Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.131
Filtrar
1.
Environ Pollut ; : 124484, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960120

RESUMO

Sundarban, a Ramsar site of India, has been encountering an ecological threat due to the presence of microplastic (MP) wastes generated from different anthropogenic sources. Clibanarius longitarsus, an intertidal hermit crab of Sundarban Biosphere Reserve, resides within the abandoned shell of a gastropod mollusc, Telescopium telescopium. We characterized and estimated the MP in the gills and gut of hermit crab, as well as in the water present in its occupied gastropod shell. The average microplastic abundance in sea water, sand and sediment were 0.175 ± 0.145 MP L-1, 42 ± 15.03 MP kg-1 and 67.63 ± 24.13 MP kg-1 respectively. The average microplastic load in hermit crab was 1.94 ± 0.59 MP crab-1, with 33.89 % and 66.11 % in gills and gut respectively. Gastropod shell water exhibited accumulation of 1.69 ± 1.43 MP L-1. Transparent and fibrous microplastics were documented as the dominant polymers of water, sand and sediment. Shell water exhibited the prevalence of green microplastics followed by transparent ones. Microscopic examination revealed microplastics with 100-300 µm size categories were dominant across all abiotic compartments. ATR-FTIR and Raman spectroscopy confirmed polyethylene and polypropylene as the prevalent polymers among the five identified polymers of biotic and abiotic components. The target group index indicated green and black as the preferable microplastics of crab. The ecological risk analysis indicated a considerable level of environmental pollution risk in Sundarban and its inhabiting organisms. This important information base may facilitate in developing a strategy of mitigation to limit the MP induced ecological risk at Sundarban Biosphere Reserve.

2.
Heliyon ; 10(12): e33221, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005893

RESUMO

Moxibustion has a long history of use as a traditional Chinese medicine therapy. Infrared radiation is an important and effective factor in moxibustion. Instead of the time-consuming and laborious process of holding moxa sticks in the hand, moxibustion devices are commonly used as moxibustion methods and tools in modern times. With the publication of the international standard of moxibustion devices (ISO18666:2021, Traditional Chinese Medicine - General requirements of moxibustion devices) published, moxibustion devices of various materials are now sold in the pharmacies and online stores. However, the influence of moxibustion devices on the therapeutic effect of moxibustion has not been studied. Therefore, this research was aimed to evaluate the infrared radiation of moxibustion devices, in order to select the moxibustion device that delivered infrared radiation closest to that of moxa stick combustion. The combination of combustion stability and infrared radiation intensity showed that cardboard tubes and silicone were better materials for moxibustion devices. In the mid-far infrared wave band, the moxibustion devices made from cardboard tubes and silica gels can better maintain the thermal effect generated by moxibustion and enable it to be more easily absorbed by the human body. The infrared radiation intensity of the cardboard moxibustion devices increased rapidly and steadily and could be maintained for the longest time. In conclusion, cardboard tubes are the better material for moxibustion devices with respect to infrared radiation.

3.
Turk J Orthod ; 37(2): 91-97, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38952245

RESUMO

Objective: The quality of orthodontic forces in aligners is mainly influenced by their mechanical properties. At present, there is insufficient information on how environmental factors affect the mechanical function of aligners, and studies have shown that patients do not pay enough attention to removing aligners while eating and drinking. Therefore, in this study, we investigated the effect of different chemicals on the mechanical properties of thermoplastic materials. Methods: In this study, 175 thermoplastic samples from Easy-Vac gasket (3A Medes, Korea) were prepared, and their chemical composition, tensile strength, and hardness before and after exposure to solutions of orange juice, Cola, chlorhexidine mouthwash, and distilled water were measured. One-Way analysis of variance (ANOVA), Tamhane's test, and Tukey's test were used for statistical analysis. Results: The tensile strength of the sheets increased with continuous exposure to orange juice and chlorhexidine mouthwash, and their hardness decreased with continuous exposure to carbonated beverages. There was no change in the chemical composition of the samples after exposure to different chemicals. Conclusion: Although these changes are statistically significant, they do not have a significant effect on the result of aligner performance. Therefore, the only concern is the cariogenicity of orange juice and Cola during treatment with aligners and the administration of chlorhexidine mouthwash.

4.
Clin Exp Dent Res ; 10(4): e926, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970232

RESUMO

OBJECTIVES: Electronic nicotine delivery systems (e-cigarette, pod, and vape) are currently among the tobacco consumption of adolescents and young adults. The aim is to show oral mucosa and saliva alterations related to vape. MATERIAL AND METHODS: A vape-user patient, presenting a white plaque in the posterior region of the hard palate, underwent clinical examination, sialometry, pH evaluation, and excisional biopsy of the white lesion. Molecular changes in saliva and vape liquid were analyzed by vibrational spectroscopy. RESULTS: The histopathological analyses showed hyperparakeratosis without dysplasia. Formaldehyde, ketones, and aromatic hydrocarbon species were identified in e-cig liquid by the FTIR. CONCLUSIONS: The use of vape may be related to the development of hyperkeratotic lesions in the oral mucosa as well as significantly modify the patient's salivary patterns as the vape liquid presents carcinogenic and cytotoxic components in its composition.


Assuntos
Mucosa Bucal , Saliva , Humanos , Saliva/química , Mucosa Bucal/patologia , Sistemas Eletrônicos de Liberação de Nicotina , Vaping/efeitos adversos , Masculino , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adulto , Palato Duro/patologia , Adulto Jovem , Biópsia
5.
J Adv Pharm Technol Res ; 15(2): 99-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903555

RESUMO

Fish oils are good sources for essential fatty acids such as omega-3 and omega-6 fatty acids needed to human growth. Indonesia is rich in fish species and among this, red snapper fish (Lutjanus sp.) can be extracted to get red snapper fish oils (RSFOs). The aim of this study was to classify and discriminate RSFO from different origins using Fourier-transform infrared (FTIR) spectra and pattern recognition techniques. All of the RSFO's FTIR spectra were very similar. The FTIR vibrations showed the presence of triglycerides as the main composition in fish oils. Principal component analysis (PCA) could separate the RSFO according to sample origin. Supervised pattern recognition of partial least square-discriminant analysis (PLS-DA) and sparse PLS-DA (sPLS-DA) successfully discriminated and classified different Lutjanus species of fish oils obtained from different origins. The vibration of functional groups at 1711, 1653, 1745, and 3012 per cm were considered for their important contributions in discriminating of Lutjanus species (variable importance in projection, variable importance in the projection score >1). Fish oils obtained from the same species were classified into the same class indicating similar chemical compositions. Among the three pattern recognition techniques used, sPLS-DA offers the best model for the discrimination and classification of Lutjanus fish oils. It can be concluded that FTIR spectroscopy in combination with the pattern recognition technique is the potential to be used for of fish oil authentication to verify the quality of the fish oils. It can be further developed as a rapid and effective method for fish oil authentication.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124683, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38908360

RESUMO

Colorectal cancer is one of the most diagnosed types of cancer in developed countries. Current diagnostic methods are partly dependent on pathologist experience and laboratories instrumentation. In this study, we used Fourier Transform Infrared (FTIR) spectroscopy in transflection mode, combined with Principal Components Analysis followed by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares - Discriminant Analysis (PLS-DA), to build a classification algorithm to diagnose colon cancer in cell samples, based on absorption spectra measured in two spectral ranges of the mid-infrared spectrum. In particular, PCA technique highlights small biochemical differences between healthy and cancerous cells: these are related to the larger lipid content in the former compared with the latter and to the larger relative amount of protein and nucleic acid components in the cancerous cells compared with the healthy ones. Comparison of the classification accuracy of PCA-LDA and PLS-DA methods applied to FTIR spectra measured in the 1000-1800 cm-1 (low wavenumber range, LWR) and 2700-3700 cm-1 (high wavenumber range, HWR) remarks that both algorithms are able to classify hidden class FTIR spectra with excellent accuracy (100 %) in both spectral regions. This is a hopeful result for clinical translation of infrared spectroscopy: in fact, it makes reliable the predictions obtained using FTIR measurements carried out only in the HWR, in which the glass slides used in clinical laboratories are transparent to IR radiation.

7.
Polymers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891424

RESUMO

Resin matrix composites (RCs) have better thermal and chemical stability, so they are widely used in engineering fields. In this study, the aging process and mechanism of two different types of resin-based three-dimensional four-way braided composites (H15 and S15) under different hygrothermal aging conditions were studied. The effect of aging behavior on the mechanical properties of RCs was also studied. Three different aging conditions were studied: Case I, 40 °C Soak; Case II, 70 °C Soak; and Case III, 70 °C-85% relative humidity (RH). It was found that the hygroscopic behavior of RCs in the process of moisture-heat aging conforms to Fick's second law. Higher temperatures and humidity lead to higher water absorption. The equilibrium hygroscopic content of H15 was 1.46% (Case II), and that of S15 was 2.51% (Case II). FT-IR revealed the different hygroscopic mechanisms of H15 and S15 in terms of aging behavior. On the whole, the infiltration behavior of water molecules is mainly exhibited in the process of wet and thermal aging. At the same time, the effect of the aging process on resin matrices was observed using SEM. It was found that the aging process led to the formation of microchannels on the substrate surface of S15, and the formation of these channels was the main reason for the better moisture absorption and lower mechanical strength of S15. At the same time, this study further found that temperature and oxygen content are the core influences on post-aging strength. The LVI experiment also showed that the structural changes and deterioration effects occurring after aging reduced the strength of the studied material.

8.
Polymers (Basel) ; 16(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891451

RESUMO

This work aimed to investigate the effects of aging on the microstructures and rheological properties of modified asphalt with a GO/SBS composite, since the styrene-butadiene-styrene block copolymer is potentially compatible with graphene oxide (GO). The GO/SBS composites, which were used as a kind of modifier, were prepared via the solution-blending method. GO/SBS composites with varying GO contents were employed to prepare the GO/SBS-compound-modified asphalt (GO/SBS-MA). Then, the GO/SBS-MA underwent PAV (pressure aging vessel) or UV (ultraviolet) aging tests to simulate different aging circumstances. The microstructures of the asphalt binders were studied using FTIR (Fourier-transform infrared spectroscopy) and AFM (atomic force microscope) tests. Moreover, DSR (dynamic shear rheometer) and BBR (bending beam rheometer) experiments were carried out to investigate the rheological properties of the GO/SBS-MA. The results showed that the addition of GO improved the high-temperature stability of the asphalt binder while slightly impairing its performance at low temperatures. GO restrained the formation of carbonyl and sulfoxide groups as well as the breakdown of C=C bonds in the polybutadiene (PB) segment, promoting the anti-aging performance of GO/SBS-MA. Furthermore, the interactions between the GO/SBS and the asphalt binder resulted in the formation of needle-like aggregates, enhancing the stability of the asphalt binder. The asphalt binders with a higher content of graphene oxide (GO) exhibited not only a better high-temperature performance, but also a better aging resistance. It was concluded that the macroscopic properties and microstructures were significantly affected by GO, and a moderate increase in the amount of GO could contribute to a better aging resistance for GO/SBS-MA.

9.
Materials (Basel) ; 17(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930317

RESUMO

This work examines the influence of the degradation behaviors of biotic and abiotic conditions on three types of biodegradable products: cups from PLA and from cellulose, and plates from sugarcane. The main objective of this study was to evaluate if biodegradable products can be degraded in composts that were stabilized by backyard composting. Furthermore, the impact of crucial abiotic parameters (temperature and pH) for the degradation behaviors process was investigated. The changes in the biopolymers were analyzed by FTIR spectroscopy. This work confirmed that abiotic and biotic conditions are important for an effective disintegration of the investigated biodegradable products. Under abiotic conditions, the degradation behaviors of PLA were observable under both tested temperature (38 and 59 °C) conditions, but only at the higher temperature was complete disintegration observed after 6 weeks of incubation in mature compost. Moreover, our research shows that some biodegradable products made from cellulose also need additional attention, especially with respect to incorporated additives, as composting could be altered and optimal conditions in composting may not be achieved. This study shows that the disintegration of biodegradable products is a comprehensive process and requires detailed evaluation during composting. The results also showed that biodegradable products can also be degraded post composting and that microplastic pollution from biodegradable polymers in soil may be removed by simple physical treatments.

10.
Front Bioeng Biotechnol ; 12: 1349473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863496

RESUMO

Pharmaceutical manufacturing is reliant upon bioprocessing approaches to generate the range of therapeutic products that are available today. The high cost of production, susceptibility to process failure, and requirement to achieve consistent, high-quality product means that process monitoring is paramount during manufacturing. Process analytic technologies (PAT) are key to ensuring high quality product is produced at all stages of development. Spectroscopy-based technologies are well suited as PAT approaches as they are non-destructive and require minimum sample preparation. This study explored the use of a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy platform, which utilises disposable internal reflection elements (IREs), as a method of upstream bioprocess monitoring. The platform was used to characterise organism health and to quantify cellular metabolites in growth media using quantification models to predict glucose and lactic acid levels both singularly and combined. Separation of the healthy and nutrient deficient cells within PC space was clearly apparent, indicating this technique could be used to characterise these classes. For the metabolite quantification, the binary models yielded R 2 values of 0.969 for glucose, 0.976 for lactic acid. When quantifying the metabolites in tandem using a multi-output partial least squares model, the corresponding R 2 value was 0.980. This initial study highlights the suitability of the platform for bioprocess monitoring and paves the way for future in-line developments.

11.
Int J Biol Macromol ; 273(Pt 1): 132877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848847

RESUMO

In this study, 16S rDNA high-throughput sequencing, Fourier transform infrared spectroscopy, and two-dimensional correlation spectroscopy techniques were used to analyze the mechanisms driving the sequence of degradation of gummy substances by the microbial community and hydrolytic enzymes during the flax dew degumming process. The results revealed that the inoculation of combined bacteria induced quorum sensing, modulated hydrolytic enzyme production, and reshaped the community structure. Lignin-degraded genera (Pseudomonas and Sphingobacterium) were enriched, and the relative abundances of pectin- and cellulose-degraded genera (Chryseobacterium) decreased in the early degumming stages. Hemicellulose-degraded genera (Brevundimonas) increased over the degumming time. Moreover, the abundance of lignin hydrolytic enzymes improved in the early stages, while the abundance of pectin hydrolytic enzymes increased at the end of degumming. Various types of functional bacteria taxa changed the sequence of substance degradation. Electron scanning microscopy and differential scanning calorimetry results indicated that the degumming, facilitated by the inoculation of combined bacteria, was nearly completed by 21 d. The fibers exhibited smoother and more intact properties, along with higher thermal stability, as indicated by a melting temperature of 71.54 °C. This study provides a reference for selecting precise degumming bacterial agents to enhance degumming efficiency.


Assuntos
Bactérias , Linho , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Linho/microbiologia , Lignina/metabolismo , Lignina/química , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Filogenia , RNA Ribossômico 16S/genética , Pectinas/metabolismo , Celulose/metabolismo
12.
Environ Pollut ; 358: 124433, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925216

RESUMO

Wastewater treatment plants (WWTPs) are considered a significant microplastic discharge source. To evaluate the amount and characteristics of microplastics discharged from WWTPs in South Korea, we selected 22 municipal WWTPs nationally and investigated microplastics at each treatment stage. The mean microplastic removal efficiency by WWTPs was >99%, and most of the microplastics were removed by sedimentation with the second clarifier during wastewater treatment. Consequently, the microplastic removal efficiency of WWTPs did not significantly differ from that of the adopted wastewater treatment technology because a second clarifier was applied in most WWTPs. However, for WWTPs operating a tertiary treatment process, the removal efficiency was enhanced compared with that of WWTPs discharging after a second clarifier. Although the microplastic removal efficiency was high by WWTP, the discharge contribution to the water environment could not be ignored because of the amount of treated wastewater, resulting in an increase of 5.8-270.9 items/m3 of microplastics in the receiving water. The characteristics of microplastics in WWTPs, including their components, shape, and size, were also evaluated. The most detected components included polytetrafluoroethylene and polyester. Most microplastics detected were categorized as fragments and fibers, while other types were hardly detected. The size of more than 70% of the microplastics detected in WWTPs was under 300 µm, implying that the size of microplastics required to control in WWTPs was much smaller than the defined size of microplastics. An evaluation of the correlation between other pollution factors and microplastic abundance did not reveal positive correlations, and microplastic occurrence was not affected by changing seasons, which may need to be evaluated with further studies. Research should also be performed on the effect of influent sources on the level of microplastic abundance and fate of ultrafine plastics in WWTPs.

13.
Methods Protoc ; 7(3)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921827

RESUMO

Timely and accurate detection and characterization of microbial threats is crucial for effective infection and outbreak management. Additionally, in food production, rapid microbe identification is indispensable for maintaining quality control and hygiene standards. Current methods for typing microbial strains often rely on labor-intensive, time-consuming, and expensive DNA- and sera-serotyping techniques, limiting their applicability in rapid-response scenarios. In this context, the IR Biotyper®, utilizing Fourier-transform infrared (FTIR) spectroscopy, offers a novel approach, providing specific spectra for fast strain typing within 3 h. This methodology article serves as a comprehensive resource for researchers and technicians aiming to utilize FTIR spectroscopy for microbial strain typing. It encompasses detailed guidelines on sample preparation, data acquisition, and analysis techniques, ensuring the generation of reliable and reproducible results. We highlight the IR Biotyper®'s rapid and accurate discrimination capabilities, showcasing its potential for real-time pathogen monitoring and source-tracking to enhance public health and food safety. We propose its integration as an early screening method, followed by more detailed analysis with whole-genome sequencing, to optimize detection accuracy and response efficiency in microbial surveillance systems.

14.
Appl Spectrosc ; : 37028241248199, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689422

RESUMO

This study first developed non-destructive and accurate methods to predict the relative contents of mixed mineral pigments in ancient Chinese wall paintings using multiple spectroscopic techniques. The colorimetry, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy, and Raman spectroscopy were employed. Analyses were conducted including color difference, spectral reflection, ATR FT-IR spectra, and Raman mapping for simulated samples (malachite-lazurite mixed with rabbit glue samples) before and after aging. Models were then established for predicting the relative pigment contents of samples using UV-Vis-NIR and ATR FT-IR spectral data with Beer-Lambert law, and mathematical methods comprising principal component analysis (PCA) and nonlinear curve fitting. In particular, PCA and empty modeling methods combined with non-negative partial least squares were developed to predict the relative pigment contents based on Raman mapping data. The results demonstrated that approaches comprising PCA, mathematical model, and empty modeling based on the spectral data were effective at predicting the relative pigment contents. The predicted results obtained using the mathematical model based on UV-Vis-NIR spectra had an error of about 2%, and the best prediction based on ATR FT-IR spectra had an error of <3.6% at 1041 cm-1. The errors for the predictions using PCA and empty modeling based on Raman mapping data were 0.01-9.30% and 0.28-7.15%, respectively. However, the predicted relative pigment contents obtained based on ATR FT-IR data combined with the Beer-Lambert law had higher errors. The findings of this study confirm the strong feasibility of using spectroscopic techniques for quantitatively analyzing mixed mineral pigments.

15.
Curr Res Struct Biol ; 7: 100138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707546

RESUMO

Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (µs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.

16.
Appl Spectrosc ; : 37028241248673, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717618

RESUMO

Oxidized organosulfur compounds and, in particular, sulfoxides are of interest as solvents in the semiconductor and pharmaceutical industry, environmental contaminants, and simulants in deactivation of chemical warfare agents. An experimental study is reported of the interaction of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (Compound 2) with diethyl sulfoxide (DESO) in pure form and in aqueous solution. First, the suitability of Compound 2 as sorbent in aqueous solution was assessed; namely, its long-term stability (up to 15 days) in liquid water has been investigated at room temperature and under stirring. Here, a novel facile spectroscopic method has been used, a periodic micro-sampling of sorbent from suspension, followed by vacuum mini-filtration and an ex situ time-dependent attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) analysis. Next, the interaction of Compound 2 with pure liquid DESO under ambient conditions was investigated, which yields the stoichiometric adsorption complex (Al-MOF-TCPPH2)1(DESO)2 denoted Compound 3. In this adsorption complex, molecules of DESO interact with the OH group and carboxylate group of the sorbent. Then, the removal of DESO from Compound 3 was assessed, using facile treatment with warm water in the micro Soxhlet apparatus followed by the ATR FT-IR analysis. Finally, Compound 2 was tested in sorption of DESO from diluted aqueous solution. In the initial step, the sorption proceeds very quickly (in <1 min the concentration of DESO decreases by about 20%) followed by a much slower step. The maximum amount of adsorbed DESO corresponds to half of the amount adsorbed from pure DESO as found by the high-performance liquid chromatography-ultraviolet detection method. This adsorbed amount corresponds to 1 mol DESO adsorbate per mol of sorbent. Porphyrin aluminum metal-organic framework Compound 2 is promising for the removal of DESO from diluted aqueous solution, and it is of interest for the removal of similar oxidized organosulfur compounds.

17.
Food Res Int ; 186: 114381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729735

RESUMO

Lipid has crucial applications in improving the quality of starchy products during heat processing. Herein, the influence of lipid modification and thermal treatment on the physicochemical properties and starch digestibility of cooked rice prepared with varied addition manipulations was investigated. Rice bran oil (RO) and medium chain triglyceride oil (MO) manipulations were performed either before (BC) or after cooking (AC). GC-MS was applied to determine the fatty acid profiles. Nutritional quality was analyzed by quantifying total phenolics, atherogenic, and thrombogenic indices. All complexes exhibited higher surface firmness, a soft core, and less adhesive. FTIR spectrum demonstrated that the guest component affected some of the dense structural attributes of V-amylose. The kinetic constant was in the range between 0.47 and 0.86 min-1 wherein before mode presented a higher value. The lowest glucose release was observed in the RO_BC sample, whereas the highest complexing index was observed in the RO_AC sample, indicating that the dense molecular configuration of complexes that could resist enzymatic digestion was more critical than the quantity of complex formation. Despite the damage caused by mass and heat transfer, physical barrier, intact granule forms, and strengthened dense structure were the central contributors affecting the digestion characteristics of lipid-starch complexes.


Assuntos
Culinária , Digestão , Oryza , Óleo de Farelo de Arroz , Amido , Triglicerídeos , Oryza/química , Amido/química , Óleo de Farelo de Arroz/química , Triglicerídeos/química , Temperatura Alta , Ácidos Graxos/análise , Ácidos Graxos/química , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Valor Nutritivo , Amilose/química , Cromatografia Gasosa-Espectrometria de Massas
18.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732993

RESUMO

Information on boll distribution within a cotton plant is critical to evaluate the adaptation and response of cotton plants to environmental and biotic stress in cotton production. Cotton researchers have applied available conventional fiber measurements, such as the high volume instrument (HVI) and advanced fiber information system (AFIS), to map the location and the timing of boll development and distribution within plants and further to determine within-plant variability of cotton fiber properties. Both HVI and AFIS require numerous cotton bolls combined for the measurement. As an alternative approach, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy was proposed to measure fiber maturity (MIR) and crystallinity (CIIR) of a sample as little as 0.5 mg lint. Extending fiber maturity and crystallinity measurement into a single boll for node-by-node mapping, FT-IR method might be advantageous due to less sampling amount compared with HVI and AFIS methods. Results showed that FT-IR technique enabled the evaluation of fiber MIR and CIIR at a boll level, which resulted in average MIR and CIIR values highly correlated with HVI micronaire (MIC) and AFIS maturity ratio (M). Hence, FT-IR technique possesses a good potential for a rapid and non-destructive node-by-node mapping of cotton boll maturity and crystallinity distribution.


Assuntos
Algoritmos , Fibra de Algodão , Gossypium , Fibra de Algodão/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Gossypium/química , Gossypium/crescimento & desenvolvimento
19.
Environ Res ; 256: 119247, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815719

RESUMO

The incorporation of organic groups into sol-gel silica materials is known to have a noticeable impact on the properties and structure of the resulting xerogels due to the combination of the properties inherent to the organic fragments (functionality and flexibility) with the mechanical and structural stability of the inorganic matrix. However, the reduction of the inorganic content in the materials could be detrimental to their thermal stability properties, limiting the range of their potential applications. Therefore, this work aims to evaluate the thermal stability of hybrid inorganic-organic silica xerogels prepared from mixtures of tetraethoxysilane and organochlorinated triethoxysilane precursors. To this end, a series of four materials with a molar percentage of organochlorinated precursor fixed at 10%, but differing in the type of organic group (chloroalkyls varying in the alkyl-chain length and chlorophenyl), has been selected as model case study. The gases and vapors released during the thermal decomposition of the samples under N2 atmosphere have been analyzed and their components determined and quantified using a thermogravimetric analyzer coupled to a Fourier-transform infrared spectrophotometer and to a gas chromatography-mass spectrometry unit. These analyses have allowed to identify up to three different thermal events for the pyrolysis of the organochlorinated xerogel materials and to elucidate the reaction pathways associated with such processes. These mechanisms have been found to be strongly dependent on the specific nature of the organic group.


Assuntos
Dióxido de Silício , Dióxido de Silício/química , Adsorção , Hidrocarbonetos Clorados/química , Géis/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Temperatura Alta , Volatilização , Cromatografia Gasosa-Espectrometria de Massas
20.
J Pharm Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750935

RESUMO

Characterization and understanding of protein higher order structure (HOS) is essential at all stages of biologics development. Here, two folding variants of a bispecific monoclonal antibody, the correctly folded form and an alternative configuration with reduced potency, were characterized by several HOS characterization techniques. Specifically, differential scanning calorimetry (DSC), circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), Raman and Raman optical activity (ROA) spectroscopy were used together to elucidate the impacts of disulfide bond scrambling in the fused scFv domains on the structure and thermal stability of the antibody. This study illustrates the importance of selecting appropriate biophysical characterization techniques based on the nature and magnitude of the HOS change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...