Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
1.
Biomed Pharmacother ; 177: 117126, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996706

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children and adolescents, in which PAX3-FOXO1 fusion gene positive patients have very poor prognosis. PAX3-FOXO1 has been identified as an independent prognostic predictor in RMS, with no currently available targeted therapeutic intervention. The novel tyrosine kinase inhibitor anlotinib exhibits a wide range of anticancer effects in multiple types of cancers; however, there have been no relevant studies regarding its application in RMS. MATERIALS AND METHODS: We investigated the effects of PAX3-FOXO1 on the therapeutic efficacy of anlotinib using the CCK-8 assay, flow cytometry, invasion assay, wound healing assay, western blotting, quantitative polymerase chain reaction(qPCR), and xenograft experiments. RNA-seq and co-immunoprecipitation assays were conducted to determine the specific mechanism by which anlotinib regulates PAX3-FOXO1 expression. RESULTS: Anlotinib effectively inhibited RMS cell proliferation and promoted apoptosis and G2/M phase arrest while impeding tumor growth in vivo. Downregulation of PAX3-FOXO1 enhances the antitumor effects of anlotinib. Anlotinib upregulates protein kinase NEK2 and increases the degradation of PAX3-FOXO1 via the ubiquitin-proteasome pathway, leading to a reduction in PAX3-FOXO1 protein levels. CONCLUSION: Anlotinib effectively inhibited the malignant progression of RMS and promoted degradation of the fusion protein PAX3-FOXO1. Anlotinib could be a targeted therapeutic approach to treat PAX3-FOXO1 fusion-positive RMS.

2.
Inflammation ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980500

RESUMO

Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-ß1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.

3.
Int J Biol Macromol ; 276(Pt 2): 133987, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032875

RESUMO

This paper aims to investigate the current situation of cancer related fibroblasts promoting malignant development of cancer through FOXO1 protein/LIF signal, and explore the strategy of cancer treatment. Recent studies have shown that the expression of the protein forkhead box O1 (FOXO1) is increased in CAFsCAFs (Cancer-associated fibroblasts). This led researchers to investigate whether FOXO1 is involved in the role of CAFs in lung cancer. The results of the study revealed that FOXO1 is indeed upregulated in CAFs, and it positively regulates the transcription of another protein called LIF. Notably, LIF is also upregulated in both CAFs and lung cancer cells. These changes in protein expression were associated with the overexpression of FOXO1 in CAFs. Conversely, silencing FOXO1 in CAFs suppressed their effects on cancer cells and transplanted tumors. The study revealed that the downregulation of LIFR in cancer cells abolished the impact of CAFs overexpressing FOXO1 on cancer cell behavior. This suggests that the FOXO1/LIF signaling pathway is involved in mediating the malignant development of lung cancer induced by CAFs.

4.
Diagn Pathol ; 19(1): 98, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020398

RESUMO

BACKGROUND: Rhabdomyosarcomas are aggressive tumors that comprise a group of morphologically similar but biologically diverse lesions. Owing to its rarity, Mixed pattern RMS (ARMS and ERMS) constitutes a diagnostic and therapeutic dilemma. CASE: Herein is presented a very rare case of mixed alveolar & embryonal rhabdomyosarcoma in the uterus of a 68-year-old woman. The wall of the uterine corpus & cervix was replaced by multiple whitish-yellow, firm nodules, measuring up to 12 cm. Microscopically, the tumor was predominantly composed of round to polygonal cells arranged in nests with alveolar pattern intermingled with hypo- & hypercellular areas of more primitive cells with scattered multinucleated giant cells seen as well. Extensive sampling failed to show epithelial elements. Immunohistochemical staining showed positive staining for vimentin, desmin, myogenin, CD56 & WT-1. However, no staining was detected for CK, LCA, CD10, ER, SMA, CD99, S100, Cyclin-D1 & Olig-2. Metastatic deposits were found in the peritoneum. The patient received postoperative chemotherapy and radiotherapy but died of systemic metastases 3 months after surgery. CONCLUSION: The rarity of this histological tumor entity and its aggressive behavior and poor prognosis grab attention to improving recognition and treatment modalities in adults.


Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Neoplasias Uterinas , Humanos , Feminino , Idoso , Neoplasias Uterinas/patologia , Biomarcadores Tumorais/análise , Evolução Fatal , Rabdomiossarcoma Embrionário/patologia , Rabdomiossarcoma Embrionário/terapia , Rabdomiossarcoma Embrionário/diagnóstico , Rabdomiossarcoma/patologia , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma Alveolar/patologia , Rabdomiossarcoma Alveolar/terapia
5.
J Mol Model ; 30(8): 260, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981921

RESUMO

CONTEXT: Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. METHODS: Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.


Assuntos
Berberina , Proteína Forkhead Box O1 , Hipoglicemiantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Berberina/química , Berberina/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/química , Humanos , Ligação Proteica , Sítios de Ligação , Ligantes
6.
Front Mol Biosci ; 11: 1419072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948079

RESUMO

Low-grade glioma (LGG) is a prevalent and lethal primary brain malignancy, with most patients succumbing to recurrence and progression. The signal transducer and activator of transcription (STAT) family has long been implicated in tumor initiation and progression. However, a comprehensive evaluation of the expression status and overall function of STAT genes in LGG remains largely unreported. In this study, we investigated the association between the expression of STAT family genes and the progression of LGG. Through a comprehensive analysis that combined bioinformatics screening and validation assays, we determined that STAT1, STAT3, and STAT5A were upregulated and contributed to the malignant progression of LGG. Notably, our findings suggest that STAT3 is a critical prognostic marker that regulates the progression of LGG. STAT3 emerged as the most significant prognostic indicator governing the advancement of LGG. Additionally, our inquiry into the STAT3-binding proteins and differentially expressed-correlated genes (DEGs) revealed that STAT3 played a pivotal role in the progression of LGG by stimulating the expression of STAT1, FOXO1, and MYC. In summary, our recent study conducted a thorough analysis of the STAT family genes and revealed that directing therapeutic interventions towards STAT3 holds potential as a viable strategy for treating patients with LGG.

7.
Phytomedicine ; 132: 155813, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38905846

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE: This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS: The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS: Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS: Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.

9.
J Neurochem ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837406

RESUMO

Wilson disease (WD) is a severely autosomal genetic disorder triggered by dysregulated copper metabolism. Autophagy and apoptosis share common modulators that process cellular death. Emerging evidences suggest that Forkhead Box O1 over-expression (FoxO1-OE) aggravates abnormal autophagy and apoptosis to induce neuronal injury. However, the underlying mechanisms remain undetermined. Herein, the aim of this study was to investigate how regulating FoxO1 affects cellular autophagy and apoptosis to attenuate neuronal injury in a well-established WD cell model, the high concentration copper sulfate (CuSO4, HC)-triggered Atp7b-/- (Knockout, KO) neural stem cell (NSC) lines. The FoxO1-OE plasmid, or siRNA-FoxO1 (siFoxO1) plasmid, or empty vector plasmid was stably transfected with recombinant lentiviral vectors into HC-induced Atp7b-/- NSCs. Toxic effects of excess deposited copper on wild-type (WT), Atp7b-/- WD mouse hippocampal NSCs were tested by Cell Counting Kit-8 (CCK-8). Subsequently, the FoxO1 expression was evaluated by immunofluorescence (IF) assay, western blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Meanwhile, the cell autophagy and apoptosis were evaluated by flow cytometry (FC), TUNEL staining, 2,7-dichlorofluorescein diacetate (DCFH-DA), JC-1, WB, and qRT-PCR. The current study demonstrated a strong rise in FoxO1 levels in HC-treated Atp7b-/- NSCs, accompanied with dysregulated autophagy and hyperactive apoptosis. Also, it was observed that cell viability was significantly decreased with the over-expressed FoxO1 in HC-treated Atp7b-/- WD model. As intended, silencing FoxO1 effectively inhibited abnormal autophagy in HC-treated Atp7b-/- NSCs, as depicted by a decline in LC3II/I, Beclin-1, ATG3, ATG7, ATG13, and ATG16, whereas simultaneously increasing P62. In addition, silencing FoxO1 suppressed apoptosis via diminishing oxidative stress (OS), and mitochondrial dysfunction in HC-induced Atp7b-/- NSCs. Collectively, these results clearly demonstrate the silencing FoxO1 has the neuroprotective role of suppressing aberrant cellular autophagy and apoptosis, which efficiently attenuates neuronal injury in WD.

10.
Mol Nutr Food Res ; 68(12): e2300912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847553

RESUMO

Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1ß, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.


Assuntos
Autofagia , Proteínas de Transporte , Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Taninos Hidrolisáveis , Fígado , Camundongos Endogâmicos C57BL , Piroptose , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Células Hep G2 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tiorredoxinas
11.
Toxicol Appl Pharmacol ; 489: 116991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871090

RESUMO

Liver fibrosis is considered an epidemic health problem due to different insults that lead to death. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, is one of the newer anti-diabetic drugs used to manage type 2 diabetes mellitus (T2DM). DAPA exerted beneficial effects in many human and rat models due to its antioxidant, anti-inflammatory and antifibrotic activities. AIM: Due to previously reported capabilities related to DAPA, we designed this study to clarify the beneficial role of DAPA in liver fibrosis triggered by common bile duct ligation (CBL) in male rats. METHODS: For 14 or 28 days after CBL procedures, DAPA was administered to the rats orally at a dose of 10 mg/kg once daily. The effects of DAPA were evaluated by assaying liver enzymes, hepatic oxidant/antioxidant parameters, serum levels of tumor necrotic factor alpha (TNF-α), and AMP-activated protein kinase (AMPK). In addition, we measured the hepatic expression of fibrosis regulator-related genes along with evaluating liver histological changes. KEY FINDINGS: DAPA successfully decreased hepatic enzymes and malondialdehyde levels, increased superoxide dismutase activity, elevated catalase levels, decreased serum levels of TNF-α, elevated serum levels of AMPK, decreased liver hydroxyproline content, upregulated Sirt1/PGC1α/FoxO1 liver gene expressions, down-regulated fibronectin-1 (Fn-1), collagen-1 genes in liver tissues, and improved the damaged liver tissues. Deteriorated biochemical parameters and histological liver insults associated with CBL were more pronounced after 28 days, but DAPA administration for 14 and 28 days showed significant improvement in most parameters and reflected positively in the histological structures of the liver. SIGNIFICANCE: The significance of this study lies in the observation that DAPA mitigated CBL-induced liver fibrosis in rats, most likely due to its antioxidant, anti-inflammatory, and antifibrotic effects. These results suggest that DAPA's beneficial impact on liver fibrosis might be attributed to its interaction with the Sirt1/AMPK/PGC1α/FoxO1 pathway, indicating a potential mechanistic action for future exploration.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos Benzidrílicos , Ducto Colédoco , Glucosídeos , Cirrose Hepática , Fígado , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Ligadura , Compostos Benzidrílicos/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Ratos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Ducto Colédoco/cirurgia , Transdução de Sinais/efeitos dos fármacos , Ratos Wistar , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Antifibróticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Proteína Forkhead Box O1
12.
Chin J Nat Med ; 22(6): 554-567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38906602

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is characterized by significant treatment resistance. Palmitic acid (PA) has shown promising antitumor properties. This study aims to elucidate the molecular mechanisms by which PA influences DLBCL progression. We quantified the expression levels of microRNAs (miRNAs), Forkhead box protein O1 (FOXO1), and DNA methyltransferase 3A (DNMT3A) in both untreated and PA-treated DLBCL tumors and cell lines. Assessments were made of cell viability, apoptosis, and autophagy-related protein expression following PA administration. Interaction analyses among miR-429, DNMT3A, and FOXO1 were conducted using luciferase reporter assays and methylation-specific (MSP) Polymerase chain reaction (PCR). After transfecting the miR-429 inhibitor, negative control (NC) inhibitor, shRNA against DNMT3A (sh-DNMT3A), shRNA negative control (sh-NC), overexpression vector for DNMT3A (oe-DNMT3A), or overexpression negative control (oe-NC), we evaluated the effects of miR-429 and DNMT3A on cell viability, mortality, and autophagy-related protein expression in PA-treated DLBCL cell lines. The efficacy of PA was also tested in vivo using DLBCL tumor-bearing mouse models. MiR-429 and FOXO1 expression levels were downregulated, whereas DNMT3A was upregulated in DLBCL compared to the control group. PA treatment was associated with enhanced autophagy, mediated by the upregulation of miR-429 and downregulation of DNMT3A. The luciferase reporter assay and MSP confirmed that miR-429 directly inhibits DNMT3A, thereby reducing FOXO1 methylation. Subsequent experiments demonstrated that PA promotes autophagy and inhibits DLBCL progression by upregulating miR-429 and modulating the DNMT3A/FOXO1 axis. In vivo PA significantly reduced the growth of xenografted tumors through its regulatory impact on the miR-429/DNMT3A/FOXO1 axis. Palmitic acid may modulate autophagy and inhibit DLBCL progression by targeting the miR-429/DNMT3A/FOXO1 signaling pathway, suggesting a novel therapeutic target for DLBCL management.


Assuntos
DNA Metiltransferase 3A , Proteína Forkhead Box O1 , Linfoma Difuso de Grandes Células B , MicroRNAs , Ácido Palmítico , MicroRNAs/genética , MicroRNAs/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Humanos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Animais , Camundongos , Ácido Palmítico/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Camundongos Nus , Masculino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos BALB C
13.
Artigo em Inglês | MEDLINE | ID: mdl-38923573

RESUMO

BACKGROUND AND AIM: Lipid metabolism disorder is the primary feature of numerous refractory chronic diseases. Fatty acid oxidation, an essential aerobic biological process, is closely related to the progression of NAFLD. The forkhead transcription factor FOXO1 has been reported to play an important role in lipid metabolism. However, the molecular mechanism through which FOXO1 regulates fatty acid oxidation remains unclear. METHODS: Transcriptomic analysis was performed to examine the cellular expression profile to determine the functional role of FOXO1 in HepG2 cells with palmitic acid (PA)-induced lipid accumulation. FOXO1-binding motifs at the promoter region of aldehyde dehydrogenase 1 family member L2 (ALDH1L2) were predicted via bioinformatic analysis and confirmed via luciferase reporter assay. Overexpression of ALDH1L2 was induced to recover the impaired fatty acid oxidation in FOXO1-knockout cells. RESULTS: Knockout of FOXO1 aggravated lipid deposition in hepatic cells. Transcriptomic profiling revealed that knockout of FOXO1 increased the expression of genes associated with fatty acid synthesis but decreased the expression of carnitine palmitoyltransferase1a (CPT1α) and adipose triglyceride lipase (ATGL), which contribute to fatty acid oxidation. Mechanistically, FOXO1 was identified as a transcription factor of ALDH1L2. Knockout of FOXO1 significantly decreased the protein expression of ALDH1L2 and CPT1α in vitro and in vivo. Furthermore, overexpression of ALDH1L2 restored fatty acid oxidation in FOXO1-knockout cells. CONCLUSION: The findings of this study indicate that FOXO1 modulates fatty acid oxidation by targeting ALDH1L2.

14.
J Physiol Biochem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878215

RESUMO

Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE-/-) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE-/- mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.

15.
Plant Foods Hum Nutr ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879661

RESUMO

Sesamol is a major bioactive component extracted from sesame seeds and has various medicinal properties. However, the effects of sesamol on sarcopenia associated with aging and obesity remains unclear. Therefore, the protective effects and underlying mechanisms of sesamol on sarcopenia was evaluated in aged and obese C57BL/6 J male mouse models fed a high fat diet and C2C12 myotubes co-treated with D-gal and PA in this study. Our in vivo data showed that sesamol activated AKT/mTOR/FoxO1 signal pathway, and then upregulated p-p70S6K and p-4EBP1 to promote myoprotein synthesis, and downregulated Atrogin-1 and MuRF1 to inhibit myoprotein degradation, thus ameliorating sarcopenia related to aging and obesity. Furthermore, our in vitro results confirmed the protective effect and aforementioned mechanisms of sesamol on sarcopenia. Collectively, sesamol could alleviate sarcopenia associated with aging and obesity via activating the AKT/mTOR/FoxO1 signal pathway. Our findings highlight the therapeutic potentials of sesamol for aging and obesity-related metabolic muscular complications.

16.
Virchows Arch ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833173

RESUMO

Rhabdomyosarcoma (RMS) of the urinary bladder in adults and elderly is an exceptionally rare neoplasm that displays poorly differentiated solid (alveolar-like) small cell pattern, frequently indistinguishable from small cell neuroendocrine carcinoma (SCNEC). However, the histogenesis of RMS and SCNEC and their inter-relationship have not been well studied and remained controversial. We herein analyzed 23 SCNEC and 3 small round cell RMS of the bladder for neuroendocrine (synaptophysin + chromogranin A) and myogenic (desmin + myogenin) marker expression and for TERT promoter mutations. In addition, the RMS cohort and one SCNEC that was revised to RMS were tested for gene fusions using targeted RNA sequencing (TruSight Illumina Panel which includes FOXO1 and most of RMS-related other genes). Overall, significant expression of myogenin and desmin was observed in one of 23 original SCNEC justifying a revised diagnosis to RMS. On the other hand, diffuse expression of synaptophysin was noted in 2 of the 4 RMS, but chromogranin A was not expressed in 3 RMS tested. TERT promoter mutations were detected in 15 of 22 (68%) SCNEC and in two of three (67%) assessable RMS cases, respectively. None of the four RMS cases had gene fusions. Our data highlights phenotypic and genetic overlap between SCNEC and RMS of the urinary bladder. High frequency of TERT promoter mutations in SCNEC is in line with their presumable urothelial origin. In addition, the presence of TERT promoter mutation in 2 of 3 RMS and lack of FOXO1 and other gene fusions in all 4 RMSs suggest a mucosal (urothelial) origin, probably representing extensive monomorphic rhabdomyoblastic transdifferentiation in SCNEC.

17.
J Agric Food Chem ; 72(23): 13382-13392, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814005

RESUMO

Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/ß-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.


Assuntos
Cádmio , Galinhas , Isotiocianatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sulfóxidos , Timo , Animais , Isotiocianatos/farmacologia , Cádmio/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Timo/efeitos dos fármacos , Timo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino
18.
Tissue Cell ; 88: 102400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759522

RESUMO

Sepsis-induced acute lung injury is a common and severe complication of sepsis, for which effective treatments are currently lacking. Previous studies have demonstrated the influence of wogonin in treating acute lung injury (ALI). However, its precise mechanism of action remains unclear. To delve deeper into the mechanisms underlying wogonin's impacts in sepsis-induced acute lung injury, we established a mouse sepsis model through cecal ligation and puncture and conducted further cell experiments using lipopolysaccharide-treated MH-S and MLE-12 cells to explore wogonin's potential mechanisms of action in treating ALI. Our results revealed that wogonin significantly increased the survival rate of mice, alleviated pulmonary pathological damage and inflammatory cell infiltration, and activated the SIRT1-FOXO1 pathway. Additionally, wogonin suppressed the release of pro-inflammatory factors by M1 macrophages and induced the activation of M2 anti-inflammatory factors. Further in vitro studies confirmed that wogonin effectively inhibited M1 macrophage polarization through the activation of the SIRT1-FOXO1 pathway, thereby mitigating lung pathological changes caused by ALI. In summary, our study demonstrated that wogonin regulated macrophage M1/M2 polarization through the activation of the SIRT1-FOXO1 pathway, thereby attenuating the inflammatory response and improving pulmonary pathological changes induced by sepsis-induced ALI. This discovery provided a solid mechanistic foundation for the therapeutic use of wogonin in sepsis-induced ALI, shedding new light on potential strategies for the treatment of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Flavanonas , Proteína Forkhead Box O1 , Macrófagos , Sepse , Transdução de Sinais , Sirtuína 1 , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Sirtuína 1/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Flavanonas/farmacologia , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos
19.
Cell Biol Int ; 48(8): 1111-1123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38741282

RESUMO

Polycystic ovary syndrome (PCOS) is the primary cause of female infertility with a lack of universal therapeutic regimen. Although osthole exhibits numerous pharmacological activities in treating various diseases, its therapeutic effect on PCOS is undiscovered. The present study found that application of osthole improved the symptoms of PCOS mice through preventing ovarian granulosa cells (GCs) production of more estrogen and alleviating the liberation of pro-inflammatory cytokine interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha. Meanwhile, osthole enhanced ovarian antioxidant capacity and alleviated intracellular reactive oxygen species (ROS) accumulation with a concurrent attenuation for oxidative stress, while intervention of antioxidant enzymic activity and glutathione (GSH) synthesis neutralized the salvation of osthole on GCs secretory disorder and chronic inflammation. Further analysis revealed that osthole restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and forkhead box O 1 (Foxo1) whose repression antagonized the amelioration of osthole on the insufficiency of antioxidant capacity and accumulation of ROS. Moreover, Nrf2 served as an intermedium to mediate the regulation of osthole on Foxo1. Additionally, osthole restricted the phosphorylation of IκBα and nuclear factor kappa B (NF-κB) subunit p65 by DHEA and weakened the transcriptional activity of NF-κB, but this effectiveness was abrogated by the obstruction of Nrf2 and Foxo1, whereas adjunction of GSH renewed the redemptive effect of osthole on NF-κB whose activation caused an invalidation of osthole in rescuing the aberration of GCs secretory function and inflammation response. Collectively, osthole might relieve the symptoms of PCOS mice via Nrf2-Foxo1-GSH-NF-κB pathway.


Assuntos
Cumarínicos , Proteína Forkhead Box O1 , Glutationa , Fator 2 Relacionado a NF-E2 , NF-kappa B , Estresse Oxidativo , Síndrome do Ovário Policístico , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Feminino , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , NF-kappa B/metabolismo , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Modelos Animais de Doenças
20.
Cell Rep ; 43(6): 114283, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796853

RESUMO

Resolving the molecular mechanisms of central B cell tolerance might unveil strategies that prevent autoimmunity. Here, using a mouse model of central B cell tolerance in which Forkhead box protein O1 (Foxo1) is either deleted or over-expressed in B cells, we show that deleting Foxo1 blocks receptor editing, curtails clonal deletion, and decreases CXCR4 expression, allowing high-avidity autoreactive B cells to emigrate to the periphery whereby they mature but remain anergic and short lived. Conversely, expression of degradation-resistant Foxo1 promotes receptor editing in the absence of self-antigen but leads to allelic inclusion. Foxo1 over-expression also restores tolerance in autoreactive B cells harboring active PI3K, revealing opposing roles of Foxo1 and PI3K in B cell selection. Overall, we show that the transcription factor Foxo1 is a major gatekeeper of central B cell tolerance and that PI3K drives positive selection of immature B cells and establishes allelic exclusion by suppressing Foxo1.


Assuntos
Alelos , Linfócitos B , Proteína Forkhead Box O1 , Tolerância Imunológica , Fosfatidilinositol 3-Quinases , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Animais , Linfócitos B/metabolismo , Linfócitos B/imunologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Receptores CXCR4/metabolismo , Receptores CXCR4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...