Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
PeerJ ; 12: e17478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952976

RESUMO

Bolt's Farm is the name given to a series of non-hominin bearing fossil sites that have often been suggested to be some of the oldest Pliocene sites in the Cradle of Humankind, South Africa. This article reports the results of the first combined Uranium-Series and Electron Spin Resonance (US-ESR) dating of bovid teeth at Milo's Cave and Aves Cave at Bolt's Farm. Both tooth enamel fragments and tooth enamel powder ages were presented for comparison. US-ESR, EU and LU models are calculated. Overall, the powder ages are consistent with previous uranium-lead and palaeomagnetic age estimates for the Aves Cave deposit, which suggest an age between ~3.15 and 2.61 Ma and provide the first ages for Milo's Cave dates to between ~3.1 and 2.7 Ma. The final ages were not overly dependent on the models used (US-ESR, LU or EU), which all overlap within error. These ages are all consistent with the biochronological age estimate (<3.4->2.6 Ma) based on the occurrence of Stage I Metridiochoerus andrewsi. Preliminary palaeomagnetic analysis from Milo's Cave indicates a reversal takes place at the site with predominantly intermediate directions, suggesting the deposit may date to the period between ~3.03 and 3.11 Ma within error of the ESR ages. This further suggests that there are no definitive examples of palaeocave deposits at Bolt's Farm older than 3.2 Ma. This research indicates that US-ESR dating has the potential to date fossil sites in the Cradle of Humankind to over 3 Ma. However, bulk sample analysis for US-ESR dating is recommended for sites over 3 Ma.


Assuntos
Fósseis , Datação Radiométrica , Urânio , África do Sul , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Urânio/análise , Animais , Cavernas/química , Dente/química , Dente/anatomia & histologia , Esmalte Dentário/química
2.
Insects ; 15(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921097

RESUMO

Fossils can document the morphological diversification through time and date lineages, providing relevant characters are preserved. Primascena Klimaszewsi, 1997 was erected for P. subita Klimaszewsi, 1997 on the basis of a single, partly damaged male from Dominican amber. Originally assigned to Rhinocolidae: Paurocephalinae, the genus was subsequently transferred to Psyllidae: Aphalaroidinae. Recently, two undescribed species resembling the fossil species were discovered in Brazil (Mato Grosso do Sul), allowing a detailed morphological study of adults and immatures. Based on the morphological study, a revised diagnosis of the genus is provided, including the previously unknown female and fifth instar immatures. Primascena subita is redescribed and P. empsycha n. spec. and P. ruprechtiae n. spec. are formally described and illustrated. An identification key is provided for the species of Primascena. A cladistic morphological analysis supports the placement of the two new species in Primascena, and of this genus in the Aphalaroidinae. It is sister to all but Aphalaroida, though with little support. The two Brazilian species develop on Ruprechtia spp. (Polygonaceae: Eriogonoideae), an unusual psyllid host. Immatures of P. ruprechtiae are free-living on the lower leaf face and do not induce galls.

3.
Curr Biol ; 34(11): 2541-2550.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788708

RESUMO

Major ecological transitions are thought to fuel diversification, but whether they are contingent on the evolution of certain traits called key innovations1 is unclear. Key innovations are routinely invoked to explain how lineages rapidly exploit new ecological opportunities.1,2,3 However, investigations of key innovations often focus on single traits rather than considering trait combinations that collectively produce effects of interest.4 Here, we investigate the evolution of synergistic trait interactions in anglerfishes, which include one of the most species-rich vertebrate clades in the bathypelagic, or "midnight," zone of the deep sea: Ceratioidea.5 Ceratioids are the only vertebrates that possess sexual parasitism, wherein males temporarily attach or permanently fuse to females to mate.6,7 We show that the rapid transition of ancestrally benthic anglerfishes into pelagic habitats occurred during a period of major global warming 50-35 million years ago.8,9 This transition coincided with the origins of sexual parasitism, which is thought to increase the probability of successful reproduction once a mate is found in the midnight zone, Earth's largest habitat.5,6,7 Our reconstruction of the evolutionary history of anglerfishes and the loss of immune genes support that permanently fusing clades have convergently degenerated their adaptive immunity. We find that degenerate adaptive immune genes and sexual body size dimorphism, both variably present in anglerfishes outside the ceratioid radiation, likely promoted their transition into the bathypelagic zone. These results show how traits from separate physiological, morphological, and reproductive systems can interact synergistically to drive major transitions and subsequent diversification in novel environments.


Assuntos
Evolução Biológica , Oceanos e Mares , Animais , Ecossistema , Filogenia , Masculino , Feminino
4.
PeerJ ; 12: e17277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708352

RESUMO

Background: Squamata (lizards, snakes, and amphisbaenians) is a Triassic lineage with an extensive and complex biogeographic history, yet no large-scale study has reconstructed the ancestral range of early squamate lineages. The fossil record indicates a broadly Pangaean distribution by the end- Cretaceous, though many lineages (e.g., Paramacellodidae, Mosasauria, Polyglyphanodontia) subsequently went extinct. Thus, the origin and occupancy of extant radiations is unclear and may have been localized within Pangaea to specific plates, with potential regionalization to distinct Laurasian and Gondwanan landmasses during the Mesozoic in some groups. Methods: We used recent tectonic models to code extant and fossil squamate distributions occurring on nine discrete plates for 9,755 species, with Jurassic and Cretaceous fossil constraints from three extinct lineages. We modeled ancestral ranges for crown Squamata from an extant-only molecular phylogeny using a suite of biogeographic models accommodating different evolutionary processes and fossil-based node constraints from known Jurassic and Cretaceous localities. We hypothesized that the best-fit models would not support a full Pangaean distribution (i.e., including all areas) for the origin of crown Squamata, but would instead show regionalization to specific areas within the fragmenting supercontinent, likely in the Northern Hemisphere where most early squamate fossils have been found. Results: Incorporating fossil data reconstructs a localized origin within Pangaea, with early regionalization of extant lineages to Eurasia and Laurasia, while Gondwanan regionalization did not occur until the middle Cretaceous for Alethinophidia, Scolecophidia, and some crown Gekkotan lineages. While the Mesozoic history of extant squamate biogeography can be summarized as a Eurasian origin with dispersal out of Laurasia into Gondwana, their Cenozoic history is complex with multiple events (including secondary and tertiary recolonizations) in several directions. As noted by previous authors, squamates have likely utilized over-land range expansion, land-bridge colonization, and trans-oceanic dispersal. Tropical Gondwana and Eurasia hold more ancient lineages than the Holarctic (Rhineuridae being a major exception), and some asymmetries in colonization (e.g., to North America from Eurasia during the Cenozoic through Beringia) deserve additional study. Future studies that incorporate fossil branches, rather than as node constraints, into the reconstruction can be used to explore this history further.


Assuntos
Fósseis , Animais , Filogenia , Evolução Biológica , Serpentes/anatomia & histologia , Serpentes/classificação , Serpentes/genética , Lagartos/anatomia & histologia , Lagartos/genética , Lagartos/classificação , Filogeografia , Europa (Continente) , Ásia
5.
Methods Mol Biol ; 2757: 27-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668962

RESUMO

Ctenophores or comb jellies represent the first diverging lineage of extant animals - sister to all other Metazoa. As a result, they occupy a unique place in the biological sciences. Despite their importance, this diverse group of marine predators has remained relatively poorly known, with both the species and higher-level taxonomy of the phylum in need of attention. We present a checklist of the phylum based on a review of the current taxonomic literature and illustrate their diversity with images. The current classification presented remains substantially in conflict with recent phylogenetic results, and many of the taxa are not monophyletic or untested. This chapter summarizes the existing classification focusing on recognized families and genera with 185 currently accepted, extant species listed. We provide illustrative examples of ctenophore diversity covering all but one of the 33 families and 47 of the 48 genera, as well as about 25-30 undescribed species. We also list the 14 recognized ctenophore fossil species and note others that have been controversially attributed to the phylum. Analyses of unique ctenophore adaptations are critical to understanding early animal evolution and adaptive radiation of this clade of basal metazoans.


Assuntos
Ctenóforos , Filogenia , Animais , Ctenóforos/classificação , Ctenóforos/genética , Fósseis , Evolução Biológica
6.
BMC Biol ; 22(1): 96, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679748

RESUMO

BACKGROUND: The early Cambrian arthropod clade Megacheira, also referred to as great appendage arthropods, comprised a group of diminutive and elongated predators during the early Palaeozoic era, around 518 million years ago. In addition to those identified in the mid-Cambrian Burgess Shale biota, numerous species are documented in the renowned 518-million-year-old Chengjiang biota of South China. Notably, one species, Tanglangia longicaudata, has remained inadequately understood due to limited available material and technological constraints. In this study, we, for the first time, examined eight fossil specimens (six individuals) utilizing state-of-the-art µCT and computer-based 3D rendering techniques to unveil the hitherto hidden ventral and appendicular morphology of this species. RESULTS: We have identified a set of slender endopodites gradually narrowing distally, along with a leaf-shaped exopodite adorned with fringed setae along its margins, and a small putative exite attached to the basipodite. Our techniques have further revealed the presence of four pairs of biramous appendages in the head, aligning with the recently reported six-segmented head in other early euarthropods. Additionally, we have discerned two peduncle elements for the great appendage. These findings underscore that, despite the morphological diversity observed in early euarthropods, there exists similarity in appendicular morphology across various groups. In addition, we critically examine the existing literature on this taxon, disentangling previous mislabelings, mentions, descriptions, and, most importantly, illustrations. CONCLUSIONS: The µCT-based investigation of fossil material of Tanglangia longicaudata, a distinctive early Cambrian euarthropod from the renowned Chengjiang biota, enhances our comprehensive understanding of the evolutionary morphology of the Megacheira. Its overall morphological features, including large cup-shaped eyes, raptorial great appendages, and a remarkably elongated telson, suggest its potential ecological role as a crepuscular predator and adept swimmer in turbid waters.


Assuntos
Artrópodes , Fósseis , Animais , Fósseis/anatomia & histologia , Artrópodes/anatomia & histologia , China , Evolução Biológica , Biota , Microtomografia por Raio-X
7.
Biol Lett ; 20(3): 20230604, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503343

RESUMO

Lake Victoria is well known for its high diversity of endemic fish species and provides livelihoods for millions of people. The lake garnered widespread attention during the twentieth century as major environmental and ecological changes modified the fish community with the extinction of approximately 40% of endemic cichlid species by the 1980s. Suggested causal factors include anthropogenic eutrophication, fishing, and introduced non-native species but their relative importance remains unresolved, partly because monitoring data started in the 1970s when changes were already underway. Here, for the first time, we reconstruct two time series, covering the last approximately 200 years, of fish assemblage using fish teeth preserved in lake sediments. Two sediment cores from the Mwanza Gulf of Lake Victoria, were subsampled continuously at an intra-decadal resolution, and teeth were identified to major taxa: Cyprinoidea, Haplochromini, Mochokidae and Oreochromini. None of the fossils could be confidently assigned to non-native Nile perch. Our data show significant decreases in haplochromine and oreochromine cichlid fish abundances that began long before the arrival of Nile perch. Cyprinoids, on the other hand, have generally been increasing. Our study is the first to reconstruct a time series of any fish assemblage in Lake Victoria extending deeper back in time than the past 50 years, helping shed light on the processes underlying Lake Victoria's biodiversity loss.


Assuntos
Ciclídeos , Lagos , Animais , Humanos , Fatores de Tempo , Tanzânia , Biodiversidade , Espécies Introduzidas
8.
Evolution ; 78(5): 919-933, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437579

RESUMO

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage's biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth-death process and the dispersal-extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic-Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils' phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.


Assuntos
Gleiquênias , Fósseis , Filogenia , Filogeografia , Gleiquênias/genética , Gleiquênias/classificação , Evolução Biológica
9.
Evolution ; 78(5): 821-834, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437861

RESUMO

Evolutionary stasis characterizes lineages that seldom speciate and show little phenotypic change over long stretches of geological time. Although lineages that appear to exhibit evolutionary stasis are often called living fossils, no single mechanism is thought to be responsible for their slow rates of morphological evolution and low species diversity. Some analyses of molecular evolutionary rates in a handful of living fossil lineages have indicated that these clades exhibit slow rates of genomic change. Here, we investigate mechanisms of evolutionary stasis using a dataset of 1,105 exons for 481 vertebrate species. We demonstrate that two ancient clades of ray-finned fishes classically called living fossils, gars and sturgeons, exhibit the lowest rates of molecular substitution in protein-coding genes among all jawed vertebrates. Comparably low rates of evolution are observed at fourfold degenerate sites in gars and sturgeons, implying a mechanism of stasis decoupled from selection that we speculate is linked to a highly effective DNA repair apparatus. We show that two gar species last sharing common ancestry over 100 million years ago produce morphologically intermediate and fertile hybrids in the wild. This makes gars the oldest naturally hybridizing divergence among eukaryotes and supports a theoretical prediction that slow rates of nucleotide substitution across the genome slow the accumulation of genetic incompatibilities, enabling hybridization across deeply divergent lineages and slowing the rate of speciation over geological timescales. Our results help establish molecular stasis as a barrier to speciation and phenotypic innovation and provide a mechanism to explain the low species diversity in living fossil lineages.


Assuntos
Peixes , Fósseis , Animais , Peixes/genética , Genoma , Evolução Molecular , Evolução Biológica , Filogenia
10.
Biodivers Data J ; 12: e117275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469223

RESUMO

Background: The digital inventory of paleontological material stored in Chilean museums is highly relevant as it increases accessibility to information, both locally and over long distances, while reducing wear and tear on specimens caused by physical manipulation. The Fossil Collection database of the Museum of Zoology of the University of Concepción (UCC_MZUC_FOS) includes 144 records, with the main representatives being marine invertebrates of the Bivalvia, Echinoidea and Gastropoda classes. Notable species include Encopecalderensis, Hemiasterwayensis, Zygochlamyspatagonica and Retrotapesexalbidus, most of which come from important Chilean fossil sites. Material was collected between 1970 and 2017, with a large portion of it being donated and identified by Professor Emeritus Hugo I. Moyano and Dr. Alberto Larraín. Although the specimens contained in the resource offer basic collecting information, they substantially contribute to sharing knowledge on the fossils kept in the museums throughout the country, while providing data on their distribution. New information: This resource corresponds to the first publication of data on faunal fossils from a museum collection in Chile on the Global Biodiversity Information Facility (GBIF) platform, thereby enhancing the understanding and documentation of Chile's paleontological heritage and its national biodiversity.

11.
Naturwissenschaften ; 111(1): 8, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329546

RESUMO

Bioeroded carbonate clasts from a Pliocene shallow-marine succession of Almería (SE Spain, Betic Cordillera) were analysed with computed tomography (CT). This revealed the detailed 3D architecture of bioerosion structures hidden within and allowed for their ichnotaxonomic identification (14 ichnospecies of 5 ichnogenera) and quantification. Borings are produced by worms, mostly polychaetes and sipunculids dominated, followed by bivalves and lastly by sponges. The crosscutting relationship between the borings and their preservation characteristics points to a complex colonization history of the clasts with repeated bioerosive episodes interrupted by physical disturbances, including overturning and abrasion of the clasts followed by their recolonization. Our findings facilitated paleoenvironmental interpretation and can be compared to analogous modern-day ecological succession. The sharp dominance of worm borings - early successional species - may be related to frequent, periodic, physical disturbance that possibly prevented the cobble-dwelling macroboring community from being overtaken by sponges - late successional taxa. CT, hand sample and petrographic observations detected, aside from borings, other irregularly shaped pores which are interpreted to be generated by diagenetic processes including dolomitization, silicification and dissolution, representing an intraparticle moldic and moldic enlarged porosity. Boring porosity crosscutting the diagenetically altered grains suggests the later occurrence of bioerosion processes. Irregular shapes ranging from roughly spherical, elongate sub-polyhedral to amoeboid resemble morphologies produced by modern sponges. Moldic pores possibly acted as primary domiciles for boring sponges, which infested, altered and enlarged pre-existing pores as they grew (as happens in the modern), providing an example of how biological and non-biological processes interacted and together influenced endolithic palaeocommunity development.


Assuntos
Tomografia Computadorizada por Raios X , Espanha
12.
Anat Rec (Hoboken) ; 307(4): 1559-1593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197580

RESUMO

The complex constructions of land vertebrate skulls have inspired a number of functional analyses. In the present study, we provide a basic view on skull biomechanics and offer a framework for more general observations using advanced modeling approaches in the future. We concentrate our discussion on the cranial openings in the temporal skull region and work out two major, feeding-related factors that largely influence the shape of the skull. We argue that (1) the place where the most forceful biting is conducted and (2) the handling of resisting food (sideward movements) constitute the formation and shaping of either one or two temporal arcades surrounding these openings. Diversity in temporal skull anatomy among amniotes can be explained by specific modulations of these factors with different amounts of acting forces which inevitably lead to deposition or reduction of bone material. For example, forceful anterior bite favors an infratemporal bar, whereas forceful posterior bite favors formation of an upper temporal arcade. Transverse forces (inertia and resistance of seized objects) as well as neck posture also influence the shaping of the temporal region. Considering their individual skull morphotypes, we finally provide hypotheses on the feeding adaptation in a variety of major tetrapod groups. We did not consider ligaments, internal bone structure, or cranial kinesis in our considerations. Involving those in quantitative tests of our hypotheses, such as finite element system synthesis, will provide a comprehensive picture on cranial mechanics and evolution in the future.


Assuntos
Dinossauros , Crânio , Animais , Fenômenos Biomecânicos , Crânio/anatomia & histologia , Cabeça/anatomia & histologia , Dinossauros/anatomia & histologia , Força de Mordida , Fósseis
13.
Anat Rec (Hoboken) ; 307(5): 1764-1825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37726984

RESUMO

This paper is the first in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character-state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil-based perspective can provide for understanding the assembly of novel body plans.


Assuntos
Evolução Biológica , Fósseis , Animais , Filogenia , Mamíferos/fisiologia , Membro Anterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia
14.
Anat Rec (Hoboken) ; 307(5): 1826-1896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37727023

RESUMO

This paper is the second in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character-state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically "mammalian" have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies.


Assuntos
Evolução Biológica , Fósseis , Animais , Filogenia , Mamíferos/fisiologia , Membro Posterior/anatomia & histologia , Músculos , Articulação do Joelho/anatomia & histologia
16.
Geobiology ; 22(1): e12581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059419

RESUMO

The giant sulfide-oxidizing bacteria are particularly prone to preservation in the rock record, and their fossils have been identified in ancient phosphorites, cherts, and carbonates. This study reports putative spherical fossils preserved in the Devonian Hollard Mound hydrocarbon-seep deposit. Based on petrographical, mineralogical, and geochemical evidence the putative microfossils are interpreted as sulfide-oxidizing bacteria similar to the present-day genus Thiomargarita, which is also found at modern hydrocarbon seeps. The morphology, distribution, size, and occurrence of the fossilized cells show a large degree of similarity to their modern counterparts. Some of the spherical fossils adhere to worm tubes analogous to the occurrence of modern Thiomargarita on the tubes of seep-dwelling siboglinid worms. Fluorapatite crystals were identified within the fossilized cell walls, suggesting the intercellular storage of phosphorus analogous to modern Thiomargarita cells. The preservation of large sulfide-oxidizing bacteria was probably linked to changing biogeochemical processes at the Hollard Mound seep or, alternatively, may have been favored by the sulfide-oxidizing bacteria performing nitrate-dependent sulfide oxidation-a process known to induce carbonate precipitation. The presence of sulfide-oxidizing bacteria at a Devonian hydrocarbon seep highlights the similarities of past and present chemosynthesis-based ecosystems and provides valuable insight into the antiquity of biogeochemical processes and element cycling at Phanerozoic seeps.


Assuntos
Bactérias , Ecossistema , Marrocos , Hidrocarbonetos , Sulfetos , Oxirredução
17.
J Exp Bot ; 75(7): 1800-1822, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38109712

RESUMO

The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.


Assuntos
Flores , Ranunculales , Filogenia , Evolução Biológica , Folhas de Planta/genética
18.
Anat Rec (Hoboken) ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059273

RESUMO

Diploic veins are part of the circulatory system of the head. They transport venous blood and cerebrospinal fluid and are housed in diploic channels (DCs). DCs are highly variable in terms of their position, extension, and size. These parameters were hypothesized to be related to the variations in cranial vault thickness (CVT). For the first time, we analyzed the spatial relationship between CVT and DCs in a sample of eight H. neanderthalensis and H. sapiens cranial fossils. Using micro-CT scanning data, we constructed color maps of the CVT and visually inspected whether the regional thickness variation was associated with the morphology and distribution of the DC branches. The results showed that when regional bone thickness was below a certain threshold, no DCs or scattered small DC branches were present. Larger DC branches appeared only when the thickness exceeded the threshold. However, once the threshold was reached, further increases in thickness no longer resulted in more or larger DCs. This study also found that our sample of H. neanderthalensis and H. sapiens have different distribution patterns in thin areas, which may affect how their DCs connect with different branches of the middle meningeal vessels. This preliminary study provides evidence for the discussion on the interaction between the cranium, brain, and blood vessels. Future research should include more hominin fossils to better document the variation within each species and possible evolutionary trends among hominin lineages.

19.
Swiss J Palaeontol ; 142(1): 30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927422

RESUMO

The correct interpretation of fossils and their reliable taxonomic placements are fundamental for understanding the evolutionary history of biodiversity. Amber inclusions often preserve more morphological information than compression fossils, but are often partially hidden or distorted, which can impede taxonomic identification. Here, we studied four new fossil species of Darwin wasps from Baltic and Dominican amber, using micro computed tomography (micro-CT) scans and 3D reconstructions to accurately interpret and increase the availability of morphological information. We then infer their taxonomic placement in a Bayesian phylogenetic analysis by combining morphological and molecular data of extant and fossil Darwin wasps and evaluate the impact and usefulness of the additional information from micro-CT scanning. The results show that although we gained significant morphological information from micro-CT scanning, especially concerning measurements and hidden dorsal and ventral structures, this did not impact subfamily-level placement for any of the four fossils. However, micro-CT scanning improved the precision of fossil placements at the genus level, which might be key in future dating and diversification analyses. Finally, we describe the four new fossil species as Rhyssa gulliveri sp. nov. in Rhyssinae, Triclistus levii sp. nov. in Metopiinae, Firkantus freddykruegeri gen. et. sp. nov. in Pimplinae and Magnocula sarcophaga gen. et sp. nov. in Phygadeuontinae. The first two species are the first known representatives of the subfamilies Rhyssinae and Metopiinae in amber. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00294-2.

20.
PeerJ ; 11: e16049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965290

RESUMO

We critically re-examine 17 records of fossils currently assigned to the lepidopteran superfamily Bombycoidea, which includes the silk moths, emperor moths and hawk moths. These records include subfossils, compression and impression fossils, permineralizations and ichnofossils. We assess whether observable morphological features warrant their confident assignment to the superfamily. None of the examined fossils displays characters that allow unequivocal identification as Sphingidae, but three fossils and a subfossil (Mioclanis shanwangiana Zhang, Sun and Zhang, 1994, two fossil larvae, and a proboscis in asphaltum) have combinations of diagnostic features that support placement in the family. The identification of a fossil pupa as Bunaeini (Saturniidae) is well supported. The other fossils that we evaluate lack definitive bombycoid and, in several cases, even lepidopteran characters. Some of these dubious fossils have been used as calibration points in earlier studies casting doubt on the resulting age estimates. All fossil specimens reliably assigned to Bombycoidea are relatively young, the earliest fossil evidence of the superfamily dating to the middle Miocene.


Assuntos
Manduca , Mariposas , Animais , Fósseis , Filogenia , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...