Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Foods ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959018

RESUMO

High-pressure processing (HPP) is one of the non-thermal methods of food preservation considered to be safe but may cause an increase/decrease in virulence potential and antibiotic resistance. The aim of the present study was to evaluate the survival of L. monocytogenes isolates after high-pressure processing (200 and 400 MPa for 5 min) and to determine changes in phenotypic and genotypic antibiotic resistance and virulence after this treatment. The 400 MPa treatment was shown to be effective in reducing pathogens to safe levels; however, the potential for cell recovery during storage was observed. In addition, studies on changes in virulence indicated possibilities related to a decrease in actA gene expression, overexpression of the hly and osfX gene, and an increase in biofilm-forming ability. The studies on changes in antibiotic resistance of isolates showed that all isolates showing initial susceptibility to lincomycin, fosfomycin, trimethoprim/sulfamethoxazole, and tetracycline became resistant to these antibiotics, which was associated with an increase in the values of minimum inhibitory concentrations. An increase in the expression of antibiotic resistance genes (mainly tetA_1, tetA_3, tetC) was also observed (mainly after the application of 200 MPa pressure), which was isolate dependent. However, it is noteworthy that the induced changes were permanent, i.e., they persisted even after the restoration of optimal environmental conditions. The results presented in our work indicate that the stress occurring during HPP can affect both phenotypic and genotypic changes in the virulence and antibiotic resistance potential of pathogens isolated from food and food processing environments. The potential associated with cell recovery and persistence of changes may influence the spread of virulent isolates of pathogens with increased antibiotic resistance in the food and food processing environment.

2.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373288

RESUMO

Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) products are the most common source associated with listeriosis. L. monocytogenes virulence factors include internalin A (InlA), a surface protein known to facilitate bacterial uptake by human intestinal epithelial cells that express the E-cadherin receptor. Previous studies have demonstrated that the presence of premature stop codon (PMSC) mutations naturally occurring in inlA lead to the production of a truncated protein correlated with attenuate virulence. In this study, 849 L. monocytogenes isolates, collected from food, food-processing plants, and clinical cases in Italy, were typed and analyzed for the presence of PMSCs in the inlA gene using Sanger sequencing or whole-genome sequencing (WGS). PMSC mutations were found in 27% of the isolates, predominantly in those belonging to hypovirulent clones (ST9 and ST121). The presence of inlA PMSC mutations in food and environmental isolates was higher than that in clinical isolates. The results reveal the distribution of the virulence potential of L. monocytogenes circulating in Italy and could help to improve risk assessment approaches.


Assuntos
Listeria monocytogenes , Listeriose , Gravidez , Feminino , Humanos , Idoso , Listeria monocytogenes/genética , Virulência/genética , Microbiologia de Alimentos , Proteínas de Bactérias/genética , Códon sem Sentido
3.
Microorganisms ; 11(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37374916

RESUMO

Pseudomonas spp. are the most commonly found bacteria in food-processing environments due to properties such as a high growth rate at low temperatures, a high tolerance of antimicrobial agents, and biofilm formation. In this study, a set of Pseudomonas isolates originating from cleaned and disinfected surfaces in a salmon processing facility were screened for biofilm formation at 12 °C. A high variation in biofilm formation between the isolates was observed. Selected isolates, in both planktonic and biofilm states, were tested for resistance/tolerance to a commonly used disinfectant (peracetic acid-based) and antibiotic florfenicol. Most isolates showed a much higher tolerance in the biofilm state than in the planktonic state. In a multi-species biofilm experiment with five Pseudomonas strains with and without a Listeria monocytogenes strain, the Pseudomonas biofilm appeared to aid the survival of L. monocytogenes cells after disinfection, underscoring the importance of controlling the bacterial load in food-processing environments.

4.
Microbiol Spectr ; 11(3): e0395422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158749

RESUMO

Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Humanos , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase em Tempo Real , Listeriose/diagnóstico , Listeriose/epidemiologia , Listeriose/microbiologia , Europa (Continente)/epidemiologia , Microbiologia de Alimentos
5.
Antibiotics (Basel) ; 12(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830120

RESUMO

Listeria monocytogenes biofilms are ubiquitous in the food-processing environment, where they frequently show resistance against treatment with disinfectants such as peracetic acid (PAA) due to sub-lethal damage resulting in biofilm persistence or the formation of secondary biofilms. L. monocytogenes serovar ½a EGD-e biofilms were cultivated under continuous flow conditions at 10 °C, 22 °C, and 37 °C and exposed to industrially relevant PAA concentrations. The effect of PAA on biofilm metabolic activity and biomass was monitored in real-time using the CEMS-BioSpec system, in addition to daily measurement of biofilm-derived planktonic cell production. Biofilm-derived planktonic cell yields proved to be consistent with high yields during biofilm establishment (≥106 CFU.mL-1). The exposure of biofilms to the minimum inhibitory PAA concentration (0.16%) resulted in only a brief disruption in whole-biofilm metabolic activity and biofilm biomass accumulation. The recovered biofilm accumulated more biomass and greater activity, but cell yields remained similar. Increasing concentrations of PAA (0.50%, 1.5%, and 4.0%) had a longer-lasting inhibitory effect. Only the maximum dose resulted in a lasting inhibition of biofilm activity and biomass-a factor that needs due consideration in view of dilution in industrial settings. Better disinfection monitoring tools and protocols are required to adequately address the problem of Listeria biofilms in the food-processing environment, and more emphasis should be placed on biofilms serving as a "factory" for cell proliferation rather than only a survival mechanism.

6.
Food Microbiol ; 109: 104138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309440

RESUMO

The bacterial diversity and load on equipment in food processing facilities is constantly influenced by raw material, water, air, and staff. Despite regular cleaning and disinfection, some bacteria may persist and thereby potentially compromise food quality and safety. Little is known about how bacterial communities in a new food processing facility gradually establish themselves. Here, the development of bacterial communities in a newly opened salmon processing plant was studied from the first day and during the first year of operation. To focus on the persisting bacterial communities, surface sampling was done on strategical sampling points after cleaning and disinfection. To study the diversity dynamics, isolates from selected sampling and time points were classified by Oxford Nanopore Technology-based rep-PCR amplicon sequencing (ON-rep-seq) supplemented by 16S rRNA gene or rpoD gene sequencing (for Pseudomonas). An overall increase in bacterial numbers was only observed for food-contact surfaces in the slaughter department, but not in filleting department, on non-food contact surfaces or on the fish. Changes in temporal and spatial diversity and community composition were observed and our approach revealed highly point-specific bacterial communities.


Assuntos
Microbiologia de Alimentos , Salmão , Animais , Bactérias , Manipulação de Alimentos , RNA Ribossômico 16S/genética , Microbiota
7.
Int J Food Microbiol ; 383: 109962, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36240603

RESUMO

Whole genome sequencing (WGS) of foodborne pathogens such as Listeria monocytogenes is globally on the rise in the food industry. It provides an improvement for proactive surveillance and source-tracking and allows in-depth genetic characterization of the pathogen. In the present study, the virulence gene profile including 99 virulence genes of 767 L. monocytogenes isolates from the Norwegian meat and salmon processing industry was characterized. The isolate collection comprised 28 clonal complexes (CCs) that occur globally. We additionally determined the in vitro virulence potential for 13 major CCs in human intestinal epithelial Caco2 cells using cocktails of three to six representative isolates. Our aim was to test whether the virulence potential could be predicted from the virulence gene profiles to estimate the application potential of WGS in risk assessment in the food industry. The virulence gene profiles were highly conserved within the individual CCs and similar among phylogenetically closely related CCs. We observed a CC-associated distribution of accessory virulence genes in addition to different length polymorphisms. Furthermore, we detected different premature stop codons (PMSC) in the inlA gene, which were mainly present in CC9, CC121 and CC5 isolates. Accordingly, CC9 and CC5 were unable to invade Caco2 cells, whereas CC121 showed moderate virulence potential due to the presence of an isolate harboring full-length inlA. The highest invasion was observed for CC403 and CC415, potentially due to the presence of accessory virulence genes. We demonstrated that CC14, which harbored full-length inlA, was unable to invade Caco2 cells due to a low inlA gene expression. Reconstruction of inlA in CC9 and CC121 isolates showed that without the presence of InlA on the cell wall (as detected in the CC9 isolates), invasion into host cells failed. Our study showed that predicting the virulence potential based on genetic virulence profiles provides valuable information for risk assessment in the food industry but also has its limitations. The mere presence of a full-length inlA gene is not sufficient for virulence, but gene expression and the presence of the protein on the cell wall is required for the successful invasion of L. monocytogenes into host cells. Moreover, hypovirulent CCs like CC121 were among the most abundant human clinical isolates in Norway despite harboring a PMSC mutation in the inlA gene. In conclusion, our study highlights that combining genotypic and phenotypic data is of great importance to improve the informative value of applying WGS in the food industry.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Humanos , Virulência/genética , Células CACO-2 , Códon sem Sentido , Salmão , Microbiologia de Alimentos , Proteínas de Bactérias/genética , Sequenciamento Completo do Genoma , Carne
8.
Int J Food Microbiol ; 379: 109844, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35985077

RESUMO

In cases of outbreaks, food business operators face inspections, recall actions and delisting by retailers. This could have happened to an Austrian meat processor whose products have been associated with a cluster of seven cases of listeriosis spread over the years 2015-2017. Sequencing of clinical and foodborne isolates by public health specialists raised the suspect of a single source outbreak since all strains were of MLST 155, cgMLST 1234. Since the family-driven business was highly motivated to save their business, a crisis management scheme was applied that was agreed upon with national authorities. An end-product-based approach testing every single lot for L. monocytogenes was set into power and only negative lots were released for delivery. We combined the active food lot controls of food authorities with a Listeria environmental transmission mapping procedure. The environmental monitoring approach included 19 sampling activities during 3.5 years resulting in 1632 samples. This scheme allowed to trace and mitigate the Listeria contamination but did not jeopardize the processing of meat products. In total, 14 measures were set into power that reduced the overall Listeria occurrence after sanitation of 50-75 % (sampling event I, II) to 0.0-3.8 % (sampling events XIII to XIX). The outbreak-associated ST155/CT1234 clone was not detected in the third sampling event onwards but popped up during the sampling event VIII again. From then on, the outbreak clone ST155/CT1234 was no longer detected in the food business operator (FBO). We conclude that an intense combined investigation of food lots and environmental samples is needed to identify the source and verify that contamination levels are under control. Initially public health authorities suspected contamination of the slicer, but the monitoring approach has localized the source of ST155/CT1234 in a Schnitzel sorting machine. Other factors leading to the contamination scenario were inadequate conveyor belt hygiene. An inadequate crate washing system and an inadequate hygiene lock led to Listeria spreading between compartments. All transmission routes could be effectively interrupted. A root cause analysis and preventive maintenance program implemented in the FPE is mandatory for food processing facilities.


Assuntos
Listeria monocytogenes , Listeriose , Clonidina/análise , Surtos de Doenças/prevenção & controle , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Humanos , Listeriose/epidemiologia , Listeriose/prevenção & controle , Tipagem de Sequências Multilocus
9.
Appl Environ Microbiol ; 88(18): e0086122, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005805

RESUMO

To investigate the diversity, distribution, persistence, and prevalence of stress survival and resistance genes of Listeria monocytogenes clones dominating in food processing environments in Norway, genome sequences from 769 L. monocytogenes isolates from food industry environments, foods, and raw materials (512 of which were sequenced in the present study) were subjected to whole-genome multilocus sequence typing (wgMLST), single-nucleotide polymorphism (SNP), and comparative genomic analyses. The data set comprised isolates from nine meat and six salmon processing facilities in Norway collected over a period of three decades. The most prevalent clonal complex (CC) was CC121, found in 10 factories, followed by CC7, CC8, and CC9, found in 7 factories each. Overall, 72% of the isolates were classified as persistent, showing 20 or fewer wgMLST allelic differences toward an isolate found in the same factory in a different calendar year. Moreover, over half of the isolates (56%) showed this level of genetic similarity toward an isolate collected from a different food processing facility. These were designated as pervasive strains, defined as clusters with the same level of genetic similarity as persistent strains but isolated from different factories. The prevalence of genetic determinants associated with increased survival in food processing environments, including heavy metal and biocide resistance determinants, stress response genes, and inlA truncation mutations, showed a highly significant increase among pervasive isolates but not among persistent isolates. Furthermore, these genes were significantly more prevalent among the isolates from food processing environments compared to in isolates from natural and rural environments (n = 218) and clinical isolates (n = 111) from Norway. IMPORTANCE Listeria monocytogenes can persist in food processing environments for months to decades and spread through the food system by, e.g., contaminated raw materials. Knowledge of the distribution and diversity of L. monocytogenes is important in outbreak investigations and is essential to effectively track and control this pathogen in the food system. The present study presents a comprehensive overview of the prevalence of persistent clones and of the diversity of L. monocytogenes in Norwegian food processing facilities. The results demonstrate extensive spread of highly similar strains throughout the Norwegian food system, in that 56% of the 769 collected isolates from food processing factories belonged to clusters of L. monocytogenes identified in more than one facility. These strains were associated with an overall increase in the prevalence of plasmids and determinants of heavy metal and biocide resistance, as well as other genetic elements associated with stress survival mechanisms and persistence.


Assuntos
Desinfetantes , Listeria monocytogenes , Microbiologia de Alimentos , Prevalência , Sequenciamento Completo do Genoma/métodos
10.
Microorganisms ; 10(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889139

RESUMO

Continuous monitoring of antimicrobial resistance in bacteria along the food chain is crucial for the assessment of human health risks. Uncritical use of antibiotics in farming over years can be one of the main reasons for increased antibiotic resistance in bacteria. In this study, we aimed to classify 222 presumptive Pseudomonas isolates originating from a salmon processing environment, and to examine the phenotypic and genotypic antibiotic resistance profiles of these isolates. Of all the analyzed isolates 68% belonged to Pseudomonas, and the most abundant species were Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas gessardii, Pseudomonas libanesis, Pseudomonas lundensis, Pseudomonas cedrina and Pseudomonas extremaustralis based on sequencing of the rpoD gene. As many as 27% of Pseudomonas isolates could not be classified to species level. Phenotypic susceptibility analysis by disc diffusion method revealed a high level of resistance towards the antibiotics ampicillin, amoxicillin, cefotaxime, ceftriaxone, imipenem, and the fish farming relevant antibiotics florfenicol and oxolinic acid among the Pseudomonas isolates. Whole genome sequencing and subsequent analysis of AMR determinants by ResFinder and CARD revealed that no isolates harbored any acquired resistance determinants, but all isolates carried variants of genes known from P. aeruginosa to be involved in multidrug efflux pump systems.

11.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838158

RESUMO

Cronobacter sakazakii is an opportunistic foodborne pathogen of concern for foods having low water activity such as powdered infant formula (PIF). Its survival under desiccated stress can be attributed to its ability to adapt effectively to many different environmental stresses. Due to the high risk to neonates and its sporadic outbreaks in PIF, C. sakazakii received great attention among the scientific community, food industry and health care providers. There are many extrinsic and intrinsic factors that affect C. sakazakii survival in low-moisture foods. Moreover, short- or long-term pre-exposure to sub-lethal physiological stresses which are commonly encountered in food processing environments are reported to affect the thermal resistance of C. sakazakii. Additionally, acclimation to these stresses may render C. sakazakii resistance to antibiotics and other antimicrobial agents. This article reviews the factors and the strategies responsible for the survival and persistence of C. sakazakii in PIF. Particularly, studies focused on the influence of various factors on thermal resistance, antibiotic or antimicrobial resistance, virulence potential and stress-associated gene expression are reviewed.

12.
Annu Rev Food Sci Technol ; 13: 361-384, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34678075

RESUMO

Microorganisms exist along the food chain and impact the quality and safety of foods in both positive and negative ways. Identifying and understanding the behavior of these microbial communities enable the implementation of preventative or corrective measures in public health and food industry settings. Current culture-dependent microbial analyses are time-consuming and target only specific subsets of microbes. However, the greater use of culture-independent meta-omic approaches has the potential to facilitate a thorough characterization of the microbial communities along the food chain. Indeed, these methods have shown potential in contributing to outbreak investigation, ensuring food authenticity, assessing the spread ofantimicrobial resistance, tracking microbial dynamics during fermentation and processing, and uncovering the factors along the food chain that impact food quality and safety. This review examines the community-based approaches, and particularly the application of sequencing-based meta-omics strategies, for characterizing microbial communities along the food chain.


Assuntos
Cadeia Alimentar , Microbiota , Fermentação , Indústria Alimentícia
13.
Front Microbiol ; 12: 710085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489900

RESUMO

Listeria monocytogenes are Gram-positive, facultatively anaerobic, non-spore-forming bacteria that easily adapt to changing environmental conditions. The ability to grow at a wide range of temperatures, pH, and salinity determines the presence of the pathogen in water, sewage, soil, decaying vegetation, and animal feed. L. monocytogenes is an etiological factor of listeriosis, especially dangerous for the elderly, pregnant women, and newborns. The major source of L. monocytogenes for humans is food, including fresh and smoked products. Its high prevalence in food is associated with bacterial adaptation to the food processing environment (FPE). Since the number of listeriosis cases has been progressively increasing an efficient eradication of the pathogen from the FPE is crucial. Understanding the mechanisms of bacterial adaptation to environmental stress will significantly contribute to developing novel, effective methods of controlling L. monocytogenes in the food industry.

14.
Foods ; 10(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206833

RESUMO

Among food-borne pathogens, Listeria monocytogenes continues to pose concerns to food business operators due to its capacity to form biofilm in processing environments. Ozone may be an eco-friendly technology to control microbial contaminations, but data concerning its effect on Listeria monocytogenes biofilm are still limited. In this study, the effect of gaseous ozone at 50 ppm on planktonic cells and biofilm of reference and food-related Listeria monocytogenes strains was evaluated. Ozone caused a reduction in microbial loads of 3.7 ± 0.4 and 3.9 ± 0.4 Log10 CFU/mL after 10 and 30 min, respectively. A complete inactivation of planktonic cells after 6 h of treatment was observed. Biofilm inhibition and eradication treatments (50 ppm, 6 h) resulted in a significant decrease of the biofilm biomass for 59% of the strains tested, whilst a slight dampening of live cell loads in the biofilm state was observed. In conclusion, gaseous ozone is not sufficient to completely counteract Listeria monocytogenes biofilm, but it may be useful as an additional tool to contrast Listeria monocytogenes free-living cells and to improve the existing sanitization procedures in food processing environments.

15.
Food Microbiol ; 99: 103779, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119091

RESUMO

Genomic diversity of Listeria monocytogenes isolates from the deboning and slicing areas of three dry-cured ham processing plants was analysed. L. monocytogenes was detected in 58 out of 491 samples from the environment and equipment surfaces, all from the deboning area, with differences in prevalence among facilities. The most frequent PCR-serogroup was IIa (74.1%) followed by IIb and IIc, and only one isolate was serogroup IVb. Twenty different pulsotypes and 11 sequence types (STs) grouped into 10 clonal complexes (CCs) were determined. ST121 (CC121) and ST9 (CC9) were the most abundant. Premature stop codons (PMSC6 and PMSC19) associated with attenuated virulence were found in the inlA sequence in 7 out of 12 selected strains. CC121 strains were strong biofilm formers and some harboured the transposon Tn6188, related with increased tolerance to quaternary ammonium compounds. L. monocytogenes clones considered hypovirulent resulted predominant in the deboning areas. The clonal structure and potential virulence of the isolates could help to establish adequate control measures and cleaning protocols for the comprehensive elimination of the pathogen in dry-cured ham processing environment.


Assuntos
Equipamentos e Provisões/microbiologia , Variação Genética , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Produtos da Carne/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Biofilmes , Contaminação de Equipamentos/estatística & dados numéricos , Manipulação de Alimentos/instrumentação , Microbiologia de Alimentos/instrumentação , Genômica , Listeria monocytogenes/classificação , Listeria monocytogenes/fisiologia , Carne de Porco/microbiologia , Suínos
16.
Int J Food Microbiol ; 340: 109043, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33454520

RESUMO

The food processing environments of a newly opened meat processing facility were sampled in ten visits carried out during its first 1.5 years of activity and analyzed for the presence of Listeria monocytogenes. A total of 18 L. monocytogenes isolates were obtained from 229 samples, and their genomes were sequenced to perform comparative genomic analyses. An increase in the frequency of isolation of L. monocytogenes and in the diversity of sequence types (STs) detected was observed along time. Although the strains isolated belonged to six different STs (ST8, ST9, ST14, ST37, ST121 and ST155), ST9 was the most abundant (8 out of 18 strains). Low (0 and 2) single nucleotide polymorphism (SNP) distances were found between two pairs of ST9 strains isolated in both cases 3 months apart from the same processing room (Lm-1267 and Lm-1705, with a 2 SNPs distance in the core genome; Lm-1265 and Lm-1706, with a 0 SNPs distance), which suggests that these strains may be persistent L. monocytogenes strains in the food processing environment. Most strains showed an in silico attenuated virulence potential either through the truncation of InlA (in 67% of the isolates) or the absence of other virulence factors involved in cell adhesion or invasion. Twelve of the eighteen L. monocytogenes isolates contained a plasmid, which ranged in size from 4 to 87 Kb and harbored stress survival, in addition to heavy metals and biocides resistance determinants. Identical or highly similar plasmids were identified for various sets of L. monocytogenes ST9 isolates, which suggests the clonal expansion and persistence of plasmid-containing ST9 strains in the processing environments of the meat facility. Finally, the analysis of the L. monocytogenes genomes available in the NCBI database, and their associated metadata, evidenced that strains from ST9 are more frequently reported in Europe, linked to foods, particularly to meat and pork products, and less represented among clinical isolates than other L. monocytogenes STs. It also showed that the ST9 strains here isolated were more closely related to the European isolates, which clustered together and separated from ST9 North American isolates.


Assuntos
Contaminação de Equipamentos , Manipulação de Alimentos , Variação Genética , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Instalações Industriais e de Manufatura , Carne , Animais , Desinfetantes , Europa (Continente) , Pisos e Cobertura de Pisos , Microbiologia de Alimentos , Genes Bacterianos , Listeria monocytogenes/classificação , Listeria monocytogenes/patogenicidade , Plasmídeos , Suínos , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
17.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414794

RESUMO

Listeria monocytogenes is a pathogen mostly associated with the consumption of ready-to-eat foods and can cause severe disease and death. It can be introduced into food chains from raw materials, but often the contamination source is the food production environment, where certain clones can persist for years. In the meat chain, ST9 is one of the most commonly encountered L. monocytogenes sequence types, and for effective source tracking, the divergence and spread of ST9 must be understood. In this study, whole-genome sequencing (WGS) was used to characterize and track 252 L. monocytogenes ST9 isolates collected from four Norwegian meat processing plants between 2009 and 2017. The isolates formed distinct clusters relative to genomes found in public databases, and all but three isolates clustered into two major clonal populations. Different contamination patterns were revealed, e.g., evidence of contamination of two factories with a clone that diverged from its ancestor in the late 1990s through a common source of raw materials; breach of hygienic barriers within a factory, leading to repeated detection of two clones in the high-risk zone during a 4- to 6-year period; entry through the purchase and installation of second-hand equipment harboring a previously established clonal population; and spreading and diversification of two clones from two reservoirs within the same production room over a 9-year period. The present work provides data on the diversity of ST9, which is crucial for epidemiological investigations and highlights how WGS can be used for source tracking within food processing factories.IMPORTANCEListeria monocytogenes is a deadly foodborne pathogen that is widespread in the environment, and certain types can be established in food factories. The sequence type ST9 dominates in meat processing environments, and this work was undertaken to obtain data needed for the tracking of this subtype. By using whole-genome sequencing (WGS), we revealed the presence of cross-contamination routes between meat factories as well as within a single factory, including the spread from different reservoirs within the same room. It was also possible to estimate the time frame of persistence in the factory, as well as when and how new clones had entered. The present work contributes valuable information about the diversity of ST9 and exemplifies the potential power of WGS in food safety management, allowing the determination of relationships between strains both in an international context and locally between and within factories.


Assuntos
Microbiologia de Alimentos , Variação Genética , Listeria monocytogenes/genética , Listeriose/transmissão , Indústria de Embalagem de Carne , Carne/microbiologia , Inocuidade dos Alimentos , Tipagem de Sequências Multilocus , Noruega , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
18.
Int J Food Microbiol ; 314: 108360, 2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678600

RESUMO

Due to a higher probability for violation of hygiene measures, reconstruction work is a substantial food safety challenge for food business operators (FBOs). Here, we monitored a Listeria monocytogenes contamination scenario during a timely enduring reconstruction period that aimed at an expansion of the main building of a leading meat processing facility. Reconstruction took place while food production was ongoing. We used a longitudinal sampling scheme targeting 40 floor water drains distributed over the food processing environment (FPE) over a five year period. The population structure of L. monocytogenes was determined by PCR-serogrouping, pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). While the first sampling deciphered a baseline of contamination (45%), intensified sanitation measures decreased L. monocytogenes prevalence before commencement of work (5%). The reconstruction activities increased the prevalence of L. monocytogenes in the FPE (20.5%) and changed the population structure to a higher proportion of disease-associated genotypes (61%). During the first sampling ST121 was prevalent throughout the FPE, even in the packaging area. After the second and third sampling, following increased application of hypochlorite during sanitation, ST121 was only present in the raw material preparation area. A resilient flora was detected during three sampling events (ST8, ST9 and ST37) which might have not been exposed to daily cleaning in the floor drains. After the accomplishment of reconstruction work, the L. monocytogenes population structure shifted to the condition initially found (45% and 20.5% during the first and sixth sampling event). This paper indicates that reconstruction phases are high risk episodes for food safety in FPEs. Special precautions must be taken to avoid cross-contamination of products since reconstruction is usually ongoing for extended periods of time.


Assuntos
Monitoramento Ambiental , Manipulação de Alimentos , Microbiologia de Alimentos/estatística & dados numéricos , Listeria monocytogenes/isolamento & purificação , Carne/microbiologia , Animais , Arquitetura de Instituições de Saúde , Contaminação de Alimentos/prevenção & controle , Inocuidade dos Alimentos , Genótipo , Listeria monocytogenes/classificação , Listeria monocytogenes/genética
19.
Microbiome ; 7(1): 115, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31431193

RESUMO

BACKGROUND: Multistate foodborne disease outbreaks and recalls of apples and apple products contaminated with Listeria monocytogenes demonstrate the need for improved pathogen control in the apple supply chain. Apple processing facilities have been identified in the past as potential sources of persisting L. monocytogenes contamination. In this study, we sought to understand the composition of microbiota in built apple and other tree fruit processing environments and its association with the occurrence of the foodborne pathogen L. monocytogenes. RESULTS: Analysis of 117 samples collected from three apple and other tree fruit packing facilities (F1, F2, and F3) showed that facility F2 had a significantly higher L. monocytogenes occurrence compared to F1 and F3 (p < 0.01). The microbiota in facility F2 was distinct compared to facilities F1 and F3 as supported by the mean Shannon index for bacterial and fungal alpha diversities that was significantly lower in F2, compared to F1 and F3 (p < 0.01). Microbiota in F2 was uniquely predominated by bacterial family Pseudomonadaceae and fungal family Dipodascaceae. CONCLUSIONS: The composition and diversity of microbiota and mycobiota present in the investigated built food processing environments may be indicative of persistent contamination with L. monocytogenes. These findings support the need for further investigation of the role of the microbial communities in the persistence of L. monocytogenes to support the optimization of L. monocytogenes control strategies in the apple supply chain.


Assuntos
Ambiente Construído , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia , Malus/microbiologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Frutas/microbiologia , Microbiota , Estados Unidos
20.
Methods Mol Biol ; 1918: 105-116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30580402

RESUMO

The proper use of controllable atmospheric containers can facilitate investigations related to the survival abilities, and physiological states of key and emerging foodborne pathogens under recreated applicable food processing environmental conditions. Of particular note, the use of saturated salt solutions can efficiently control relative humidity in airtight containers. This chapter describes a practical experimental setup, with necessary prerequisites for exposing foodborne pathogens to simulated and relevant food processing environmental conditions. Subsequent analyses for studying cell physiology will also be suggested.


Assuntos
Bactérias , Contaminação de Alimentos , Microbiologia de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Animais , Bactérias/ultraestrutura , Manipulação de Alimentos , Humanos , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...