Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Talanta ; 282: 126941, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39357401

RESUMO

With the emergence of numerous food safety problems, rapid and accurate detection of histamine in food spoilage remains a challenge. To this end, we developed a simple design and easy synthesis of fluorescein-based probe FCHO to achieve specific and rapid (<1 s) quantitative detection of histamine through "imine formation" reaction. Significant enhanced fluorescence signal in response to histamine enabled our probe with high sensitivity as low as 51 nM. Utilizing the visualized fluorescence color changes of the probe as histamine increasing, we combined it with paper-based test chip to construct a color-resolved and highly selective recognition system. In addition, our proposed probe has been successfully used to visually imaging histamine changes in fish samples. Finally, for the first time, we have proved it possesses reliable ability to directly in situ imaging the distribution of histamine in whole spoiled fish. Thus, our strategy will provide great potential for monitoring food spoilage.

2.
BMC Microbiol ; 24(1): 398, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385119

RESUMO

BACKGROUND: Foodborne disease and food spoilage are the prime public health issue and food security round the globe. Significant disease outbreaks mostly linked to the existence of pathogenic bacteria that extremely challenging due to the persistence of biofilm-forming. Proteins and bacterial metabolites have been shown to have good antibacterial activity and effectively removal bacterial biofilm. Recently, bacteriophage and their encoded lytic proteins such as lysin have attracted attention as potential alternative agent to control undesirable pathogens in human body infection, increasing food safety as advance preservations and medical treatment such as phage therapy. For these reasons, the efficacy of bacteriophage and their potential in combination with bacterial metabolites from Phyllosphere and Actinomycetes bacteria (Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM crude extracts) was the aim of this present study. RESULTS: In this study, bacteriophage BC-VP (1.28 ± 0.29 × 1011 PFU/ml) and ETEC-phage-TG (8.9 ± 2.19 × 108 PFU/ml) isolated from artificial lake water from previous study showed potential activity to control Bacillus cereus (BC) and Enterotoxigenic Escherichia coli (ETEC) population. The combination of BC-VP with metabolite (P. fluorescens JB3B and S. thermocarboxydus 18PM) which were known from previous study had antibiofilm activities were able to inhibit (86.1%; 83.3%) and destruct (41%; 45.5%) biofilm formation of B. cereus respectively. Likewise, the synergy of bacteriophage ETEC-phage-TG with the same crude extract also showed promising activity against biofilm of ETEC with percentage of inhibition (81.9%; 76.4%) and percentage of destruction (54.1%; 44.4%). Application in various food, combination of BC-VP and bacterial metabolite extract (P. fluorescens JB3B; S. thermocarboxydus 18PM) were able to reduce Bacillus cereus population in mashed potato (99.6%; 99.4%) at cold temperature (4 °C) and (68.9%; 56.6%) at room temperature (28 °C), boiled pasta (99.5%; 99.4%) and (84.7%; 75.7%), also soymilk (96.9%; 96.7%) and (42.4%; 39.4%) respectively. Likewise, combination of ETEC-phage-TG and bacterial metabolite (P. fluorescens JB3B; S. thermocarboxydus 18PM) potentially reduced ETEC population after two different temperatures (4 °C and 28 °C) incubation in bean sprouts (TFTC; TFTC) and (47.5%; 49.1%), chicken meat (TFTC; TFTC) and (58.1%; 54%), also minced beef (99.5%; 99.4%) and (41.1%; 28%). GC-MS determination performed, oxalic acid, phenol, phenylethyl alcohol, N-hexadecanoic acid, and pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl was the most active compound in P. fluorescens JB3B. 2,4-Di-tert-butylphenol, phenyl acetic acid, N-Hexadecanoic acid, pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl, and Bis(2-ethylhexyl) phthalate was most active compound in the S. thermocarboxydus 18PM isolates. CONCLUSIONS: The combination of isolated bacteriophages and bacterial metabolite showed promising results to be used as biocontrol candidate to overcome biofilm formed by foodborne and food spoilage bacteria using their ability to produce antibiofilm compounds and lytic activity. In addition, this combination also potentially reduces the use or replace the drawbacks of common application such as antibiotic treatment.


Assuntos
Bacillus cereus , Bacteriófagos , Biofilmes , Escherichia coli Enterotoxigênica , Pseudomonas fluorescens , Streptomyces , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/virologia , Pseudomonas fluorescens/virologia , Pseudomonas fluorescens/efeitos dos fármacos , Streptomyces/virologia , Streptomyces/fisiologia , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/fisiologia , Bacteriófagos/fisiologia , Antibacterianos/farmacologia , Microbiologia de Alimentos
3.
ACS Sens ; 9(9): 4870-4878, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39291846

RESUMO

With the rising popularity of smart homes, there is an urgent need for devices that can perform real-time online detection of ammonia (NH3) concentrations for food quality measurement. In addition, timely warning is crucial to preventing individual deaths from NH3. However, few studies can realize continuous monitoring of NH3 with high stability and subsequent application validation. Herein, we report on an integrated device equipped with a nitrogen-doped Ti3C2Tx gas sensor that shows great potential in detecting food spoilage and NH3 leakage. The nitrogen doping results in the lattice misalignment of Ti3C2Tx, subsequently realizing effective barrier height modulation and enhanced charge transfer efficiency of nitrogen-doped Ti3C2Tx. Density functional theory calculations confirm the greatly enhanced adsorption of NH3 on nitrogen-doped Ti3C2Tx. Our work can inspire the design of efficient gas sensors for real-time and wireless detection of food spoilage and NH3 leakage.


Assuntos
Amônia , Nitrogênio , Titânio , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Amônia/análise , Nitrogênio/química , Titânio/química
4.
Anal Chim Acta ; 1320: 342992, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142769

RESUMO

Hydrogen sulfide (H2S) is a poisonous pollutant that endangers the environment, and H2S is also produced during food spoilage. Herein, we constructed a dicyanoisophorone-based near-infrared (NIR) fluorescent probe (DCID) to detect H2S. DCID exhibited significant turn-on fluorescence at 700 nm with a low limit of detection (LOD = 74 nM), large Stokes shift (220 nm), prominent selectivity, and response time (100 s) toward H2S. Importantly, the DCID probe had powerful applications in the detection of H2S in environmental samples and food spoilage. In addition, based on DCID-loaded test strips and combined a smartphone sensing platform, which provided a portable and convenient approach for the detection of H2S.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/análise , Corantes Fluorescentes/química , Limite de Detecção , Contaminação de Alimentos/análise , Espectrometria de Fluorescência , Poluentes Químicos da Água/análise , Raios Infravermelhos
5.
J Fluoresc ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110354

RESUMO

Biogenic amines, produced by bacterial enzymatic reactions in food storage or processing, serve as indicators in food processing industries to assess food quality and freshness. Biogenic amines also often associated with various health problems, including abnormal immune responses and gastrointestinal disease. Previously, salphen base complexes have been reported but still exhibited low fluorescence enhancement upon biogenic amines. This research focused on synthesizing and characterizing new Zn(II) Schiff base complex with indole sidechain to enhance the fluorescence property and exploring their binding behaviour with the biogenic amines, which were phenylethylamine and cadaverine. The Zn(II) indole Schiff base complex's structure was verified by diverse spectroscopic techniques. Then, the binding behaviours between the Zn(II) indole Schiff base complex with the biogenic amines were analyzed using UV-Vis, fluorescence spectroscopy, and Job's plot analysis. UV-Vis binding study results indicated that the synthesized complexes could bind stronger with phenylethylamine than cadaverine, with binding constant, Kb= (8.21 ± 0.58) × 104 M- 1 and (2.506 ± 0.004) × 104 M- 1 respectively. Moreover, Zn(II) indole Schiff base complex-phenylethylamine binding also generated higher fluorescence enhancement than cadaverine, which were 54% and 51% respectively. Based on Job's plot analysis, the complex and biogenic amines were bound in the ratio of 1:1. To conclude, the synthesized complex has promising potential as a sensing material for biogenic amines detection in food. The complex is recommended to be deployed in the development of solid-state fluorescence sensor for biogenic amines detection for monitoring the food spoilage in the food industry in the future.

6.
Foodborne Pathog Dis ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082182

RESUMO

Companies may have insufficient freight to fill an entire truck/trailer, and instead only pay for space that their products occupy (i.e., "less-than-truckload" shipping; LTL). As LTL delivery vehicles make multiple stops, there is an increased opportunity for product temperature abuse, which may increase microbial food safety risk. To assess LTL effects on Salmonella Typhimurium growth, commercially produced boneless skinless chicken breast fillets were inoculated and incubated under dynamic 2-h temperature cycles (i.e., 2 h at 4°C and then 2 h at 25°C), mimicking a commercially relevant LTL scenario. Bacterial kinetics were measured over 24 h and then observations compared with predictions of three published Salmonella secondary models by bias and accuracy factor measurement. One model produced more "fail-safe" estimates of Salmonella growth than the other models, although all models were defined as "acceptable." These developed tertiary models can help shippers assess supply chain performance and produce proactive food safety risk management systems.

7.
Foods ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998547

RESUMO

The large molecular weight and high viscosity of natural konjac glucomannan (KGM) limit its industrial application. Microbial degradation of low-molecular-weight KGM has health benefits and various biological functions; however, the available KGM strains used in the industry have microbial contamination and low degradation efficiencies. Therefore, exploring novelly adaptable strains is critical for industrial processes. Here, the Bacillus licheniformis Z7-1 strain isolated from decaying konjac showed high efficiency for KGM degradation. The monosaccharide composition of the degradation products had a reduced molar ratio of mannose to glucose, indicating that Z7-1 preferentially degraded glucose in KGM. The degraded component was further characterized by ESI-MS, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), and it also exhibited good antibacterial activity against various food-spoilage bacteria. Genome sequencing and zymolytic analysis revealed that abundant carbohydrate-active enzymes exist in the Z7-1 genome, with at least five types of extracellular enzymes responsible for KGM degradation, manifesting multi-enzyme synergetic action. The extracellular enzymes had significant thermal stability, indicating their potential application in industry. This study provides an alternative method for obtaining low-molecular-weight KGM with antibacterial functions and supports foundational knowledge for its development as a biocatalyst for the direct conversion of biomass polysaccharides into functional components.

8.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886121

RESUMO

Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 µg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 µg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 µg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.


Assuntos
Antibacterianos , Biofilmes , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Prunus persica , Percepção de Quorum , Prata , Percepção de Quorum/efeitos dos fármacos , Prata/farmacologia , Prata/química , Prata/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/microbiologia , Folhas de Planta/química , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Prunus persica/microbiologia , Aizoaceae/química , Fatores de Virulência/metabolismo
9.
Heliyon ; 10(11): e31527, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828285

RESUMO

This study aimed to evaluate the response efficiency of colorimetric indicator films based on carboxymethyl cellulose (CMC) incorporated with different anthocyanins [Karanda alone (CMC/AK), butterfly pea alone (CMC/AB), and a mixture of anthocyanins from Karanda and butterfly pea (CMC/AK75/AB25)] for tracking shrimp freshness during storage at different temperatures and times (4 °C for 8 days and 25 °C for 30 h). The mathematical models were also applied to predict their freshness and shelf life. The CMC/AK75/AB25 indicator film was the most sensitive and clearly changed color, which could be distinguished by the naked eye. Color changes indicated the shrimp deterioration processes: dark purple (fresh), purplish gray or gray (semi-fresh), and olive green or brown (spoilage). During shrimp storage at temperatures of 4 and 25 °C, the pH reached 7.52 and 8.14, TVB-N 35.98 and 72.72 mg/100 g, and TVC 5.75 and 7.88 log CFU/g, respectively, indicating shrimp had completely deteriorated. Furthermore, there was a positive correlation between the ΔE value of the indicator film and both TVB-N and TVC. These findings suggest that the CMC/AK75/AB25 indicator film could serve as a real-time visual indicator for tracking shrimp freshness and could enhance the guarantee of shrimp safety.

10.
Anal Bioanal Chem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878181

RESUMO

As a representative gas of food spoilage, the development of rapid hydrogen sulfide (H2S) analysis strategies for food safety control is in great demand. Despite traditional methods for H2S detection possessing great achievements, they are still incapable of meeting the requirement of portability and quantitative detection at the same time. Herein, a nanozyme catalysis pressure-powered sensing platform that enables visual quantification with the naked eye is proposed. In this methodology, Pt nanozyme inherits the catalase-like activity to facilitate the decomposition of H2O2 to O2, which can significantly improve the pressure in the closed container, further pushing the movement of indicator dye. Furthermore, H2S was found to effectively inhibit the catalytic activity of Pt nanozyme, indicating that the catalase-like activity of PtNPs may be regulated by varying concentrations of H2S. Therefore, by utilizing a self-designed pressure-powered microchannel device, the concentration of H2S was successfully converted into a distinct signal variation in distance. The effectiveness of the as-designed sensor in assessing the spoilage of red wine by H2S determination has been demonstrated. It exhibits a strong correlation between the change in dye distance and H2S concentration within the range of 1-250 µM, with a detection limit of 0.17 µM. This method is advantageous as it enhances the quantitative detection of H2S with the naked eye based on the portable pressure-powered sensing platform, as compared to traditional H2S biosensors. Such a pressure-powered distance variation platform would greatly broaden the application of H2S-based detection in food spoilage management.

11.
J Microbiol Methods ; 222: 106956, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759758

RESUMO

Flow cytometry (FCM) provides unique information on bacterial viability and physiology, allowing a real-time early warning antimicrobial and antibiofilm monitoring system for preventing the spread risk of foodborne disease. The present work used a combined culture-based and FCM approach to assess the in vitro efficacy of essential oils (EOs) from condiment plants commonly used in Mediterranean Europe (i.e., thyme EO, oregano EO, basil EO, and lemon EO) against planktonic and sessile cells of food-pathogenic Listeria monocytogenes 56 LY, and contaminant and alterative species Escherichia coli ATCC 25922 and Pseudomonas fluorescens ATCC 13525. Evaluation of the bacterial response to the increasing concentrations of natural compounds posed FCM as a crucial technique for the quantification of the live/dead, and viable but non-culturable (VBNC) cells when antimicrobial agents exert no real bactericidal action. Furthermore, the FCM results displayed higher numbers of viable bacteria expressed as Active Fluorescent Units (AFUs) with a greater level of repeatability compared with outcomes of the plate-count method. Overall, accurate counting of viable microbial cells is a critically important parameter in food microbiology, and flow cytometry provides an innovative approach with high-throughput potential for applications in the food industry as "flow microbiology".


Assuntos
Biofilmes , Escherichia coli , Citometria de Fluxo , Microbiologia de Alimentos , Listeria monocytogenes , Viabilidade Microbiana , Óleos Voláteis , Pseudomonas fluorescens , Citometria de Fluxo/métodos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas fluorescens/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Escherichia coli/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Microbiologia de Alimentos/métodos , Antibacterianos/farmacologia , Thymus (Planta)/química , Origanum/química , Testes de Sensibilidade Microbiana/métodos , Citrus/química , Ocimum basilicum/química
12.
Int J Food Microbiol ; 418: 110731, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38733637

RESUMO

Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.


Assuntos
Alicyclobacillus , Sucos de Frutas e Vegetais , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Guaiacol , Esporos Bacterianos , Alicyclobacillus/isolamento & purificação , Alicyclobacillus/genética , Alicyclobacillus/classificação , Alicyclobacillus/crescimento & desenvolvimento , Sucos de Frutas e Vegetais/microbiologia , Guaiacol/análogos & derivados , Guaiacol/metabolismo , Guaiacol/farmacologia , Frutas/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/isolamento & purificação , Microbiologia de Alimentos , Contaminação de Alimentos/análise , Brasil , Microextração em Fase Sólida , Argentina , Malus/microbiologia , Itália , Temperatura Alta , Citrus sinensis/microbiologia
13.
Mikrochim Acta ; 191(6): 354, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809328

RESUMO

A reversible optoelectronic nose is presented consisting of ten acid-base indicators incorporated into a starch-based film, covering a wide pH range. The starch substrate is odorless, biocompatible, flexible, and exhibits high tensile resistance. This optical artificial olfaction system was used to detect the early stages of food decomposition by exposing it to the volatile compounds produced during the spoialge process of three food products (beef, chicken, and pork). A smartphone was used to capture the color changes caused by intermolecular interactions between each dye and the emitted volatiles over time. Digital images were processed to generate a differential color map, which uses the observed color shifts to create a unique signature for each food product. To effectively discriminate among different samples and exposure times, we employed chemometric tools, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). This approach detects food deterioration in a practical, cost-effective, and user-friendly manner, making it suitable for smart packaging. Additionally, the use of starch-based films in the food industry is preferable due to their biocompatibility and biodegradability characteristics.


Assuntos
Nariz Eletrônico , Embalagem de Alimentos , Amido , Amido/química , Animais , Galinhas , Suínos , Bovinos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Smartphone , Análise de Componente Principal
14.
Food Sci Nutr ; 12(4): 2818-2832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628214

RESUMO

This is a comparative study to evaluate the effectiveness of six pomegranate peel extracts (PPEs) as antibacterial and antiproliferative agents. The Six PPEs were prepared using four solvent systems and each filtrate was concentrated to a gummy material to be used in the evaluation. The well-diffusion method was used to evaluate their antimicrobial activity against bacteria typically associated with food spoilage: Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, and three Bacillus species. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) was used to evaluate the cytotoxicity against colorectal carcinoma cells (HCT116), prostate adenocarcinoma (PC3), ovarian cancer cells (SKOV-3), and fibroblasts (MRC-5). The antioxidant evaluation was done using the 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) assay. The pH of the water-containing extracts was acidic and almost the same over 6 weeks. The six PPEs inhibited the bacterial growth in a comparable level to standard antibiotics. The effectiveness of each extract was dependent on the bacterial strain, and the Listeria showed a remarkable inhibition when exposed to the aqueous extract prepared at room temperature (RT). The aqueous (RT) and methanol PPEs had a significant antioxidant scavenging capability and a remarkable cytotoxic activity against the PC3 with half maximal inhibitory concentration (IC50) of 0.1 µg/mL. The boiled aqueous extract exhibited antiproliferative activity against HCT116 with an IC50 of 21.45 µg/mL. The effect on SKOV-3 and fibroblasts was insignificant. With the exception of butanol, the antioxidant screening shows an inverse correlation between the polarity of the extraction solvent and the IC50 exhibited by the PPEs. The variation in the effectiveness of PPEs is suggested to be due to variable soluble bioactive compounds that may interact differently with different cells, though water-containing extracts are promising antibacterial agents. The findings clearly show that pomegranate peel possessed the potential to be an eco-friendly novel source for natural compounds that can be implemented in the food industry as a natural antimicrobial and natural food additive to prevent foodborne illnesses.

15.
Food Chem ; 450: 139230, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626713

RESUMO

At least 10 million tons of seafood products are spoiled or damaged during transportation or storage every year worldwide. Monitoring the freshness of seafood in real time has become especially important. In this study, four machine learning algorithms were used for the first time to develop a multi-objective model that can simultaneously predict the shelf-life of five marine fish species at multiple storage temperatures using 14 features such as species, temperature, total viable count, K-value, total volatile basic­nitrogen, sensory and E-nose-GC-Ms/Ms. as inputs. Among them, the radial basis function model performed the best, and the absolute errors of all test samples were <0.5. With the optimal model as the base layer, a real-time prediction platform was developed to meet the needs of practical applications. This study successfully realized multi-objective real-time prediction with accurate prediction results, providing scientific basis and technical support for food safety and quality.


Assuntos
Peixes , Armazenamento de Alimentos , Aprendizado de Máquina , Alimentos Marinhos , Animais , Alimentos Marinhos/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura , Nariz Eletrônico
16.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611321

RESUMO

Cold atmospheric plasma (CAP) is a novel non-thermal technology with significant potential for use in meat processing to prolong shelf life. The objective of the study was to evaluate the efficiency of CAP treatment on the natural microbiota and quality traits of pork stored for 8 days at 4 °C. CAP treatment was applied by employing piezoelectric direct discharge technology to treat pork samples for 0, 3, 6, and 9 min. Reductions of approximately 0.8-1.7 log CFU/g were observed in total viable counts (TVC) and Pseudomonas spp. levels for CAP treatments longer than 3 min, immediately after treatment. A storage study revealed that CAP-treated pork (>6 min) had significantly lower levels of TVC, Pseudomonas spp., and Enterobacteriaceae throughout storage. Regarding quality traits, CAP application for longer than 3 min significantly increased water retention and yellowness and decreased meat redness compared to untreated pork. However, other parameters such as pH, tenderness, and lightness exhibited no statistically significant differences between untreated and CAP-treated pork. Lipid oxidation levels were higher only for the 9-min treatment compared to untreated pork. Our results revealed that CAP is a promising technology that can extend the microbiological shelf life of pork during refrigeration storage.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124341, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676987

RESUMO

Hydrogen sulfide (H2S) is a common toxic gas that threatens the quality and safety of environmental water and food. Herein, a new near-infrared fluorescent probe DTCM was synthesized and characterized by single crystal X-ray diffraction for sensing H2S. It exhibited a remarkable "turn-on" near-infrared (NIR) emission response at 665 nm with a remarkably massive Stokes shift of 175 nm, super-rapid detection ability (within 30 s), excellent photostability, high selectivity and sensitivity (limit of detection, LOD = 58 nM). Additionally, the probe was successfully utilized for the detection of H2S in environmental water samples. The DTCM-loaded test papers enabled convenient and real-time monitoring of H2S produced by food spoilage.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Limite de Detecção , Espectrometria de Fluorescência , Água , Sulfeto de Hidrogênio/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Água/química , Contaminação de Alimentos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise de Alimentos/métodos , Poluentes Químicos da Água/análise
18.
Int J Biol Macromol ; 268(Pt 1): 131617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631583

RESUMO

Hydrogels are a promising option for detecting food spoilage in humid conditions, but current indicators are prone to mechanical flaws, posing a concern for packaging systems that require strong mechanical properties. Herein, a double network hydrogel was prepared by polymerizing methacrylamide in a chitosan system with aluminum chloride and glycerol. The resulting hydrogel demonstrated high stretchability (strain >1500 %), notch insensitivity, excellent fatigue resistance, and exceptional anti-freezing capabilities even at -21 °C. When incorporating bromothymol blue (BB) or methyl red (MR), or mixtures of these dyes into the hydrogels as indicators, they exhibited sensitive colorimetric responses to pH and NH3 levels at different temperatures. Hydrogels immobilizing BB to MR ratios of 1:1 and 1:2 displayed clearer and more sensitive color responses when packed into chicken breast, with a sensitivity level of 1.5 ppm of total volatile basic nitrogen (TVB-N). This color response correlated positively with the accumulation of TVB-N on the packaging during storage at both 25 °C and 4 °C, providing sensitive indications of chicken breast deterioration. Overall, the developed hydrogels and indicators demonstrate enhanced performance characteristics, including excellent mechanical strength and highly NH3-sensitive color responses, making significant contributions to the food spoilage detection and intelligent packaging systems field.


Assuntos
Acrilamidas , Amônia , Galinhas , Quitosana , Hidrogéis , Hidrogéis/química , Animais , Amônia/química , Quitosana/química , Acrilamidas/química , Embalagem de Alimentos/métodos , Congelamento
19.
Microbiol Res ; 283: 127674, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461572

RESUMO

The role of lactic acid bacteria, including Lactiplantibacillus plantarum, in food spoilage is well recognized, while the behavior of these non-motile bacteria on wet surfaces, such as those encountered in food processing environments has gained relatively little attention. Here, we observed a fast colony spreading of non-motile L. plantarum spoilage isolates on wet surfaces via passive sliding using solid BHI agar media as a model. We investigated the effect of physical properties of agar hydrogel substrate on the surface spreading of six L. plantarum food isolates FBR1-6 and a model strain WCFS1, using increasing concentrations of agar from 0.25 up to 1.5% (w/v). Our results revealed that L. plantarum strain FBR2 spreads significantly on low agar concentration plates compared to the other strains studied here (with a factor of 50-60 folds higher surface coverage), due to the formation of very soft biofilms with high water content that can float on the surface. The fast-spreading of FBR2 colonies is accompanied by an increased number of cells, elongated cell morphology, and a higher amount of extracellular components. Our finding highlights colonization dynamics and the spreading capacity of non-motile bacteria on surfaces that are relatively wet, thereby revealing an additional hitherto unnoticed parameter for non-motile bacteria that may contribute to contamination of foods by fast surface spreading of these bacteria in food processing environments.


Assuntos
Microbiologia de Alimentos , Lactobacillus plantarum , Ágar , Manipulação de Alimentos , Biofilmes , Bactérias
20.
Artigo em Inglês | MEDLINE | ID: mdl-38376818

RESUMO

Foodborne illnesses and microbial food contamination are crucial concerns and still issues of great worldwide concern. Additionally, the serious health hazards associated with the use of chemical preservatives in food technology. Lysozyme (Lz) is an active protein against Gram-positive bacterial cell wall through its muramidase lytic activity; however, several authors could identify some antimicrobial peptides derived from Lz that have an exaggerated and broad-spectrum antibacterial activity. Therefore, a lysozyme peptides preparation (LzP) is developed to broaden the Lz spectrum. In this work, we investigated the potential efficacy of LzP as a novel Nutra-preservative (food origin) agent against some pathogenic and spoilage bacteria. Our results showed that LzP demonstrated only 11% of the lysozyme lytic activity. However, LzP exhibited strong antibacterial activity against Escherichia coli, Salmonella enteritidis, and Pseudomonas species, while Salmonella typhi and Aeromonas hydrophila exhibited slight resistance. Despite the lowest LzP concentration (0.1%) employed, it performs stronger antibacterial activity than weak organic acids (0.3%). Interestingly, the synergistic multi-component formulation (LzP, glycine, and citric acid) could inhibit 6 log10 cfu/ml of E. coli survival growth. The effect of heat treatment on LzP showed a decrease in its antibacterial activity at 5 and 67% by boiling at 100 °C/30 min, and autoclaving at 121 °C/15 min; respectively. On the other hand, LzP acquired stable antibacterial activity at different pH values (4-7). In conclusion, LzP would be an innovative, natural, and food origin preservative to control the growth of food poisoning and spoilage bacteria in food instead chemical one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA