Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.002
Filtrar
1.
Front Nutr ; 11: 1395962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962432

RESUMO

Indigenous foods are carriers of traditional native North American food culture and living philosophy. They are featured by the wide varieties in fresh and processed forms, richness in nutrition, flavor, health benefits and diversity in origins, but are usually misunderstood or underrepresented in the modern food systems. Conventional processing and cooking methods are sometimes labor-intensive, less efficient and lack science-based guidelines to prevent unseen safety risks and food loss. Global and regional climate change have caused additional challenges to conventional cooking/processing, and increased native communities' reliance on externally produced foods, which have resulted in increasing nutritional unbalance and prevalence of diet-related health issues. Current and emerging technologies, such as storage and packaging, drying, safety processing, canning, pickling, and fermentation, which treat foods under optimized conditions to improve the safety and extend the shelf-life, are increasingly used in current food systems. Therefore, exploring these technologies for indigenous foods offers opportunities to better preserve their nutrition, safety, and accessibility, and is critical for the sovereignty and independence of indigenous food systems, and sustainability of indigenous food culture. This mini-review focuses on identifying adoptable processing and preservation technologies for selected traditional indigenous foods in North America, summarizing education, extension, and outreach resources and discussing the current challenges and future needs critical to expanding knowledge about indigenous foods and improving food sovereignty, nutrition security, and health equity.

2.
Foodborne Pathog Dis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963774

RESUMO

Multilocus variable number tandem repeat analysis (MLVA) is a molecular subtyping technique that remains useful for those without the resources to access whole genome sequencing for the tracking and tracing of bacterial contaminants. Unlike techniques such as multilocus sequence typing (MLST) and pulsed-field gel electrophoresis, MLVA did not emerge as a standardized subtyping method for Listeria monocytogenes, and as a result, there is no reference database of virulent or food-associated MLVA subtypes as there is for MLST-based clonal complexes (CCs). Having previously shown the close congruence of a 5-loci MLVA scheme with MLST, a predictive model was created using the XGBoost machine learning (ML) technique, which enabled the prediction of CCs from MLVA patterns with ∼85% (±4%) accuracy. As well as validating the model on existing data, a straightforward update protocol was simulated for if and when previously unseen subtypes might arise. This article illustrates how ML techniques can be applied with elementary coding skills to add value to previous-generation molecular subtyping data in-built food processing environments.

3.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976377

RESUMO

In the current context, diabetes presents itself as a widespread and complex global health issue. This study explores the significant influence of food microstructure and food matrix components interaction (protein, lipid, polyphenols, etc.) on the starch digestibility and the glycaemic response of post-prandial glycemia, focusing on the potential effectiveness of incorporating bioactive components from whole grain cereals into dietary strategies for the management and potential prevention of diabetes. This study aims to integrate the regulation of postprandial glycaemic homeostasis, including the complexities of starch digestion, the significant potential of bioactive whole grain components and the impact of food processing, to develop a comprehensive framework that combines these elements into a strategic approach to diabetes nutrition. The convergence of these nutritional strategies is analyzed in the context of various prevalent dietary patterns, with the objective of creating an accessible approach to mitigate and prevent diabetes. The objective remains to coalesce these nutritional paradigms into a coherent strategy that not only addresses the current public health crisis but also threads a preventative approach to mitigate future prevalence and impact.

4.
Am J Clin Nutr ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971469

RESUMO

BACKGROUND: Majority of dietary intake in US adults comes from ultra-processed foods (UPFs), which have been linked to several adverse health outcomes. Gallstone disease is highly prevalent and constitutes a significant burden to the US health system but remains understudied. OBJECTIVE: This study aims to investigate the association between UPF consumption and incident gallstone disease risk. DESIGN: In this analysis, 44,149 males in the Health Professionals' Follow-up Study (HPFS: 1986-2022), 71,145 females in the Nurses' Health Study (NHS: 1986-2021) & 90,932 females in the Nurses' Health Study II (NHS II: 1991-2021) were prospectively followed. Dietary intake was quadrennially assessed with semi-quantitative food frequency questionnaires and used to identify UPFs. The primary outcome was defined as cholecystectomy. Cox proportional hazards model was used to estimate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). RESULTS: Baseline median age was 54y in HPFS, 53y in NHS and 36y in NHS II. We identified 32,374 incident gallstone disease cases over 5,077,059 person-years. Participants in the highest UPF quintile had a higher incidence of gallstone disease compared to those in the lowest quintile (aHR: 1.29, 95% CI: 1.24-1.36, p<0.001). The incremental risk of incident gallstone disease was 2.8% per daily serving (95% CI: 2.4%-3.2%, p<0.001). This risk was driven by sugar-sweetened beverages and artificially-sweetened beverages on UPF subgroup-analyses. The proportion of risk mediated by obesity was 12.8% (95% CI: 7.7%-20.5%, p <0.001) in HPFS, 14.3% (95% CI: 10.4%-19.4%, p<0.001) in NHS and 39.4% (95% CI: 31.2%-48.1%, p<0.001) in NHS II. The partial population attributable risk was estimated at 15.9% (95% CI: 13.4%-18.3%). CONCLUSION: UPF consumption is associated with a higher risk of gallstone disease, particularly consumption of sugar-sweetened beverages and artificially-sweetened beverages. A substantial proportion of this risk is potentially mediated by obesity in younger females.

5.
Plant Foods Hum Nutr ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976203

RESUMO

Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.

6.
BMC Biol ; 22(1): 138, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914996

RESUMO

The vast majority of the food we eat comes from land-based agriculture, but recent technological advances in agriculture and food technology offer the prospect of producing food using substantially less or even virtually no land. For example, indoor vertical farming can achieve very high yields of certain crops with a very small area footprint, and some foods can be synthesized from inorganic precursors in industrial facilities. Animal-based foods require substantial land per unit of protein or per calorie and switching to alternatives could reduce demand for some types of agricultural land. Plant-based meat substitutes and those produced through fermentation are widely available and becoming more sophisticated while in the future cellular agricultural may become technically and economical viable at scale. We review the state of play of these potentially disruptive technologies and explore how they may interact with other factors, both endogenous and exogenous to the food system, to affect future demand for land.


Assuntos
Agricultura , Produtos Agrícolas , Agricultura/métodos , Abastecimento de Alimentos , Tecnologia de Alimentos/métodos , Animais
7.
Foods ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928753

RESUMO

The heightened interest in healthy dietary practices and the preference for fresh, minimally processed foods with reduced additives have witnessed a significant surge among consumers. Within this context, bioactive compounds have garnered attention as potent agents offering beneficial biological effects when integrated into food formulations. Nevertheless, the efficacy of these bioactive compounds in product development encounters numerous challenges during various processing and storage stages due to their inherent instability. Addressing these limitations necessitates exploring novel technological approaches tailored explicitly to the application of bioactive compounds in food production. These approaches should not only focus on preserving the bioactive compounds within food matrices but also on retaining the sensory attributes (color, taste, and aroma) of the final food products. The impact of microalgae and their bioactive compounds on human health and well-being has been extensively reported in the literature. However, there is still a gap regarding the processing and stability of microalgal bioactive compounds to improve their application in the food industry. The main goal of the present work is to point out how to overcome technological challenges in enhancing the stability of bioactive compounds from microalgae for optimal food applications.

8.
Front Microbiol ; 15: 1405428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894974

RESUMO

Biofilms are the natural state for bacterial and fungal species. To achieve surface hygiene in commercial facilities, the presence of biofilms must be adequately considered. However, standard disinfectant and sanitizer efficacy tests required by the US-EPA and the European Committee for Standardization (CEN) do not currently consider the role of environmental biofilms. This selective review will discuss what biofilms are and why they are important. We will also cover where they are commonly found in healthcare and food processing facilities and explore how current antimicrobial test methods required for product registration do not test for the presence of biofilms. Additionally, we will explore how a lack of efficacy against biofilms may play a role in the development of antimicrobial resistance in healthcare facilities due to the exchange of mobile genetic elements that occur readily in a biofilm matrix.

9.
J Biotechnol ; 392: 1-10, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897291

RESUMO

The widespread adoption of Poly(3-hydroxybutyrate) (PHB) encounters challenges due to its higher production costs compared to conventional plastics. To overcome this obstacle, this study investigates the use of low-cost raw materials and optimized production methods. Specifically, food processing byproducts such as corn germ and corn bran were utilized as solid substrates through solid-state fermentation, enriched with molasses and cheese whey. Employing the One Factor at a Time technique, we examined the effects of substrate composition, temperature, initial substrate moisture, molasses, and cheese whey on PHB production at the flask scale. Subsequently, experiments were conducted at the bioreactor scale to evaluate the influence of aeration. In flask-scale experiments, the highest PHB yield, reaching 4.1 (g/kg Initial Dry Weight Substrate) (IDWS) after 72 hours, was achieved using a substrate comprising a 1:1 mass ratio of corn germ to corn bran supplemented with 20 % (v/w) cheese whey. Furthermore, PHB production in a 0.5-L packed-bed bioreactor yielded a maximum of 8.4 (g/kg IDWS), indicating a more than 100 % increase in yield after 72 hours, with optimal results achieved at an aeration rate of 0.5 l/(kg IDWS. h).

10.
Sci Total Environ ; 941: 173701, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844232

RESUMO

Although biomass is carbon-neutral, its use as a primary feedstock faces challenges arising from inconsistent supply chains. Therefore, it becomes crucial to explore alternatives with reliable availability. This study proposes a strategic approach for the thermochemical valorization of food processing waste, which is abundantly generated at single sites within large-scale processing plants. As a model biomass waste from the food industry, orange peel waste was particularly chosen considering its substantial consumption. To impart sustainability to the pyrolysis system, CO2, a key greenhouse gas, was introduced. As such, this study highlights elucidating the functionality of CO2 as a reactive feedstock. Specifically, CO2 has the potential to react with volatile pyrolysates evolved from orange peel waste, leading to CO formation at ≥490 °C. The formation of chemical constituents, encompassing acids, ketones, furans, phenols, and aromatics, simultaneously decreased by 15.1 area% in the presence of CO2. To activate the efficacy of CO2 at the broader temperature spectrum, supplementary measures, such as an additional heating element (700 °C) and a nickel-based catalyst (Ni/Al2O3), were implemented. These configurations promote thermal cracking of the volatiles and their reaction kinetics with CO2, representing an opportunity for enhanced carbon utilization in the form of CO. Finally, the integrated process of CO2-assisted catalytic pyrolysis and water-gas shift reaction was proposed. A potential revenue when maximizing the productivity of H2 was estimated as 2.62 billion USD, equivalent to 1.11 times higher than the results from the inert (N2) environment. Therefore, utilizing CO2 in the pyrolysis system creates a promising approach for enhancing the sustainability of the thermochemical valorization platform while maximizing carbon utilization in the form of CO.

11.
Foods ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928858

RESUMO

The increase in vegetable consumption has underlined the importance of minimizing the risks associated with microbiological contamination of fresh produce. The critical stage of the vegetable washing process has proven to be a key point for cross-contamination and the persistence of pathogens. In this context, the agri-food industry has widely adopted the use of disinfectants to reduce the bacterial load in the wash water. Therefore, we conducted laboratory-scale experiments in order to demonstrate the antimicrobial activity of disinfectants used in the wash tank of agro-food industries. Different wash water matrices of shredded lettuce, shredded cabbage, diced onion, and baby spinach were treated with sodium hypochlorite (NaClO), chlorine dioxide (ClO2), and per-oxyacetic acid (PAA) at recommended concentrations. To simulate the presence of pathogenic bacteria, a cocktail of E. coli O157:H7 was inoculated into the process water samples (PWW) to determine whether concentrations of disinfectants inhibit the pathogen or bring it to a viable non-culturable state (VBNC). Hereby, we used quantitative qPCR combined with different photo-reactive dyes such as ethidium monoazide (EMA) and propidium monoazide (PMA). The results indicated that concentrations superior to 20 ppm NaClO inhibit the pathogen E. coli O157:H7 artificially inoculated in the process water. Concentrations between 10-20 ppm ClO2 fail to induce the pathogen to the VBNC state. At concentrations of 80 ppm PAA, levels of culturable bacteria and VBNC of E. coli O157:H7 were detected in all PWWs regardless of the matrix. Subsequently, this indicates that the recommended concentrations of ClO2 and PAA for use in the fresh produce industry wash tank do not inhibit the levels of E. coli O157:H7 present in the wash water.

12.
Food Chem ; 457: 140170, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38936130

RESUMO

This study aimed to evaluate the effect of extrusion and of open-pan cooking on whole germinated and non-germinated grains of pearl millet (Pennisetum glaucum L. R. Br.), on its chemical-nutritional composition and in vitro iron bioavailability. The experimental design consisted of three flours: non-germination open-pan cooked millet flour (NGOPCMF), germination open-pan cooked millet flour (GOPCMF), and extrusion cooked millet flour (ECMF). The ECMF increased the carbohydrates, iron, manganese, diosmin, and cyanidin and decreased the total dietary fiber, resistant starch, lipids, and total vitamin E, in relation to NGOPCMF. The GOPCMF increased the lysine and vitamin C and decreased the phytate, lipids, total phenolic, total vitamin E, and riboflavin concentration, in relation to NGOPCMF. Furthermore, germinated cooked millet flour and extruded millet flour improved iron availability in vitro compared to non-germinated cooked millet flour. GOPCMF and ECMF generally preserved the chemical-nutritional composition of pearl millet and improved in vitro iron bioavailability; therefore, they are nutritionally equivalent and can be used to develop pearl millet-based products.

13.
Food Chem ; 457: 140069, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38936132

RESUMO

Mung bean is an increasingly cultivated legume. This study compared mung bean varieties 'KPS2' from Thailand (Th) and 'Imara' from Tanzania (T) with a focus on protein composition, allergenicity, and techno-functional properties. Two rounds alkaline-acid extraction were performed to produce mung bean protein isolate (MBPI - Th1/T1 and Th2/T2), supernatant (S) and protein-poor residue (PPR). Mass spectrometric analysis revealed high abundance of 8 s-vicilin and 11 s-legumin in MBPI and S. Extraction removed considerable amounts of the seed albumin allergen but increased the relative abundance of cupins in MBPI. Higher vicilin levels were found in Th1 samples, contributed to increased protein solubility above pH 6.5. Th formed stronger gels which were more stable at higher frequencies. In contrast, T proteins were structurally more flexible, leading to its improved foaming ability. This study provides the knowledge and methods for appropriate selection of mung bean varieties for various food applications.

14.
Food Sci Technol Int ; : 10820132241253301, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751123

RESUMO

Tender coconut water (TCW) is a natural drink rich in natural electrolytes, minerals, salts and sugars; it has good health benefits. But, its shelf-life is very limited because of the active nature of enzymes present in it when exposed to air. Therefore, the processing of TCW is necessary to inactivate the enzymes. So, this study aims to observe the effect of various process parameters of pulsed electric field (PEF) on the quality parameters of TCW. For the treatment of TCW with PEF, a full-factorial design of experiments was followed with process parameters such as three levels of electric field intensity (8, 12, and 16 kV/cm), two levels of pulse width (PW) (50 and 70 µs), and six levels of the number of pulses (2000 to 12,000 pulses) were considered at a constant pulse OFF time of 75 ms. PEF treatment did not significantly change pH, total soluble solids, and viscosity. However, it significantly affected vitamin C, colour, and total and reducing sugars. PEF treatment significantly enhanced the total phenolic content and antioxidant activity by 23.17% and 42.49%, respectively. At the same time, significant inactivation of polyphenol oxidase (100%) and peroxidase (60.2%) was observed at PEF treatment conditions of 16 kV/cm, 70 µs PW, and 12,000 pulses. Moreover, no significant change in the sensory acceptability of PEF-treated TCW (16 kV/cm, 70 µs PW, 12,000 pulses) when compared to the untreated/fresh TCW, which is a promising sign.

15.
Intern Emerg Med ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743129

RESUMO

Cardiovascular disease is a significant cause of morbidity and mortality among non-communicable diseases worldwide. Evidence shows that a healthy dietary pattern positively influences many risk factors of cardiometabolic health, stroke, and heart disease, supported by the effectiveness of healthy diet and lifestyles for the prevention of CVD. High quality and safety of foods are prerequisites to ensuring food security and beneficial effects. Contaminants can be present in foods mainly because of contamination from environmental sources (water, air, or soil pollution), or artificially introduced by the human. Moreover, the cross-contamination or formation during food processing, food packaging, presence or contamination by natural toxins, or use of unapproved food additives and adulterants. Numerous studies reported the association between food contaminants and cardiovascular risk by demonstrating that (1) the cross-contamination or artificial sweeteners, additives, and adulterants in food processing can be the cause of the risk for major adverse cardiovascular events and (2) environmental factors, such as heavy metals and chemical products can be also significant contributors to food contamination with a negative impact on cardiovascular systems. Furthermore, oxidative stress can be a common mechanism that mediates food contamination-associated CVDs as substantiated by studies showing impaired oxidative stress biomarkers after exposure to food contaminants.This narrative review summarizes the data suggesting how food contaminants may elicit artery injury and proposing oxidative stress as a mediator of cardiovascular damage.

16.
Foods ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790758

RESUMO

This study presents a new pneumatic air jet excitation nozzle, specifically designed for food processing applications. The device, which uses compressed air equipment and a precision solenoid valve, controls air discharge through a parametric air jet nozzle. Tests showed that the device could achieve shooting frequencies in the 40-45 Hz range, with operational pressures between 5 and 7 bar. A sensor system was used to measure the force generated by the device at different frequencies and pressures. Using the Design of Experiments (DOE) methodology, we identified optimal cavity designs for 5 and 6 bar pressures. These designs outperformed others in generating uniform force and maintaining consistent vibration voltage behavior. This highlights the efficacy of our approach in enhancing device performance under different conditions. The device's practical application in food processing was demonstrated, particularly in delicate tasks such as the selective harvesting of sensitive crops like coffee fruits. The precise vibrations generated by the device could potentially enhance harvesting efficiency while significantly reducing mechanical damage to plants. The results position the device as a compelling proof of concept, offering an alternative method for exciting biostructures in food processing. This device opens up new possibilities in agricultural and biological fields, providing a non-intrusive and practical approach to manipulating and interacting with delicate, contactless structures, with a specific focus on improving food processing efficiency and quality.

17.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790836

RESUMO

With an estimated 2.4 million cases of foodborne illnesses recorded annually in the UK alone, food safety has become a paramount concern among stakeholders. Modern technology has positioned streaming platforms as pivotal conduits for disseminating information. Channels such as YouTube offer detailed recordings of the food production process, granting consumers extensive visibility of the food journey from farm to table. This increased transparency not only promotes vigilant monitoring of food safety practices but also solicits consumer feedback regarding the public exposure to food processing videos. Based on the Theory of Planned Behavior (TPB), this study augments its framework with constructs, such as perceived trust, perceived risk, community experience, and brand identity, to evaluate Taiwan's Generation Z consumer behavioral intentions. With 226 valid responses amassed, structural equation modeling facilitated elucidation of the relationships among the constructs. This analysis yielded three salient insights. First, Generation Z's engagement with food processing videos on streaming platforms is positively correlated with their subsequent purchasing behavior. Second, enriched community experience was correlated with strengthened brand identification. Third, both perceived trust and perceived risk had a constructive impact on behavioral intentions within Gen Z's demographic data. Based on these outcomes, food industry enterprises should proactively develop and bolster community experiential value, thereby encouraging streaming platform users to transform into brand consumers and advocates.

18.
Eur J Nutr ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795126

RESUMO

PURPOSE: To determine the contribution of ultra-processed foods (UPFs) to overall macronutrient intake and their association with anthropometric measurements, and to explore the perceptions regarding UPF consumption among young adults in Puducherry, India. METHODS: This study included 630 participants from three colleges selected using multistage cluster sampling. Following the demonstration of portion estimation, dietary data from previous day were collected using a Google Form-based tool. The participant's anthropometric measures were taken. Food items were classified into NOVA groups and intake analysis was performed using DietSoft software. The participants with low and high consumption were identified and focus group discussions were conducted in each group using criterion sampling. RESULTS: Of all the participants, 178 (28.3%) were overweight or obese. UPF contributed 9.3% of total energy intake and 2.8% protein, 9.9% fat, and 9.9% carbohydrates. The most consumed UPFs were biscuits, wafers (25%), and potato chips(16.2%). No significant association was found between anthropometric measures and UPF consumption. Qualitative findings revealed four major themes, further explained using the socio-ecological framework. CONCLUSION: UPF consumption in the region was lower than that reported in other global and Indian studies. While our study did not find a significant association between UPF consumption and anthropometric measures, there is a concerning shift from traditional diets to increased UPF reliance, driven by convenience and commercial factors. Addressing this is crucial for healthier choices and combating non-communicable diseases during this pivotal life stage.

19.
Foods ; 13(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731767

RESUMO

The diversity of alcohol beverage microorganisms is of great significance for improving the brewing process and the quality of alcohol beverage products. During the process of making alcoholic beverages, a group of microorganisms, represented by yeast and lactic acid bacteria, conducts fermentation. These microorganisms have complex synergistic or competitive relationships, and the participation of different microorganisms has a major impact on the fermentation process and the flavor and aroma of the product. Strain selection is one of the key steps. Utilizing scientific breeding technology, the relationship between strains can be managed, the composition of the alcoholic beverage microbial community can be improved, and the quality and flavor of the alcoholic beverage products can be increased. Currently, research on the microbial diversity of alcohol beverages has received extensive attention. However, the selection technology for dominant bacteria in alcohol beverages has not yet been systematically summarized. To breed better-quality alcohol beverage strains and improve the quality and characteristics of wine, this paper introduces the microbial diversity characteristics of the world's three major brewing alcohols: beer, wine, and yellow wine, as well as the breeding technologies of related strains. The application of culture selection technology in the study of microbial diversity of brewed wine was reviewed and analyzed. The strain selection technology and alcohol beverage process should be combined to explore the potential application of a diverse array of alcohol beverage strains, thereby boosting the quality and flavor of the alcohol beverage and driving the sustainable development of the alcoholic beverage industry.

20.
Compr Rev Food Sci Food Saf ; 23(3): e13348, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38720587

RESUMO

Listeria monocytogenes biofilms formed on food-contact surfaces within food-processing facilities pose a significant challenge, serving as persistent sources of cross-contamination. In this review, we examined documented cases of foodborne outbreaks and recalls linked to L. monocytogenes contamination on equipment surfaces and in the food production environment, provided an overview of the prevalence and persistence of L. monocytogenes in different food-processing facilities, and discussed environmental factors influencing its biofilm formation. We further delved into antimicrobial interventions, such as chemical sanitizers, thermal treatments, biological control, physical treatment, and other approaches for controlling L. monocytogenes biofilms on food-contact surfaces. This review provides valuable insights into the persistent challenge of L. monocytogenes biofilms in food processing, offering a foundation for future research and practical strategies to enhance food safety.


Assuntos
Biofilmes , Microbiologia de Alimentos , Listeria monocytogenes , Listeria monocytogenes/fisiologia , Biofilmes/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Contaminação de Alimentos/prevenção & controle , Contaminação de Equipamentos/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...