Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Photoacoustics ; 38: 100625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38974142

RESUMO

Here we present a computational and experimental fluid dynamics study for the characterization of the flow field within the gas chamber of a Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensor, at different flow rates at the inlet of the chamber. The transition from laminar to turbulent regime is ruled both by the inlet flow conditions and dimension of the gas chamber. The study shows how the distribution of the flow field in the chamber can influence the QEPAS sensor sensitivity, at different operating pressures. When turbulences and eddies are generated within the gas chamber, the efficiency of photoacoustic generation is significantly altered.

2.
Sci Rep ; 14(1): 15990, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987296

RESUMO

In this work, we studied the near-surface flow field structure of railway bridges with different heights through field investigation and wind tunnel simulation experiments. Meanwhile, we simulated the distribution of sand accumulation around a bridge via CFD software based on the sand accumulation around the Basuoqu bridge in the Cuona Lake section of the Qinghai-Tibet Railway. Results show that the sand around this railway bridge is mainly from the lake sediment on the west side of the railway and the weathered detritus on the east side. The height of the railway bridge in the sandy area affects the distribution of the near-surface flow field and the variation in speed on both sides of the bridge. The wind speed trough on both sides of the 6 m high bridge is higher, and the horizontal distance between the wind speed trough and the bridge section is 1.5 times that of the 3 m high bridge. Wind speed attenuates in a certain range on the windward and leeward sides of the bridge, forming an aeolian area; under the beam body, it is affected by the narrow tube effect, forming a wind erosion area. The height of the bridge determines its sand transport capacity. Under certain wind conditions, the overhead area at the bottom of the 3 m high bridge and its two sides do not have the sand transport capacity, so sand accumulates easily. Nevertheless, the sand accumulation phenomenon gradually disappears with the increase in bridge clearance height. The objectives of this study are to reveal the formation mechanism of sand damage for railway bridges, provide theoretical support for the scientific design of railway bridges in sandy areas, and formulate reasonable railway sand prevention measures to ensure the safety of railway running, which have certain theoretical significance and practical value.

3.
J Hazard Mater ; 474: 134820, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843631

RESUMO

The admixture of heavy metals on struvite during the P recovery process from wastewater will affect its value for safe agricultural application, but it is not clear how to effectively separate heavy metals from struvite. Herein, a two-stage separation reactor (static and dynamic) has been developed to achieve efficient separation of heavy metals and struvite. The generation of struvite from real swine wastewater would naturally precipitate to the lowest layer under static conditions, leading to an enrichment of heavy metals (75 % Cu and 84 % Zn) in suspension. Meanwhile, phosphorus recovery from real swine wastewater results in the generation of a large amount of fines flowing out of the reactor due to the effects of suspended solids (SS), etc., making it necessary to recover phosphorus by static separation. For the dynamic separation step, we also analyzed the characteristics of struvite formation at different rotational speeds in a continuous reaction system. The results demonstrated that the shear rate of the fluid affects the particle size of struvite, which in turn determines the rate and the distribution of struvite in either primary or secondary recovery tanks. The implementation of zonal regulation in the flow field can produce a higher phosphorus efficiency (from 85.8 to 95.5 % at pH=8.1-8.2, from 93.8 to 98.5 % at pH=9.0-9.1) and a lower alkali consumption (55.56 % of alkali cost), which is favorable for the separation of struvite crystals and heavy metals (the amount of Cu and Zn metals separated increased by more than 50 %), and ultimately yield high quality of struvite. The findings in this study will provide insights for the separation and reduction of heavy metals through a combined method with dynamic and static in a continuous system, providing a reference for the safe application of struvite in agriculture.

4.
J Environ Manage ; 365: 121525, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897085

RESUMO

As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.

5.
J Chromatogr A ; 1730: 465039, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38901296

RESUMO

A system consisting of a thermal desorption unit (TDU) and micro thermal desorption tubes (µTD-tubes, 1.4 mm I.D., 10mg Tenax TA) for fast desorption of analytes was developed for the efficient combination of hyper fast gas chromatography with thermal desorption. The fast desorption is achieved by a significantly reduced thermal mass compared to conventional thermal desorption tubes. Therefore, extremely fast heating and cooling cycles are possible. Proof of concept measurements combining the new setup with a flow-field thermal gradient gas chromatograph (FF-TG-GC) and FID detection show good precision and linearity with R2≥0.995 in the analysis of an n-alkane mix (C8-C20). Thermal desorption occurs within 12s. The impact of reduced µTD-tube dimensions on desorption time, full width at half maximum (FWHM), breakthrough volumes, tube flow rates ergo linear velocities, porosity and back pressure is discussed.

6.
Sci Rep ; 14(1): 13853, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879578

RESUMO

To elucidate the distribution law of the multiphase coupling slag discharge flow field in gas-lift reverse circulation during drilling shaft sinking, a numerical analysis model of gas-liquid-solid multiphase coupling slag discharge was established by CFD-DEM (Coupling of computational fluid dynamics and discrete element method) method, taking the drilling of North Wind well in Taohutu Coal Mine as an example. This model presented the distribution of the multiphase flow field in the slag discharge pipe and at the bottom hole, and was validated through experimentation and theoretical analysis. Finally, the impact of factors, including bit rotation speed, gas injection rate, air duct submergence ratio, and mud viscosity on the slag discharge flow field was clarified. The results indicated that the migration of rock slag at the bottom of the well was characterized by "slip, convergence, suspension, adsorption, and lifting". The slag flow in the discharge pipe exhibited the states of "high density, low flow rate" and "low density, high flow rate", respectively. The multiphase fluid flow patterns in the well bottom and slag discharge pipe were horizontal and axial flows, respectively. The model test of the gas lift reversed circulation slag discharge and the theoretical model of the bottom hole fluid velocity distribution confirmed the accuracy of the multiphase coupling slag discharge flow field distribution model. The rotation speed of the drill bit had the most significant impact on the bottom hole flow field. Increasing the rotation speed of the drill bit can significantly enhance the tangential velocity of the bottom hole fluid, increase the pressure difference between the bottom hole and annular mud column, and improve the adsorption capacity of the slag suction port. These findings can provide valuable insights for gas lift reverse circulation well washing in western drilling shaft sinking.

7.
Front Bioeng Biotechnol ; 12: 1355617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846802

RESUMO

Gliding is a crucial phase in swimming, yet the understanding of fluid force and flow fields during gliding remains incomplete. This study analyzes gliding through Computational Fluid Dynamics simulations. Specifically, a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method for flow-object interactions is established. Fluid motion is governed by continuity, Navier-Stokes, state, and displacement equations. Modified dynamic boundary particles are used to implement solid boundaries, and steady and uniform flows are generated with inflow and outflow conditions. The reliability of the SPH model is validated by replicating a documented laboratory experiment on a circular cylinder advancing steadily beneath a free surface. Reasonable agreement is observed between the numerical and experimental drag force and lift force. After the validation, the SPH model is employed to analyze the passive drag, vertical force, and pitching moment acting on a streamlined gliding 2D swimmer model as well as the surrounding velocity and vorticity fields, spanning gliding velocities from 1 m/s to 2.5 m/s, submergence depths from 0.2 m to 1 m, and attack angles from -10° to 10°. The results indicate that with the increasing gliding velocity, passive drag and pitching moment increase whereas vertical force decreases. The wake flow and free surface demonstrate signs of instability. Conversely, as the submergence depth increases, there is a decrease in passive drag and pitching moment, accompanied by an increase in vertical force. The undulation of the free surface and its interference in flow fields diminish. With the increase in the attack angle, passive drag and vertical force decrease whereas pitching moment increases, along with the alteration in wake direction and the increasing complexity of the free surface. These outcomes offer valuable insights into gliding dynamics, furnishing swimmers with a scientific basis for selecting appropriate submergence depth and attack angle.

8.
J Chromatogr A ; 1730: 465115, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38936166

RESUMO

Introduced here is the on-line coupling of hollow-fiber flow field-flow fractionation (HF5) to depolarized multi-angle static light scattering (D-MALS). HF5 is a size-based separation alternative to size-exclusion and hydrodynamic chromatography and asymmetric flow field-flow fractionation. HF5 can separate larger sizes than its chromatographic counterparts and provides several advantages over its fractionation counterpart, including reduced sample consumption and greater ease of operation. D-MALS is a variant of MALS in which the depolarized scattering from the analyte solution is measured at a variety of angles simultaneously. Measurements of depolarized scattering have previously been employed in studying the optical properties of solutions or suspensions, to determine the length of rod-like analytes, and to gain increased accuracy in the determination of analyte molar mass. The coupling HF5/D-MALS allows for the depolarization ratio of a solution or suspension to be measured continuously across the fractogram. This is demonstrated here for a Teflon latex the size range of which extends beyond that accessible to commercial size-exclusion columns. The results presented provide the first reported on-line HF5/D-MALS coupling, showing the feasibility of the technique as well as its realized potential for providing continuous depolarization measurements, inter alia.

9.
Materials (Basel) ; 17(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793492

RESUMO

This research is dedicated to optimizing the design of microfluidic cells to minimize mass transfer effects and ensure a uniform flow field distribution, which is essential for accurate SPR array detection. Employing finite element simulations, this study methodically explored the internal flow dynamics within various microfluidic cell designs to assess the impact of different contact angles on flow uniformity. The cells, constructed from Polydimethylsiloxane (PDMS), were subjected to micro-particle image velocimetry to measure flow velocities in targeted sections. The results demonstrate that a contact angle of 135° achieves the most uniform flow distribution, significantly enhancing the capability for high-throughput array detection. While the experimental results generally corroborated the simulations, minor deviations were observed, likely due to fabrication inaccuracies. The microfluidic cells, evaluated using a custom-built SPR system, showed consistent repeatability.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38822142

RESUMO

Secondary flow path is one of the crucial aspects during the design of centrifugal blood pumps. Small clearance size increases stress level and blood damage, while large clearance size can improve blood washout and reduce stress level. Nonetheless, large clearance also leads to strong secondary flows, causing further blood damage. Maglev blood pumps rely on magnetic force to achieve rotor suspension and allow more design freedom of clearance size. This study aims to characterize turbulent flow field and secondary flow as well as its effects on the primary flow and pump performance, in two representative commercial maglev blood pumps of CH-VAD and HeartMate III, which feature distinct designs of secondary flow path. The narrow and long secondary flow path of CH-VAD resulted in low secondary flow rates and low disturbance to the primary flow. The flow loss and blood damage potential of the CH-VAD mainly occurred at the secondary flow path, as well as the blade clearances. By contrast, the wide clearances in HeartMate III induced significant disturbance to the primary flow, resulting in large incidence angle, strong secondary flows and high flow loss. At higher flow rates, the incidence angle was even larger, causing larger separation, leading to a significant decrease of efficiency and steeper performance curve compared with CH-VAD. This study shows that maglev bearings do not guarantee good blood compatibility, and more attention should be paid to the influence of secondary flows on pump performance when designing centrifugal blood pumps.

11.
Talanta ; 276: 126216, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761653

RESUMO

Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.


Assuntos
Âmnio , Vesículas Extracelulares , Células-Tronco Mesenquimais , Secretoma , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Secretoma/metabolismo , Âmnio/química , Âmnio/citologia , Âmnio/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Controle de Qualidade , Células Cultivadas
12.
Front Cardiovasc Med ; 11: 1340289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576423

RESUMO

Purpose: Vector flow mapping and treadmill exercise stress echocardiography were used to evaluate and explore changes in the left ventricular (LV) flow field of patients with nonobstructive coronary artery disease. Methods: Overall, 34 patients with nonobstructive (<50%) left anterior descending coronary artery stenosis (case group) and 36 patients with no coronary artery stenosis (control group) were included. Apical four-, three-, and two-chamber echocardiographic images were collected at rest and during early recovery from treadmill exercise. LV flow field, vortex area, and circulation (cir) changes were recorded in different phases: isovolumetric systole (S1), rapid ejection (S2), slow ejection (S3), isovolumetric diastole (D1), rapid filling (D2), slow filling (D3), and atrial systole (D4). Intra- and inter-group differences were compared before and after exercise loading. Results: The control and case groups demonstrated regular trends of eddy current formation and dissipation at rest and under stress. Compared with the control group, the case group had irregular streamline distributions. Abnormal vortices formed in the S1 and D3 apical segments and D1 left ventricular middle segment in the resting group. Compared with the control group, the resting group had decreased left ventricular S1 vortex areas and increased S3 vortex areas. The post-stress D1 and D3 vortex areas and D1 and D2 cir increased. Compared with at rest, after stress, the control group had decreased S1, S3, D2, and D3 vortex areas; increased S2, D1, D3, and D4 cir; and decreased D2 cir. After stress, the case group had decreased S3 and D2 vortex areas, increased D1 vortex areas, and increased S2, D1, D3, and D4 cir (P all < 0.001). Logistic regression and ROC curve analyses show that increased D1 vortex area after stress is an independent risk factor for stenosis in nonobstructive stenosis of coronary arteries (OR: 1.007, 95% CI: 1.005-1.010, P < 0.05). A D1 vortex area cutoff value of 82.26 had an AUC, sensitivity, and specificity of 0.67, 0.655, and 0.726, respectively. Conclusion: The resting left ventricular flow field changed in patients with nonobstructive left anterior descending coronary artery stenosis. Both groups had more disordered left ventricular blood flow after stress. The increased D1 vortex area after stress is an independent risk factor for mild coronary stenosis and may contribute to the assessment of nonobstructive coronary stenosis. VFM combined with treadmill stress is useful in evaluating left ventricular flow field changes in patients with nonobstructive coronary artery disease, which is valuable in the early evaluation of coronary heart disease.

13.
J Chromatogr A ; 1724: 464927, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38677152

RESUMO

The thickness-tapered channel structure in flow field-flow fractionation (FlFFF), recently introduced by constructing a channel with a linear decrease in thickness along its length, demonstrated effectiveness in steric/hyperlayer separation of supramicron particles with improvements in separation speed, elution recovery, and an expanded dynamic size range of separation. In this study, we conducted a comparative analysis of the performance between the impact of field (or crossflow rate) programming or outflow rate programming for the separation of polystyrene latex standards (50 ∼ 800 nm) with a conventional channel having uniform thickness and a thickness-tapered channel without programming. Outlet flow rate and crossflow rate conditions were also varied. Although the particle size resolution of the tapered channel does not surpass that of field programming in uniform thickness channel, it achieves higher-speed separation without a significant loss of resolution and without the need for a complex flow controller system even at a low outflow rate condition. Furthermore, it yielded an improved resolution for particles close to the steric transition regime (400 ∼ 600 nm) in the normal mode of separation. Due to the continuous increase in mean flow velocity down the channel, the tapered channel exhibits flexibility in separating submicron-sized particles at high crossflow rate conditions or low outflow rate conditions, of which the latter can be advantageous when coupled with mass spectrometry in a miniaturized setup.


Assuntos
Fracionamento por Campo e Fluxo , Tamanho da Partícula , Poliestirenos , Fracionamento por Campo e Fluxo/métodos , Poliestirenos/química , Desenho de Equipamento
14.
Water Res ; 256: 121582, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608621

RESUMO

Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.


Assuntos
Coloides , Água Subterrânea , Metais Terras Raras , Minerais , Mineração , Poluentes Químicos da Água , Água Subterrânea/química , Coloides/química , China , Minerais/química , Adsorção
15.
Heliyon ; 10(8): e29439, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665550

RESUMO

The uniformity of hot air flow inside the airflow dryer not only affects the moisture distribution at the outlet, but also affects the quality of the product. Based on the guide plate structure of the SH23A airflow tobacco dryer, a gradient curved guide plate dryer is designed, and the flow field distribution of the dryer is numerically investigated under different flow distribution conditions at the hot air inlet and flue gas inlet. The results show that the airflow uniformity is affected by the flow distribution at the inlet of the heated air and the inlet of the cigarette smoke, the structure of the guide plate, etc., the non-uniformity coefficient decreases with the increase of hot air inlet flow rate. The non-uniformity coefficient of tapered arc deflector decreases by 9-12 %.

16.
Food Chem X ; 22: 101267, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38468634

RESUMO

The unique properties of resistant starch (RS) have made it applicable in the formulation of a broad range of functional foods. The physicochemical properties of RS play a crucial role in its applications. Recently, flow field-flow fractionation (FlFFF) has attracted increasing interest in the separation and characterization of different categories of RS. In this review, an overview of the theory behind FlFFF is introduced, and the controllable factors, including FlFFF channel design, sample separation conditions, and the choice of detector, are discussed in detail. Furthermore, the applications of FlFFF for the separation and characterization of RS at both the granule and molecule levels are critically reviewed. The aim of this review is to equip readers with a fundamental understanding of the theoretical principle of FlFFF and to highlight the potential for expanding the application of RS through the valuable insights gained from FlFFF coupled with multidetector analysis.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38444287

RESUMO

Non-physiological blood flow conditions in axial blood pumps lead to some complications, including hemolysis, platelet activation, thrombosis, and embolism. The high speed of the axial blood pump destroys large amounts of erythrocytes, thereby causing hemolysis and thrombosis. Thus, this study aims to reduce the vortices and reflux in the flow field by optimizing the axial blood pump. The axial blood pump and arterial flow field were modeled by the finite element method. The blood was assumed to be incompressible, turbulent, and Newtonian. The SST k-ω turbulence model was used. The frozen rotor method was also used to calculate the snapshot of motion. Many vortices and reflux exist in the flow field of the blood pump without optimization. The improved flow field had almost no vortex and reflux, thereby reducing the exposure time of blood. The optimized blood pump had little influence on the pressure field and shear stress field. The optimized blood pump mainly reduced the vortex, reflux, and the risk of thrombosis in the flow field. The flow field characteristics of an axial blood pump were studied, and the results showed the risk of thrombosis and hemolysis in the blood pump. In accordance with the relationship between the blade shape and the flow field, the blade of the blood pump was optimized, reducing the vortex and reflux of the flow field, as well as the risk of thrombosis.

18.
Environ Sci Pollut Res Int ; 31(19): 27883-27896, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523215

RESUMO

Achieving a harmonious alignment between the biological characteristics of fish and hydrodynamics patterns is crucial for ensuring the efficacy of fish passage facilities. In this study, based on the hydrodynamic characteristics of the river and the biological characteristics of fish, we evaluated the internal flow field in the nature-like fishway of Congen II hydropower station located along the Chabao river and explored methods to improve the operation efficiency. Based on comprehensive considerations of the flow field, turbulent kinetic energy, and the migration pathways of fish, it is found that the implementation of a continuous oblique bottom slope represents a more cost-effective and operationally convenient solution. The influence of different permutation of bulkheads in the nature-like fishway on operational efficiency was further examined. Our investigation revealed that the nature-like fishway with the continuous slope of 2% and the arrangement of three bulkheads in each row (model 3) exhibited a relatively simple velocity distribution and linear flow line, which poses challenges for fish in locating resting areas. In addition, the distribution of low turbulence kinetic energy area in the mainstream made it less favorable for fish to transition from the mainstream to the rest area within the fishway. The nature-like fishway with the continuous slope of 2% and the arrangement of two or three bulkheads in staggered rows (model 4) demonstrated better performance. Several potential fish migration routes for both model 3 and model 4 were proposed based on the numerical simulation results. In model 3, fish exhibited a continuous sprint through the concentrated high-speed area, which was less favorable for fish to rest and forage. In contrast, model 4 exhibited a diversified flow velocity distribution, enabling fish to make timely changes in their direction during migration. This feather proved to be advantageous in enhancing fish migration within the passage. The design of nature-like fishway in this study provides an important reference and technical support for the construction and optimization of the nature-like fishway for low dams, and is of great significance for restoring river connectivity destroyed by small hydropower construction and improving fish migration.


Assuntos
Migração Animal , Peixes , Centrais Elétricas , Rios , Movimentos da Água , Pesqueiros , Hidrodinâmica , Natação , Comportamento Animal , Animais , China
19.
Chemosphere ; 355: 141774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522670

RESUMO

The enrichment of anammox bacteria is a key issue in the application of anammox processes. A new type of reactor - anaerobic baffle biofilm reactor (ABBR) developed from anaerobic baffle reactor (ABR) was filled with columnar packings and established for effective enrichment of anammox bacteria. The flow field analysis showed that, compared with ABR, ABBR narrowed the dead zone so as to improve the substrate transferring performances. Two ABBRs with different types of columnar packings (Packings 1 and Packings 2) were constructed to culture anammox biofilms. Packings 1 consisted of the single-form honeycomb carriers while Packings 2 was modular composite packings consisting of non-woven fabric and honeycomb carriers. The effects of different types of columnar packings on microbial community and nitrogen removal were studied. The ABBR filled with Packings 2 had a higher retention rate of biomass than the ABBR filled with Packings 1, making the anammox start-up period be shortened by 21.28%. The enrichment of anammox bacteria were achieved and the dominant anammox bacteria were Candidatus Brocadia in both R1 and R2. However, there were four genera of anammox bacteria in R2 and one genus of anammox bacteria in R1, and the cell density of anammox bacteria in R2 was 95% higher than that in R1. R2 has the advantage of maintaining excellent and stable nitrogen removal performance at high nitrogen loading rate. The results revealed that the packings composed of two types of carriers may have a better enrichment effect on anammox bacteria. This study is of great significance for the rapid enrichment of anammox bacteria and the technical promotion of anammox process.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Oxidação Anaeróbia da Amônia , Bactérias/metabolismo , Biofilmes , Nitrogênio/metabolismo , Oxirredução , Desnitrificação
20.
Environ Pollut ; 348: 123845, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522605

RESUMO

Epidemiological evidence has indicated a closely link between PM0.1 exposure and the incidence rate of cardiovascular diseases. This study explores the underlying communication roles of platelet-derived extracellular vesicles (PEVs) heterogeneous subpopulations in cardiovascular injury. PEVs and PMEVs which were extracted from platelet-rich plasma (PRP) un-exposure or exposure to PM0.1 by TIM4 affinity beads. By optimizing separation conditions, replacing pipelines, and resetting injection procedures, Asymmetric flow field-flow fractionation (AF4) was employed to separate, purify, characterize, and enrich PEVs and PMEVs heterogeneous subpopulations (small PEVs, PEVs-S/PMEVs-S: <100 nm; medium PEVs, PEVs-M/PMEVs-M: 100-200 nm; and large PEVs, PEVs-L/PMEVs-L: >200 nm). The results showed that the cargoes of PMEVs heterogeneous subpopulations which were released by PRP stimulated by PM0.1 were changed obviously. Moreover, compared with PEVs, PMEVs can lead to a decrease in the survival rate of Human Umbilical Vein Endothelial Cells (HUVECs). In PMEVs-S subpopulations, the alterations of lipids associated with membrane fusion and cell signaling transport (such as PC, Cer), as well as miRNAs related to inflammation, angiogenesis, and migration (miR-223, miR-22, miR-126, and miR-150), are similar to those in PMEVs-M subpopulations but distinct from PMEVs-L subpopulations. This study revealed the diverse communication mechanisms underlying PM0.1-induced cardiovascular injury, thereby offering potential avenues for the development of new biomarkers and therapeutic targets.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , MicroRNAs , Humanos , Doenças Cardiovasculares/metabolismo , Plaquetas , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...