > 16 000 genes were analyzed in 3756 single cells. We performed unsupervised clustering analysis to determine which cell clusters were involved in BA biosynthesis. The biosynthetic pathway of BA was uncovered by analyzing gene co-expression in scRNA-Seq datasets and by silencing candidate genes in the corolla. In conclusion, the high-resolution spatiotemporal atlas of gene expression provided by scRNA-Seq reveals the molecular features underlying cell-type-specific metabolism in a plant.


Assuntos
Nicotiana , Odorantes , Vias Biossintéticas/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , RNA/metabolismo , Análise de Sequência de RNA , Nicotiana/genética , Nicotiana/metabolismo
6.
Front Plant Sci ; 12: 719092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630465

RESUMO

Floral scent is a key mediator in plant-pollinator interactions. However, little is known to what extent intraspecific scent variation is shaped by phenotypic selection, with no information yet in deceptive plants. In this study, we collected inflorescence scent and fruit set of the deceptive moth fly-pollinated Arum maculatum L. (Araceae) from six populations north vs. five populations south of the Alps, accumulating to 233 samples in total, and tested for differences in scent, fruit set, and phenotypic selection on scent across this geographic barrier. We recorded 289 scent compounds, the highest number so far reported in a single plant species. Most of the compounds occurred both north and south of the Alps; however, plants of the different regions emitted different absolute and relative amounts of scent. Fruit set was higher north than south of the Alps, and some, but not all differences in scent could be explained by differential phenotypic selection in northern vs. southern populations. This study is the first to provide evidence that floral scents of a deceptive plant are under phenotypic selection and that phenotypic selection is involved in shaping geographic patterns of floral scent in such plants. The hyperdiverse scent of A. maculatum might result from the imitation of various brood substrates of its pollinators.

7.
Plants (Basel) ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371561

RESUMO

Visual and olfactory floral signals play key roles in plant-pollinator interactions. In recent decades, studies investigating the evolution of either of these signals have increased considerably. However, there are large gaps in our understanding of whether or not these two cue modalities evolve in a concerted manner. Here, we characterized the visual (i.e., color) and olfactory (scent) floral cues in bee-pollinated Campanula species by spectrophotometric and chemical methods, respectively, with the aim of tracing their evolutionary paths. We found a species-specific pattern in color reflectance and scent chemistry. Multivariate phylogenetic statistics revealed no influence of phylogeny on floral color and scent bouquet. However, univariate phylogenetic statistics revealed a phylogenetic signal in some of the constituents of the scent bouquet. Our results suggest unequal evolutionary pathways of visual and olfactory floral cues in the genus Campanula. While the lack of phylogenetic signal on both color and scent bouquet points to external agents (e.g., pollinators, herbivores) as evolutionary drivers, the presence of phylogenetic signal in at least some floral scent constituents point to an influence of phylogeny on trait evolution. We discuss why external agents and phylogeny differently shape the evolutionary paths in floral color and scent of closely related angiosperms.

8.
Plant Biol (Stuttg) ; 23(5): 719-727, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34171178

RESUMO

The Neotropical orchid genus Sarcoglottis comprises ~40 species, which emit strong floral scents, presumably involved in pollinator attraction. Information on basic aspects of its natural history is scant, with the few studies available so far pointing to nectar-seeking orchid bees as pollinators. Here, we investigated the reproductive biology of Sarcoglottis acaulis, addressing the ecological meaning of its floral scent. In Atlantic Forest fragments of NE Brazil, we described the floral biology, determined the breeding system and recorded the pollinators of S. acaulis. Additionally, we chemically characterized its floral scent and assessed its role on pollinator attraction. Although self-compatible, S. acaulis depends on pollinators to boost fruit set. Male orchid bees of Eulaema atleticana and E. niveofasciata were the only recorded pollinators. They foraged for nectar only, in spite of the strong scent emitted by S. acaulis flowers. The floral scent is composed of six compounds, of which geraniol and nerol elicited electroantennographic responses in Eulaema bees. A synthetic mixture of these compounds attracted Eulaema bees in field assays but did not trigger the stereotyped scent-gathering behaviour. The floral scent of S. acaulis acts in signalling and nectar is the sole reward for pollinators. Despite the low pollinator frequency, S. acaulis shows a high fruit set (77%), particularly when compared to other orchids. Attributes such as pollinia that release small pollen loads, allowing a single pollinia-carrying bee to pollinate several flowers, low amount of nectar, steady-state flowering and traplining behaviour of pollinators, might act together to assure this outstanding fruit set.


Assuntos
Orchidaceae , Perfumes , Animais , Abelhas , Flores , Melhoramento Vegetal , Néctar de Plantas , Polinização
9.
Curr Biol ; 31(4): 860-868.e4, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33338429

RESUMO

Perfume flowers (sensu Vogel1) produce intense scents that function both as attractants and as the sole rewards for pollinators. The scent is collected exclusively by male euglossine bees and used during pre-mating behavior.2-5 Perfume flowers have evolved independently in 15 angiosperm families, with over 1,000 reported species across the Neotropical region.6 Members of Cryptanthus (Bromeliaceae) represent a puzzling exception among perfume flowers, as flowers produce nectar and do not emit a noticeable scent yet still attract euglossine males.7 Here, we studied the pollination ecology of Cryptanthus burle-marxii and decode the chemical communication between its flowers and euglossine males. Field observations revealed euglossine males and hummingbirds as potential pollinators. The bees always contacted anthers/stigma of C. burle-marxii while scraping the petals to obtain chemicals, whereas nectar-seeking hummingbirds normally only contacted the anthers. Based on gas chromatography-mass spectrometry/nuclear magnetic resonance analyses of flower scent samples and bioassays, we identified the diterpene copalol as the only floral scent compound triggering scent-gathering behavior in euglossine males. Unlike euglossine-bee-mediated pollination, hummingbird pollination is ancestral in the Cryptanthus clade, suggesting a case of an ongoing pollinator shift8-10 mediated by the evolution of perfume as a reward. Copalol was previously unknown as a floral scent constituent and represents the heaviest and least-volatile compound known to attract euglossine males. Our study provides the first experimental evidence that semivolatile floral compounds can mediate euglossine bee interactions. Male euglossine pollination in other plant species lacking noticeable floral scents11-13 suggests that semivolatile-mediated pollinator attraction is more widespread than currently appreciated.


Assuntos
Odorantes , Perfumes , Polinização , Animais , Abelhas , Flores , Feromônios , Néctar de Plantas
10.
J Agric Food Chem ; 68(47): 13815-13823, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33151685

RESUMO

Plant volatiles such as floral scent compounds play a crucial role in mediating insect host locating, mate search, and oviposition sites selection. The alfalfa plant bug, Adelphocoris lineolatus (Goeze), is a seriously polyphagous herbivore of alfalfa and cotton that has an obvious preference for flowering host plants. In this study, we focused on the role of an odorant receptor AlinOR59 in the perception of plant volatiles in A. lineolatus. In situ hybridization showed that AlinOR59 was coexpressed with the coreceptor AlinORco in the ORNs cell located in the long curved sensilla trichodea on antennae of both genders. The Xenopus oocytes expression coupled with two-electrode voltage clamp recordings demonstrated that AlinOR59 responded to 15 plant volatiles. In electroantennogram assays, all of the above 15 compounds could excite electrophysiological responses in the antennae of adult bugs. Furthermore, an important floral scent compound, methyl salicylate, was utilized to evaluate the behavioral responses of A. lineolatus. It was found that adult bugs of both genders were significantly attracted to methyl salicylate. Taken together, our findings suggest that AlinOR59 plays a crucial role in the perception of floral scents in A. lineolatus and could be used as a potential target to design novel olfactory regulators for the management of bugs.


Assuntos
Heterópteros , Receptores Odorantes , Animais , Antenas de Artrópodes , Feminino , Flores/química , Proteínas de Insetos/genética , Masculino , Odorantes , Receptores Odorantes/genética , Sensilas
11.
Plant Cell Physiol ; 61(10): 1733-1749, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726442

RESUMO

Lathyrus odoratus (sweet pea) is an ornamental plant with exceptional floral scent, previously used as an experimental organism in the early development of Mendelian genetics. However, its terpene synthases (TPSs), which act as metabolic gatekeepers in the biosynthesis of volatile terpenoids, remain to be characterized. Auto-Headspace Solid-phase Microextraction/Gas chromatography-mass spectrometry analysis of floral volatile terpene constituents from seven sweet pea cultivars identified α-bergamotene, linalool, (-)-α-cubebene, geraniol, ß-caryophyllene and ß-sesquiphellandrene as the dominant compounds. RNA sequencing was performed to profile the transcriptome of L. odoratus flowers. Bioinformatic analysis identified eight TPS genes (acronymed as LoTPS) that were successfully cloned, heterologously expressed and functionally analyzed. LoTPS4 and LoTPS7, belonging to the TPS-b clade, biochemically catalyzed the formation of monoterpenes and sesquiterpenes. LoTPS3 and LoTPS8, placed in the TPS-a clade, also generated monoterpenes and sesquiterpenes, while LoTPS12 belonging to the TPS-g clade showed linalool/nerolidol synthase activity. Notably, biochemical assays of the recombinant LoTPS proteins revealed their catalytic promiscuity, and the enzymatic products were basically consistent with major volatile compounds released from sweet pea flowers. The data from our study lay the foundation for the chemical ecology, molecular genetics and biotechnological improvement of sweet pea and other legumes (Fabaceae).


Assuntos
Alquil e Aril Transferases/metabolismo , Flores/metabolismo , Lathyrus/metabolismo , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Arabidopsis/genética , Cromatografia Gasosa-Espectrometria de Massas , Sequenciamento de Nucleotídeos em Larga Escala , Lathyrus/enzimologia , Lathyrus/genética , Filogenia , Alinhamento de Sequência , Compostos Orgânicos Voláteis/metabolismo
12.
J Evol Biol ; 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32500947

RESUMO

Current divergent selection may promote floral trait differentiation among conspecific populations in flowering plants. However, whether this applies to complex traits such as colour or scents has been little studied, even though these traits often vary within species. In this study, we compared floral colour and odour as well as selective pressures imposed upon these traits among seven populations belonging to three subspecies of the widespread, generalist orchid Anacamptis coriophora. Colour was characterized using calibrated photographs, and scents were sampled using dynamic headspace extraction and analysed using gas chromatography-mass spectrometry. We then quantified phenotypic selection exerted on these traits by regressing fruit set values on floral trait values. We showed that the three studied subspecies were characterized by different floral colour and odour, with one of the two predominant floral volatiles emitted by each subspecies being taxon-specific. Plant size was positively correlated with fruit set in most populations, whereas we found no apparent link between floral colour and female reproductive success. We detected positive selection on several taxon-specific compounds in A. coriophora subsp. fragrans, whereas no selection was found on floral volatiles of A. coriophora subsp. coriophora and A. coriophora subsp. martrinii. This study is one of the first to document variation in phenotypic selection exerted on floral scents among conspecific populations. Our results suggest that selection could contribute to ongoing chemical divergence among A. coriophora subspecies.

13.
Plant Biol (Stuttg) ; 22(5): 881-889, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32130747

RESUMO

Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator-mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys. We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography-mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant-pollinator interactions and floral scent composition using phylogenetic comparative methods. We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects. Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator-mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non-active compounds.


Assuntos
Odorantes , Orchidaceae , Filogenia , Polinização , Animais , Flores/química , Orchidaceae/classificação , Orchidaceae/fisiologia
14.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050562

RESUMO

Orchids are one of the most significant plants that have ecologically adapted to every habitat on earth. Orchids show a high level of variation in their floral morphologies, which makes them popular as ornamental plants in the global market. Floral scent and color are key traits for many floricultural crops. Volatile organic compounds (VOCs) play vital roles in pollinator attraction, defense, and interaction with the environment. Recent progress in omics technology has led to the isolation of genes encoding candidate enzymes responsible for the biosynthesis and regulatory circuits of plant VOCs. Uncovering the biosynthetic pathways and regulatory mechanisms underlying the production of floral scents is necessary not only for a better understanding of the function of relevant genes but also for the generation of new cultivars with desirable traits through molecular breeding approaches. However, little is known about the pathways responsible for floral scents in orchids because of their long life cycle as well as the complex and large genome; only partial terpenoid pathways have been reported in orchids. Here, we review the biosynthesis and regulation of floral volatile compounds in orchids. In particular, we focused on the genes responsible for volatile compounds in various tissues and developmental stages in Cymbidium orchids. We also described the emission of orchid floral volatiles and their function in pollination ecology. Taken together, this review will provide a broad scope for the study of orchid floral scents.


Assuntos
Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Compostos Orgânicos Voláteis/metabolismo , Evolução Molecular , Flores/genética , Flores/metabolismo , Orchidaceae/metabolismo
15.
Plants (Basel) ; 8(8)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357642

RESUMO

Cymbidium is one of the most important genera of flowering plants in the Orchidaceae family, and comprises a wide variety of beautiful and colorful species. Among these, only a few species possess floral scents and flavors. In order to increase the availability of a new Cymbidum hybrid, "Sunny Bell", this study investigated the volatile floral scents. Volatiles of the floral organs of the new Cymbidium hybrid, "Sunny Bell", at the full-flowering stage were characterized with headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis. A divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fiber gave the best extraction for volatile components. Twenty-three components were identified as the main volatiles for the floral organs of the new Cymbidium hybrid, "Sunny Bell" at the full-flowering stage; twelve compounds in the column, sixteen compounds in the labellum, eleven compounds in the sepals, and nine compounds in the petals were identified. Terpenes are the major source of floral scents in this plant. As a result of GC-MS analysis, the most abundant compound was linalool (69-80%) followed by α-pinene (3-27%), 4,8-dimethyl-1,3,7-nonatriene (5-18%), eucalyptol (6-16%), and 2,6-dimethylnonane (2-16%). The main components were identified as monoterpenes in the petals and sepals, and as monoterpenes and aliphatics in the column and labellum. The results of this study provide a basis for breeding Cymbidium cultivars which exhibit desirable floral scents.

16.
Front Psychol ; 10: 280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30890974

RESUMO

Honeybees show lateral asymmetry in both learning about odors associated with reward and recalling memory of these associations. We have extended this research to show that bees exhibit lateral biases in their initial response to odors: viz., turning toward the source of an odor presented on their right side and turning away from it when presented on their left side. The odors we presented were the main component of the alarm pheromone, isoamyl acetate (IAA), and four floral scents. The significant bias to turn toward IAA odor on the right and away from it on the left is, we argue, a lateralization of the fight-flight response elicited by this pheromone. It contrasts to an absence of any asymmetry in the turning response to an odor of the flowers on which the bees had been feeding prior to testing: to this odor they turned toward when it was presented on either the left or right side. Lemon and orange odors were responded to differently on the left and right sides (toward on the right, away on the left), but no asymmetry was found in responses to rose odor. Our results show that side biases are present even in the initial, orienting response of bees to certain odors.

17.
J Chem Ecol ; 45(2): 204-213, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30229355

RESUMO

Nocturnal flowering plants often release strong scents to attract their pollinators. Among night active flower visitors are cyclocephaline scarab beetles, which have been demonstrated to respond to uncommon volatile organic compounds released in high amounts by their host plants. In Araceae, the molecular structure of several such compounds is yet to be unveiled. We investigated headspace floral scent samples of Philodendron squamiferum, Thaumatophyllum mello-baretoanum, and Xanthosoma hylaeae by a variety of approaches, leading to the identification of novel compounds. Dehydrojasmone, (Z)-4-methylene-5-(pent-2-en-1-yl)cyclopent-2-en-1-one (1), (Z)-3-methylene-2-(pent-2-en-1-yl)cyclopentyl acetate (isojasmyl acetate, 3), and (E)-4,8-dimethylnona-1,3,7-trien-5-yl acetate (4) had not been previously reported, while full analytical data of the recently described (Z)-3-methylene-2-(pent-2-en-1-yl)cyclopentan-1-ol (isojasmol, 2) are presented here. All these compounds are derived from more common precursors, (Z)-jasmone and (E)-4,8-dimethyl-1,3,7-nonatriene, likely through biosynthetic "post-processing".


Assuntos
Araceae/química , Besouros/fisiologia , Compostos Orgânicos Voláteis/química , Animais , Araceae/metabolismo , Ciclopentanos/química , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Oxilipinas/química , Polinização/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia
18.
New Phytol ; 220(3): 739-749, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28256726

RESUMO

Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta-analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules. Poorly integrated plant CCDs (i.e. low covariation between scent compounds) support the notion that plants often utilize one or few key compounds to repel antagonists or to attract pollinators and enemies of herbivores. Animal CCDs (mostly insect pheromones) were usually more integrated than those of plants (i.e. stronger covariation), suggesting that animals communicate via fixed proportions among compounds. Both plant and animal CCDs were composed of modules, which are groups of strongly covarying compounds. Biosynthetic similarity of compounds revealed biosynthetic constraints in the covariation patterns of plant CCDs. We provide a novel perspective on chemical communication and a basis for future investigations on structural properties of CCDs. This will facilitate identifying modules and biosynthetic constraints that may affect the outcome of selection and thus provide a predictive framework for evolutionary trajectories of CCDs in plants and animals.


Assuntos
Evolução Biológica , Vias Biossintéticas , Animais , Fenótipo , Compostos Orgânicos Voláteis/metabolismo
19.
J Chem Ecol ; 43(1): 4-12, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28032267

RESUMO

The pollen diet provided by adult bees to their offspring varies immensely. While some species collect pollen on several plants irrespective of their phylogenetic relatedness (polyleges), others collect only on plants within a genus or family (oligoleges). Floral scents play a central role in bee-plant interactions. To locate flowers, polyleges are assumed to rely on compounds commonly found as floral scent constituents, whereas oligoleges rely on unusual compounds to recognize host flowers unambiguously. Campanula flowers are visited by both polylectic and oligolectic species, and their scent bouquets consist of common and unusual (e.g., spiroacetals) volatiles. In a comparative approach, we performed electroantennographic analyses to investigate the antennal responses of three polyleges and three oligoleges to three common volatiles and four spiroacetals. We hypothesized that: 1) oligoleges and polyleges should respond similarly to common flower volatiles, and 2) Campanula oligoleges should be more sensitive to spiroacetals than are polyleges. In corroboration, we found that antennal sensitivity to common volatiles was similar among bees irrespective of pollen diet, whereas oligoleges of Campanula were more sensitive to spiroacetals than polyleges. Newly emerged bees of the Campanula oligolege Chelostoma rapunculi rely on spiroacetals for recognizing host-flowers, and our results suggest that this might also be true for other Campanula oligoleges, since Chelostoma campanularum and Hoplitis mitis also were able to perceive these specific volatiles at very low concentrations. Together, our results provide interesting insights into the significance of olfactory adaptations in oligolectic and polylectic bee species.


Assuntos
Abelhas/fisiologia , Campanulaceae , Flores/química , Odorantes/análise , Polinização , Acetais/análise , Animais , Antenas de Artrópodes/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Especificidade da Espécie , Compostos de Espiro/análise
20.
Front Plant Sci ; 7: 312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014329

RESUMO

The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae), are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs), consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...