Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Acta cir. bras ; Acta cir. bras;36(8): e360802, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339011

RESUMO

ABSTRACT Purpose: To evaluate the influence of atractylenolide (Atr) III on sepsis-induced lung damage. Methods: We constructed a mouse sepsis model through cecal ligation and puncture. These mice were allocated to the normal, sepsis, sepsis + Atr III-L (2 mg/kg), as well as Atr III-H (8 mg/kg) group. Lung injury and pulmonary fibrosis were accessed via hematoxylin-eosin (HE) and Masson's staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry for detecting sepsis-induced lung cell apoptosis. The contents of the inflammatory cytokines in lung tissue were measured via enzyme-linked immunosorbent assay (ELISA). Results: Atr III-H did not only reduce sepsis-induced lung injury and apoptosis level, but also curbed the secretion of inflammatory factors. Atr III-H substantially ameliorated lung function and raised Bcl-2 expression. Atr III-H eased the pulmonary fibrosis damage and Bax, caspase-3, Vanin-1 (VNN1), as well as Forkhead Box Protein O1 (FoxO1) expression. Conclusions: Atr III alleviates sepsis-mediated lung injury via inhibition of FoxO1 and VNN1 protein.


Assuntos
Animais , Camundongos , Sesquiterpenos/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Lesão Pulmonar , Proteína Forkhead Box O1/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Apoptose , Proteínas Ligadas por GPI/antagonistas & inibidores , Lactonas
2.
Circulation ; 142(9): 882-898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640834

RESUMO

BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.


Assuntos
Cardiomegalia/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Proteína Forkhead Box O1/metabolismo , Uridina Quinase/metabolismo , Animais , Cardiomegalia/genética , Proteínas Relacionadas à Folistatina/genética , Proteína Forkhead Box O1/genética , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Uridina Quinase/genética
3.
Acta Pharm Sin B ; 8(2): 188-199, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29719779

RESUMO

Arylamine N-acetyltransferase (NAT; E.C. 2.3.1.5) enzymes are responsible for the biotransformation of several arylamine and hydrazine drugs by acetylation. In this process, the acetyl group transferred to the acceptor substrate produces NAT deacetylation and, in consequence, it is susceptible of degradation. Sirtuins are protein deacetylases, dependent on nicotine adenine dinucleotide, which perform post-translational modifications on cytosolic proteins. To explore possible sirtuin participation in the enzymatic activity of arylamine NATs, the expression levels of NAT1, NAT2, SIRT1 and SIRT6 in peripheral blood mononuclear cells (PBMC) from healthy subjects were examined by flow cytometry and Western blot. The in situ activity of the sirtuins on NAT enzymatic activity was analyzed by HPLC, in the presence or absence of an agonist (resveratrol) and inhibitor (nicotinamide) of sirtuins. We detected a higher percentage of positive cells for NAT2 in comparison with NAT1, and higher numbers of SIRT1+ cells compared to SIRT6 in lymphocytes. In situ NAT2 activity in the presence of NAM inhibitors was higher than in the presence of its substrate, but not in the presence of resveratrol. In contrast, the activity of NAT1 was not affected by sirtuins. These results showed that NAT2 activity might be modified by sirtuins.

4.
Int J Cardiol ; 168(4): 3982-3990, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23870648

RESUMO

BACKGROUND: Type 2 diabetes (T2D) and heart failure (HF) are associated with high levels of skeletal muscle (SkM) oxidative stress (OS). Health benefits attributed to flavonoids have been ascribed to antioxidation. However, for flavonoids with similar antioxidant potential, end-biological effects vary widely suggesting other mechanistic venues for reducing OS. Decreases in OS may follow the modulation of key regulatory pathways including antioxidant levels (e.g. glutathione) and enzymes such as mitochondrial superoxide dismutase (SOD2) and catalase. METHODS: We examined OS-related alterations in SkM in T2D/HF patients (as compared vs. healthy controls) and evaluated the effects of three-month treatment with (-)-epicatechin (Epi) rich cocoa (ERC). To evidence Epi as the mediator of the improved OS profile we examined the effects of pure Epi (vs. water) on SkM OS regulatory systems in a mouse model of insulin resistance and contrasted results vs. normal mice. RESULTS: There were severe alterations in OS regulatory systems in T2D/HF SkM as compared with healthy controls. Treatment with ERC induced recovery in glutathione levels and decreases in the nitrotyrosilation and carbonylation of proteins. With treatment, key transcriptional factors translocate into the nucleus leading to increases in SOD2 and catalase protein expression and activity levels. In insulin resistant mice, there were alterations in muscle OS and pure Epi replicated the beneficial effects of ERC found in humans. CONCLUSIONS: Major perturbations in SkM OS can be reversed with ERC in T2D/HF patients. Epi likely mediates such effects and may provide an effective means to treat conditions associated with tissue OS.


Assuntos
Cacau , Catequina/administração & dosagem , Diabetes Mellitus Tipo 2/metabolismo , Insuficiência Cardíaca/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Idoso , Animais , Bebidas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA