Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 40(2): e3792, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010884

RESUMO

Valvular heart diseases (such as stenosis and regurgitation) are recognized as a rapidly growing cause of global deaths and major contributors to disability. The most effective treatment for these pathologies is the replacement of the natural valve with a prosthetic one. Our work considers an innovative design for prosthetic aortic valves that combines the reliability and durability of artificial valves with the flexibility of tissue valves. It consists of a rigid support and three polymer leaflets which can be cut from an extruded flat sheet, and is referred to hereafter as the Wheatley aortic valve (WAV). As a first step towards the understanding of the mechanical behavior of the WAV, we report here on the implementation of a numerical model built with the ICFD multi-physics solver of the LS-DYNA software. The model is calibrated and validated using data from a basic pulsatile-flow experiment in a water-filled straight tube. Sensitivity to model parameters (contact parameters, mesh size, etc.) and to design parameters (height, material constants) is studied. The numerical data allow us to describe the leaflet motion and the liquid flow in great detail, and to investigate the possible failure modes in cases of unfavorable operational conditions (in particular, if the leaflet height is inadequate). In future work the numerical model developed here will be used to assess the thrombogenic properties of the valve under physiological conditions.


Assuntos
Aorta , Valva Aórtica , Valva Aórtica/fisiologia , Reprodutibilidade dos Testes , Fluxo Pulsátil , Desenho de Prótese , Modelos Cardiovasculares
2.
Bioinspir Biomim ; 17(6)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998610

RESUMO

This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.


Assuntos
Viscosidade , Movimento (Física)
3.
J Biomech ; 118: 110234, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33556888

RESUMO

This paper presents a computational and experimental analysis of a glaucoma flat drainage device (FDD). The FDD consists of a metallic microplate placed into the eye sclerocorneal limbus, which creates a virtual path between the anterior chamber and its exterior, allowing the intraocular pressure (IOP) to be kept in a normal range. It also uses the surrounding tissue as a flow regulator in order to provide close values of IOP for a wide range of aqueous humor (AH) flow rates. The Neo Hookean hyperelastic model is used for the solid part, while the Reynolds thin film fluid model is used for the fluid part. On the other hand, a gravitational-driven flow test is implemented in order to validate the simulation process. An in vitro experiment evaluated the flow characteristics of the device implanted in fourteen extirpated pig eyes, giving as a result the best-fit for the Young modulus of the tissue surrounding the device. Finally, according to the resulting computational model, for a range of 1.4-3.1 µL/min, the device presents a pressure variation range of 6-7.5 mmHg.


Assuntos
Implantes para Drenagem de Glaucoma , Glaucoma , Animais , Drenagem , Pressão Intraocular , Suínos , Tonometria Ocular
4.
Artif Organs ; 45(7): O195-O206, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33326639

RESUMO

Transcatheter aortic valve implantation (TAVI) is an increasingly widespread procedure. Although this intervention is indicated for high and low surgical risk patients, some issues still remain, such as prosthesis positioning optimization in the aortic annulus. Coaxial positioning of the percutaneous prosthesis influences directly on the aortic wall stress map. The determination of the mechanical stress that acts on the vascular endothelium resulting from blood flow can be considered an important task, since TAVI positioning can lead to unfavorable hemodynamic patterns, resulting in changes in parietal stress, such as those found in post-stenotic dilatation region. This research aims to investigate the influence of the prosthetic valve inclination angle in the mechanical stresses acting in the ascending aortic wall. Aortic compliance and blood flow during cardiac cycle were numerically obtained using fluid structure interaction. The aortic model was developed through segmentation of a computed tomography image of a specific patient submitted to TAVI. When compared to standard position (coaxiality match between the prosthesis and the aortic annulus), the inclination of 4° directed to the left main coronary artery decreased the aortic wall area with high values of wall shear stress and pressure. Coaxial positioning optimization of percutaneous aortic prosthesis may decrease the high mechanical stress area. These changes may be important to reduce the aortic remodeling process, vascular calcification or even the prosthesis half-life. Computational fluid dynamics makes room for personalized medicine, with manufactured prosthesis tailored to each patient.


Assuntos
Aorta/diagnóstico por imagem , Aorta/fisiologia , Valva Aórtica/cirurgia , Hemodinâmica , Estresse Mecânico , Substituição da Valva Aórtica Transcateter/métodos , Valva Aórtica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Humanos , Modelos Cardiovasculares , Tomografia Computadorizada por Raios X
5.
Proc Math Phys Eng Sci ; 475(2230): 20190285, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31736642

RESUMO

We investigate the effects of structural damping on the interaction of a turbulent eddy with flexible plates with respect to the efficiency of aerodynamic noise generation. Potential benefits are studied using a model based on a point-reacting compliant semi-infinite plate on a spring-damper foundation. This scattering problem is solved using the Wiener-Hopf technique. We compare results for semi-infinite compliant plates with finite ones. In both cases, plate vibration lead to reductions of sound radiation, especially at resonance; damping tends to reduce such acoustic benefits. We also present a formulation that considers the effect of structural damping on the acoustic properties of finite elastic plates. Numerical results are obtained by applying a boundary element method to solve the Helmholtz equation subject to the boundary conditions imposed by the plate vibration. Under specific conditions, such as high fluid loading factor and low bending-wave Mach number, the acoustic power scattered by an edge tends to be smaller than that which propagates over the plate as bending waves. Results show that structural damping attenuates these waves and may modify the far-field acoustic pressure, mostly by reducing the scattered sound at structural resonances. All models show that large damping coefficients lead to locally over-damped responses. There is thus an ideal range of structural damping to reduce both plate vibration and acoustic scattering.

6.
Proc Math Phys Eng Sci ; 472(2188): 20150767, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27274685

RESUMO

We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA