RESUMO
Paracoccidioidomycosis (PCM) is a fungal infection caused by the thermodimorphic Paracoccidioides sp. PCM mainly affects the lungs, but, if it is not contained by the immune response, the disease can spread systemically. An immune response derived predominantly from Th1 and Th17 T cell subsets facilitates the elimination of Paracoccidioides cells. In the present work, we evaluated the biodistribution of a prototype vaccine based on the immunodominant and protective P. brasiliensis P10 peptide within chitosan nanoparticles in BALB/c mice infected with P. brasiliensis strain 18 (Pb18). The generated fluorescent (FITC or Cy5.5) or non-fluorescent chitosan nanoparticles ranged in diameter from 230 to 350 nm, and both displayed a Z potential of +20 mV. Most chitosan nanoparticles were found in the upper airway, with smaller amounts localized in the trachea and lungs. The nanoparticles complexed or associated with the P10 peptide were able to reduce the fungal load, and the use of the chitosan nanoparticles reduced the necessary number of doses to achieve fungal reduction. Both vaccines were able to induce a Th1 and Th17 immune response. These data demonstrates that the chitosan P10 nanoparticles are an excellent candidate vaccine for the treatment of PCM.
RESUMO
A one-pot green method for aqueous synthesis of fluorescent copper sulphide nanoparticles (NPs) was developed. The reaction was carried out in borax-citrate buffer at physiological pH, 37 °C, aerobic conditions and using Cu (II) and the biological thiol cysteine. NPs exhibit green fluorescence with a peak at 520 nm when excited at 410 nm and an absorbance peak at 410 nm. A size between 8-12 nm was determined by dynamic light scattering and transmission electron microscopy. An interplanar atomic distance of (3.5 ± 0.1) Å and a hexagonal chalcocite crystalline structure (ßCh) of Cu2S NPs were also determined (HR-TEM). Furthermore, FTIR analyses revealed a Cu-S bond and the presence of organic molecules on NPs. Regarding toxicity, fluorescent Cu2S NPs display high biocompatibility when tested in cell lines and bacterial strains. Electrocatalytic activity of Cu2S NPs as counter electrodes was evaluated, and the best value of charge transfer resistance (Rct) was obtained with FTO/Cu2S (four layers). Consequently, the performance of biomimetic Cu2S NPs as counter electrodes in photovoltaic devices constructed using different sensitizers (ruthenium dye or CdTe NPs) and electrolytes (S2-/Sn2- or I-/I3-) was successfully checked. Altogether, novel characteristics of copper sulfide NPs such as green, simple, and inexpensive production, spectroscopic properties, high biocompatibility, and particularly their electrochemical performance, validate its use in different biotechnological applications.
RESUMO
Overview: Malignant brain tumors remain one of the greatest challenges faced by health professionals and scientists among the utmost lethal forms of cancer. Nanotheranostics can play a pivotal role in developing revolutionary nanoarchitectures with multifunctional and multimodal capabilities to fight cancer. Mitochondria are vital organelles to eukaryotic cells, which have been recognized as a significant target in cancer therapy where, by damaging the mitochondria, it will cause irreparable cell death or apoptosis. Methods: We designed and produced novel hybrid nanostructures comprising a fluorescent semiconductor core (AgInS2, AIS) and cysteine-modified carboxymethylcellulose (termed thiomer, CMC_Cys) conjugated with mitochondria-targeting peptides (KLA) forming a macromolecular shell for combining bioimaging and for inducing brain cancer cell (U-87 MG) death. Results: The optical and physicochemical properties of the nanoconjugates demonstrated suitability as photoluminescent nanostructures for cell bioimaging and intracellular tracking. Additionally, the results proved a remarkable killing activity towards glioblastoma cells of cysteine-bearing CMC conjugates coupled with KLA peptides through the half-maximal effective concentration values, approximately 70-fold higher compared to the conjugate analogs without Cys residues. Moreover, these thiomer-based pro-apoptotic drug nanoconjugates displayed higher lethality against U-87 MG cancer cells than doxorubicin, a model drug in chemotherapy, although extremely toxic. Remarkably, these peptidomimetic nanohybrids demonstrated a relative "protective effect" regarding healthy cells while maintaining high killing activity towards malignant brain cells. Conclusion: These findings pave the way for developing hybrid nanoarchitectures applied as targeted multifunctional platforms for simultaneous imaging and therapy against cancer while minimizing the high systemic toxicity and side-effects of conventional drugs in anticancer chemotherapy.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Corantes Fluorescentes/química , Mitocôndrias/efeitos dos fármacos , Nanotecnologia , Peptidomiméticos , Medicina de Precisão/métodos , Linhagem Celular Tumoral , HumanosRESUMO
Glioblastoma (GBM) is the utmost aggressive and lethal primary brain cancer, which has a poor prognosis and remains virtually incurable. Nanomedicine with emerging disruptive nanotechnology alternatives, including designed supramolecular nanohybrids has excellent potential as multimodal tools against cancer by combining nanomaterials, biomacromolecules, and drugs. Thus, we developed and constructed for the first time quantum dot-biopolymer-drug nanohybrids based on host-guest chemistry for simultaneous bioimaging, targeting, and anti-cancer drug delivery against GBM cells in vitro. ZnS fluorescent quantum dots (ZnS-QDs) were produced using chemically modified polysaccharide, carboxymethylcellulose (CMC), as water-soluble capping ligand and biofunctional layer via a facile one-step eco-friendly aqueous colloidal process at room temperature and physiological pH. These hybrid inorganic-organic nanocolloids (ZnS@CMC) were electrostatically conjugated with doxorubicin (DOX) anti-cancer drug forming innovative supramolecular complexes (ZnS@CMC-DOX) for amalgamating bioimaging and killing cancer cells. These nanoconjugates were characterized regarding their optical and physicochemical properties combined with morphological and structural features. The cytocompatibility was evaluated by MTT assay using healthy and GBM cells. The results showed that ultra-small ZnS-QDs were expertly produced uniform nanocolloids (average sizeâ¯=â¯3.6â¯nm). They demonstrated photoluminescence emission within the visible range of spectra. The cell viability results in vitro showed no cytotoxicity of ZnS@CMC nanohybrids towards both cell types. In summary, the novelty of this research relies on using a nanotheranostic strategy for developing ZnS@CMC-DOX nanohybrids with supramolecular vesicle-like structures. They behaved simultaneously as active fluorescent nanoprobes and nanocarriers with modulated drug release for bioimaging and killing malignant glioma cells proving the high potential for applications in cancer nanomedicine.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Biopolímeros/química , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/farmacologia , Glioblastoma/tratamento farmacológico , Imagem Óptica , Pontos Quânticos/química , Antibióticos Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Humanos , Substâncias Macromoleculares/química , Nanopartículas/química , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
In the present work, we report the use of bacterial cells for the production of CdS/CdSe Core/Shell quantum dots (QDs), a complex nanostructure specially designed to improve their performance as photosensitizer in photovoltaic devices. The method requires the incorporation of L-cysteine, CdCl2 and Na2SeO3 to Escherichia coli cultures and allows a tight control of QDs properties. The obtained CdS/CdSe QDs were photophysically and structurally characterized. When compared to CdS QDs, the classical shift in the UV-visible spectra of Core/Shell nanostructures was observed in CdS/CdSe QDs. The nanosize, structure, and composition of Core/Shell QDs were confirmed by TEM and EDS analysis. QDs presented a size of approximately 12 nm (CdS) and 17 nm (CdS/CdSe) as determined by dynamic light scattering (DLS), whereas the fourier transform infrared (FTIR) spectra allowed to distinguish the presence of different biomolecules bound to both types of nanoparticles. An increased photostability was observed in CdS/CdSe nanoparticles when compared to CdS QDs. Finally, biosynthesized CdS/CdSe Core/Shell QDs were used as photosensitizers for quantum dots sensitized solar cells (QDSSCs) and their photovoltaic parameters determined. As expected, the efficiency of solar cells sensitized with biological CdS/CdSe QDs increased almost 2.5 times when compared to cells sensitized with CdS QDs. This work is the first report of biological synthesis of CdS/CdSe Core/Shell QDs using bacterial cells and represents a significant contribution to the development of green and low-cost photovoltaic technologies.
RESUMO
BACKGROUND: Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is related to factors such as cellular redox status and antioxidant defenses. Based on this, the mixture of extreme conditions of Antarctica would allow the development of natural QDs producing bacteria. RESULTS: In this study we isolated and characterized cadmium and tellurite resistant Antarctic bacteria capable of synthesizing CdS and CdTe QDs when exposed to these oxidizing heavy metals. A time dependent change in fluorescence emission color, moving from green to red, was determined on bacterial cells exposed to metals. Biosynthesis was observed in cells grown at different temperatures and high metal concentrations. Electron microscopy analysis of treated cells revealed nanometric electron-dense elements and structures resembling membrane vesicles mostly associated to periplasmic space. Purified biosynthesized QDs displayed broad absorption and emission spectra characteristic of biogenic Cd nanoparticles. CONCLUSIONS: Our work presents a novel and simple biological approach to produce QDs at room temperature by using heavy metal resistant Antarctic bacteria, highlighting the unique properties of these microorganisms as potent natural producers of nano-scale materials and promising candidates for bioremediation purposes.
Assuntos
Bactérias/metabolismo , Compostos de Cádmio/química , Corantes Fluorescentes/química , Nanopartículas , Pontos Quânticos/metabolismo , Sulfetos/química , Telúrio/química , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Farmacorresistência Bacteriana/efeitos dos fármacos , Metaboloma , Metais Pesados/toxicidade , Microscopia Eletrônica de Transmissão , Pontos Quânticos/química , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Espectrometria de FluorescênciaRESUMO
Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular level for diagnostic and therapeutic purposes. In this work, we report the synthesis of novel multifunctional nanoconjugates composed of fluorescent inorganic semiconductor quantum dot (QD) cores and tripeptide-modified polysaccharide organic shells. These structures were designed for targeting and imaging the αvß3 integrin receptors of cancer cells. Initially, chitosan was covalently bound with the RGD peptide using a crosslinker to form bioconjugates (RGD-chitosan), which were later utilized as capping ligands for the production of surface-functionalized CdS QDs via a single-step process in aqueous media at room temperature. These core-shell nanostructures were extensively characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta potential (ZP) and dynamic light scattering (DLS). The TEM images and the UV-vis absorption results indicated the formation of ultra-small CdS QD nanocrystals with average diameters between 2.0 and 3.0 nm. In addition, the PL results demonstrated that the nanobioconjugates exhibited intense green fluorescence under excitation. The CdS-RGD-chitosan systems were effective at specific targeting integrin when assayed in vitro using two model cell cultures, HEK 293 (non-cancerous human embryonic kidney cell) and SAOS (cancerous sarcoma osteogenic-derived cells) imaged using fluorescence microscopy.