RESUMO
OBJECTIVES: Photo- and dual-polymerized resin-based luting agent was evaluated for elastic moduli effects on ultra-thin lithium disilicate (LD) glass-ceramic strengthening, structural reliability, and stress distribution. MATERIALS AND METHODS: One hundred-sixty LD discs (IPS e.max CAD, Ivoclar/Vivadent) were produced in ultra-thin thicknesses (half with 0.3 mm and the other half with 0.5 mm). The ultra-thin ceramic disks were coated with two different cement types (Variolink Veneer - V and Panavia F 2.0 - P). Two positive control groups were tested following hydrofluoric (HF) acid etching (LDt3, LDt5) and two negative control groups were tested for untreated ceramic (LD 3, LD 5). Biaxial flexural strength (BFS), characteristic strength (σ0) and Weibull modulus (m) were the response variables (n = 20) at the ceramic/resin cement interface (z = 0). Finite element analysis (FEA) was used to calculate maximum principal stress. Data were analyzed using two-way ANOVA, and Tukey's test. Scanning electron microscopy (SEM) was used to analyze the failed specimens using fractography and surface morphology. RESULTS: The BFS of LD at either thickness was not affected by cement types, as also demonstrated by FEA. Structural reliability significantly improved in the positive control group (LDt5). CONCLUSION: The cementation of ultra-thin LD with a resin-cement of varying elastic moduli did not influence BFS. LD surface modification by HF acid-etching increased the reliability. CLINICAL RELEVANCE: Ultra-thin anterior veneer designs made from lithium disilicate have been widely proposed and the apparent success of LD ultra-thin veneers was not influenced by the cement choice in the current studies albeit the elastic moduli luting agents used were of similar values.
Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Resistência à Flexão , Módulo de Elasticidade , Reprodutibilidade dos Testes , Teste de Materiais , Propriedades de Superfície , Porcelana Dentária/química , Cerâmica/química , Cimentos Dentários , Ácido Fluorídrico/químicaRESUMO
Abstract This study aims to evaluate the fatigue resistance of monolithic zirconia (Yz) and multilayer ceramic structures using the CAD-on technique in different thicknesses. Fifty (N=50) standardized single crowns preparations were made in fiberglass-reinforced epoxy resin (NEMA grade G10), digitalized, and restorations were machined in CAD-CAM, composing 5 groups (n= 10): Control: 1.5 mm (milled zirconia framework + manual layered porcelain); Yz monolithic 1.5 mm; Yz monolithic 1.0 mm; CAD-on 1.5 mm; and CAD-on 1.0 mm (milled zirconia framework 0.5 mm thickness bonded by a low fuse ceramic to a milled lithium disilicate layer of 1.0 mm or 0.5 mm, respectively). The G10 bases were conditioned with 10% hydrofluoric acid; the crowns were air abraded with 110 μm alumina particles; and then luted onto each other with self-adhesive resin cement. A cyclic fatigue test was performed (initial load: 400N for 10,000 cycles, frequency of 20 Hz, step size of 200N) until failure, and the data was submitted to a survival statistical analysis. No failures were observed at Yz monolithic 1.5 mm. High and similar performance was observed for Cad-On groups and Yz monolithic 1.0 mm. The control group depicted the worst behavior. The Weibull modulus of CAD-on 1.5 mm was higher than the control while being similar to the other conditions. Both the monolithic systems and the CAD-on technique showed high and similar fatigue fracture behavior and survival rates, which were also higher than the control bilayer system. Both systems reduced the occurrence of delamination failures, making them suitable for clinical use.
Resumo Este estudo teve como objetivo avaliar o comportamento à fadiga de estruturas cerâmicas monolíticas de zircônia (Yz) e multicamadas utilizando a técnica CAD-on em diferentes espessuras. Cinquenta (N=50) preparos unitários padronizados foram confeccionados em resina epóxi reforçada com fibra de vidro (NEMA grau G10), digitalizados e as restaurações usinadas em CAD-CAM, compondo 5 grupos (n= 10): Controle: 1,5 mm (estrutura de zircônia fresada + porcelana estratificada manualmente); Yz monolítica 1,5 mm; Yz monolítica 1,0 mm; CAD-on em 1,5 mm; e CAD-on 1,0 mm (estrutura de zircônia fresada com 0,5 mm de espessura ligada por uma cerâmica de baixa fusão a uma camada de dissilicato de lítio fresado de 1,0 mm ou 0,5 mm, respectivamente). As bases do G10 foram condicionadas com ácido fluorídrico a 10%; as coroas foram jateadas com partículas de alumina de 110 μm; e então cimentadas uma sobre a outra com cimento resinoso autoadesivo. Foi realizado um teste de fadiga cíclica (carga inicial: 400N para 10.000 ciclos, frequência de 20 Hz, step de 200N) até a falha, e os dados foram submetidos a uma análise estatística de sobrevivência. Nenhuma falha foi observada para Yz monolítica de 1,5 mm. Desempenho alto e semelhante foi observado para os grupos Cad-On e Yz monolítica 1,0 mm. O grupo controle apresentou o pior comportamento. O módulo de Weibull do CAD-on 1,5 mm foi maior que o grupo controle, sendo semelhante às outras condições. Tanto os sistemas monolíticos quanto a técnica CAD-on apresentaram alto e semelhante desempenho mecânico e taxas de sobrevivência, que também foram superiores ao sistema bicamada de controle. Ambos os sistemas reduziram a ocorrência de falhas de delaminação, tornando-os adequados para uso clínico.
RESUMO
OBJECTIVE: This investigation evaluated the effect of two sintering modes of a translucent zirconia (Y-TZP) on its surface roughness, topography, phase-transformation (t â m), translucency and biaxial flexure fatigue strength. MATERIALS AND METHODS: To do so, 50 Y-TZP discs (Ø = 15 mm; thickness = 1.2 mm; IPS e.max ZirCAD LT) were prepared and divided into two groups: Standard mode (SM) and Fast mode (FM). Staircase fatigue testing was performed (piston-on-three balls set-up, ISO 6872:2015), as well as surface roughness, profilometry, scanning electron microscopy (SEM-FEG), energy dispersive X-ray spectroscopy (EDX), phase transformation (t â m) using X-ray diffraction analysis (XRD), translucency parameter analysis (TP and TP00 ) and fractography. RESULTS: The results showed no statistical significant differences for roughness parameters (p > 0.05, SM: Ra = 0.13 ± 0.02, Rz = 1.21 ± 0.26 and RSm = 24.91 ± 2.19; FM: Ra = 0.14 ± 0.03, Rz = 1.32 ± 0.25 and RSm = 24.68 ± 2.16) or flexural fatigue strength (SM: 512 (464-560) MPa; FM: 542 (472-611) MPa) between the groups. In addition, similarity in surface morphological features (SEM and profilometry), composition and phases (EDX and XRD) was observed between the firing protocols. Fractography showed that the failure origin occurred on the tensile side. Sintering mode did not affect the TP (F = 0.001, p = 0.97) and TP00 (F = 0.12, p = 0.72). CONCLUSIONS: Therefore, the fast-sintering mode is suggested as a viable alternative to the standard mode since it does not influence the evaluated surface morphology, microstructure, fatigue strength and translucency of a translucent monolithic zirconia. CLINICAL SIGNIFICANCE: The fast sintering mode is a viable alternative for zirconia without compromising its topography, microstructure, mechanical performance or translucency.
Assuntos
Cerâmica , Ítrio , Ítrio/química , Cerâmica/química , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Materiais Dentários/químicaRESUMO
OBJECTIVES: Controversy exists about whether the elastic modulus (E) mismatch between the loading indenter and ceramic materials influences fatigue testing results. The research hypotheses were that for porcelain veneered Y-TZP crowns 1) A low modulus Steatite indenter (SB) leads to higher fatigue reliability compared to a high modulus tungsten carbide indenter (WC); 2) Different surface damage patterns are expected between low and high modulus indenters after sliding contact fatigue testing. All ceramic crowns will exhibit similar step-stress accelerated life testing (SSALT) contact fatigue reliability (hypothesis 1) and failure characteristics (hypothesis 2) when using high stiffness tungsten carbide (WC, E = 600 GPa) vs. enamel like steatite (SB, E = 90 GPa) indenters. METHODS: Manufacturer (3M Oral Care) prepared Y-TZP-veneered all-ceramic molar crowns were bonded to aged resin composite reproductions of a standard tooth preparation and subjected to mouth-motion SSALT fatigue (n = 18 per indenter type). Failure was defined either as initial inner cone crack (IC), or final fracture (FF) when porcelain fractured (chipping). Selected IC specimens that did not progress to FF were embedded in epoxy resin and sectioned for fractographic analysis. RESULTS: The distribution of failures across the load and cycle profiles lead to similar calculated Weibull Use Level Probability Plots with overlap of the 2-sided 90% confidence bounds. The calculated reliability for IC and FF was equivalent at a mission of 300 N or 700 N load and 50,000 cycles, although the WC indenter had a trend for lower reliability for IC at 700 N. Both indenters produced similar patterns of wear and cracking on crown surfaces. Fractographic landmarks showed competing failure modes, but sliding contact partial inner cone cracks were the most dominant for both groups. SIGNIFICANCE: The more compliant Steatite indenter had similar veneered crown fatigue reliability and failure modes to those found with use of a high stiffness tungsten carbide indenter (hypotheses 1 and 2 rejected).
Assuntos
Cerâmica , Coroas , Resinas Compostas , Porcelana Dentária , Falha de Restauração Dentária , Análise do Estresse Dentário , Teste de Materiais , Reprodutibilidade dos TestesRESUMO
OBJECTIVE: This article presents a retrospective analysis of an anterior single crown that showed chipping of the veneering ceramic, the clinical stages of intraoral repair made in composite resin, and fractographic analysis of the causes of failure. CLINICAL CONSIDERATIONS: The ceramic chipping occurred in the incisal and labial surfaces of the crown, 1 year after installation. Clinical examination revealed the presence of occlusal interference, which was probably responsible for chipping. Vinyl-polysiloxane impression was made from the patient, and epoxy replica was produced. The replica was gold coated and inspected under the optical microscopy and scanning electron microscope (SEM) for descriptive fractography. Optical microscopy and SEM images showed that chipping initiated at the incisal edge, where it is possible to note an area of damage accumulation. At the labial surface, multiple arrest lines with their convex sides facing the incisal edge were observed. The fractured area was repaired intraorally with composite resin, and the patient's occlusion was checked and monitored. CONCLUSION: According to the fractographic analysis, occlusal interference was related to ceramic chipping in the incisal edge. Intraoral repair technique with composite resin was indicated for this moderate chipping. CLINICAL SIGNIFICANCE: Retrieval analysis of chipping ceramic delivers better understanding of the failure origin and could prevent future failures. Intraoral repair is a practical and conservative technique and may be performed in a single clinical session without requiring the removal of prosthesis.
Assuntos
Falha de Restauração Dentária , Facetas Dentárias , Cerâmica , Coroas , Porcelana Dentária , Humanos , Teste de Materiais , Estudos Retrospectivos , Propriedades de SuperfícieRESUMO
OBJECTIVE: Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. METHODS: RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σbf, MPa), characteristic strength (σ0, MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t2). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. RESULTS: The RBLAs improved σbf and σ0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t2, differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. SIGNIFICANCE: Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics.
Assuntos
Cerâmica , Cimentos Dentários , Cimentos de Resina , Porcelana Dentária , Teste de Materiais , Reprodutibilidade dos Testes , Estresse Mecânico , Propriedades de SuperfícieRESUMO
OBJECTIVES: To evaluate the reliability of monolithic and multilayer ceramic structures used in the CAD-on technique (Ivoclar), and the mode of failure produced in ceramic structures bonded to a dentin analog material (NEMA-G10). METHODS: Ceramic specimens were fabricated as follows (n=30): CAD-on- trilayer structure (IPS e.max ZirCAD/IPS e.max Crystall./Connect/IPS e.max CAD); YLD- bilayer structure (IPS e.max ZirCAD/IPS e.max Ceram); LDC- monolithic structure (IPS e.max CAD); and YZW- monolithic structure (Zenostar Zr Translucent). All ceramic specimens were bonded to G10 and subjected to compressive load in 37°C distilled water until the sound of the first crack, monitored acoustically. Failure load (Lf) values were recorded (N) and statistically analyzed using Weibull distribution, Kruskal-Wallis test, and Student-Newman-Keuls test (α=0.05). RESULTS: Lf values of CAD-on and YZW structures were statistically similar (p=0.917), but higher than YLD and LDC (p<0.01). Weibull modulus (m) values were statistically similar for all experimental groups. Monolithic structures (LDC and YZW) failed from radial cracks. Failures in the CAD-on and YLD groups showed, predominantly, both radial and cone cracks. SIGNIFICANCE: Monolithic zirconia (YZW) and CAD-on structures showed similar failure resistance and reliability, but a different fracture behavior.
Assuntos
Cerâmica , Porcelana Dentária , Desenho Assistido por Computador , Teste de Materiais , Reprodutibilidade dos TestesRESUMO
This study evaluated the reliability of implant-supported crowns repaired with resin composites. Fifty-four titanium abutments were divided in three groups (n = 18 each) to support resin nanoceramic molar crowns, as follows: (LU) (Lava Ultimate, 3M ESPE); LU repaired with either a direct or an indirect resin composite. Samples were subjected to mouth-motion accelerated-life testing in water (n = 18). Cumulative damage with a use stress of 300 N was used to plot Weibull curves for group comparison. Reliability was calculated for a mission of 100,000 cycles at 400 N load. Beta values were 0.83 for LU, 0.31 and 0.27 for LU repaired with Filtek and Ceramage, respectively. Weibull modulus for LU was 9.5 and η = 1047 N, m = 6.85, and η = 1002 N for LU repaired with Ceramage, and m = 4.65 and η = 766 N for LU repaired with Filtek (p < 0.10 between LU and LU repaired with Filtek). Reliability at 400 N was 100% for both LU and LU repaired with Ceramage which were significantly higher than LU Filtek repair (32%). LU restored crowns failed cohesively. Fractures were confined within the restored material, and detailed fractography is presented. The performance of resin nanoceramic material repaired with an indirect composite was maintained after accelerated-life testing compared to unrepaired controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1481-1489, 2017.
Assuntos
Resinas Compostas/química , Coroas , Implantes Dentários , Teste de Materiais , Estresse Mecânico , HumanosRESUMO
This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections.
Assuntos
Coroas , Projeto do Implante Dentário-Pivô , Falha de Restauração Dentária , Dente Suporte , Implantes Dentários , Planejamento de Prótese Dentária , Análise do Estresse Dentário , Reprodutibilidade dos TestesRESUMO
This work evaluates the use of light microscopes (LMs) as a tool for interlaminar fracture of polymer composite investigation with the aid of correlative fractography. Correlative fractography consists of an association of the extended depth of focus (EDF) method, based on reflected LM, with scanning electron microscopy (SEM) to evaluate interlaminar fractures. The use of these combined techniques is exemplified here for the mode I fracture of carbon-epoxy plain-weave reinforced composite. The EDF-LM is a digital image-processing method that consists of the extraction of in-focus pixels for each x-y coordinate in an image from a stack of Z-ordered digital pictures from an LM, resulting in a fully focused picture and a height elevation map for each stack. SEM is the most used tool for the identification of fracture mechanisms in a qualitative approach, with the combined advantages of a large focus depth and fine lateral resolution. However, LMs, with EDF software, may bypass the restriction on focus depth and present enough lateral resolution at low magnification. Finally, correlative fractography can provide the general comprehension of fracture processes, with the benefits of the association of different resolution scales and contrast modes.
RESUMO
OBJECTIVES: As CAD/CAM technologies improve we question whether adhesive lamination of ceramic materials could offer mechanical advantages over monolithic structures and improve clinical outcomes. The aim was to identify whether an adhesive interface (a chemically cured resin-cement) would influence the biaxial flexure strength (BFS) and slow-crack growth in a machinable dental ceramic. METHODS: Monolithic and adhesively laminated (with a chemically cured dimethacrylate resin-cement) feldspathic ceramic discs of identical dimensions were fabricated. BFS testing was performed on the Group A monolithic specimens (n = 20), on Group B laminated specimens with the adhesive interface positioned below the neutral bending axis (n = 20) and Group C laminated specimens with the adhesive interface positioned above the neutral bending axis (n = 20). To study subcritical crack growth additional laminated specimens received controlled indentations and were exposed to thermo-mechanical fatigue. BFS data was analysed using parametric statistics (α = 0.05). Fractographic analyses were qualitatively assessed. RESULTS: No significant differences between the mean BFS data of Groups A and B were observed (p = 0.92) but the mean BFS of Group C was slightly reduced (p < 0.01). Lamination reduced the stiffness of the structure and fractographic analysis demonstrated that energy consuming crack deflection occurred. Thermo-mechanical fatigue caused subcritical extension of radial cracks associated with indentations adjacent to the adhesive interface. Crack growth was limited to parallel to the interface and was arrested or deflected in a direction normal to the interface. CONCLUSIONS: Ceramic lamination increased the damage tolerance of the structure and could limit or arrest subcritical crack growth at regions near the 'interlayer'. CLINICAL SIGNIFICANCE: Lamination of a dental ceramic with a polymeric 'interlayer' could offer toughening effects which could potentially delay or arrest sub-critical crack growth at regions near the interface and thereby improve restoration longevity.
Assuntos
Porcelana Dentária , Facetas Dentárias , Adesividade , Fenômenos Biomecânicos , Porcelana Dentária/química , Teste de Materiais , Resinas SintéticasRESUMO
OBJECTIVE: To compare the fatigue life and damage modes of zirconia crowns fabricated with and without framework design modification when porcelain veneered using a fast or slow cooling protocol. METHODS: Composite resin replicas of a first molar full crown preparation were fabricated. Zirconia copings were milled as conventional (0.5mm even thickness, Zr-C, n=20,) or modified (lingual margin of 1.0mm thickness, 2.0mm height connected to two proximal struts of 3.5mm height, Zr-M, n=20). These groups were subdivided (n=10 each) according to the veneer cooling protocol employed: fast cooling (Zr-CFast and Zr-MFast) and slow cooling (Zr-CSlow and Zr-MSlow). Crowns were cemented and fatigued for 10(6) cycles in water. The number of cycles to failure was recorded and used to determine the interval databased 2-parameter probability Weibull distribution parameter Beta (ß) and characteristic life value Eta (η). RESULTS: 2-parameter Weibull calculation presented ß=5.53 and ß=4.38 for Zr-MFast and Zr-CFast, respectively. Slow cooled crowns did not fail by completion of 10(6) cycles, thereby Weibayes calculation was applied. Increased fatigue life was observed for slow cooled crowns compared to fast cooled ones. Groups Zr-MFast and Zr-MSlow presented no statistical difference. Porcelain cohesive fractures were mainly observed in fast cooled groups. Slow cooled crowns presented in some instances inner cone cracks not reaching the zirconia/veneer interface. SIGNIFICANCE: Improved fatigue life in tandem with the absence of porcelain fractures were observed in slow cooled crowns, regardless of framework design. Crowns fast cooled chiefly failed by porcelain cohesive fractures.
Assuntos
Coroas , Análise do Estresse Dentário/métodos , Zircônio/química , Porcelana Dentária , Falha de Restauração Dentária , Facetas Dentárias , Teste de Materiais , Propriedades de Superfície , TemperaturaRESUMO
OBJECTIVES: Recently all-ceramic restorative systems have been introduced that use CAD/CAM technology to fabricate both the Y-TZP core and veneer-ceramic layers. The aim was to identify whether the CAD/CAM approach resulted in more favourable stressing patterns in the veneer-ceramic when compared with a conventionally sintered Y-TZP core/veneer-ceramic. METHODS: Nominally identical Vita VM9 veneer-ceramic disc-shaped specimens (0.7mm thickness, 12mm diameter) were fabricated. 20 specimens received a surface coating of resin-cement (Panavia 21); 20 specimens were bonded with the resin-cement to fully sintered Y-TZP (YZ Vita Inceram Vita) discs (0.27mm thickness, 12mm diameter). A final series of 20 Y-TZP core/veneer-ceramic specimens were manufactured using a conventional sintering route. Biaxial flexure strength was determined in a ball-on-ring configuration and stress at the fracture origin calculated using multilayer closed-form analytical solutions. Fractography was undertaken using scanning electron microscopy. The experimental test was simulated using Finite Element Analysis. Group mean BFS were compared using a one-way ANOVA and post hoc Tukey tests at a 95% significance level. RESULTS: Resin cement application resulted in significant strengthening of the veneer-ceramic and further significant strengthening of the veneer-ceramic (p<0.01) occurred following bonding to the Y-TZP core. The BFS calculated at the failure origin for conventionally sintered specimens was significantly reduced when compared with the adhesively bonded Y-TZP/veneer-ceramic. CONCLUSIONS: Under the test conditions employed adhesive cementation between CAD/CAM produced Y-TZP/veneer-ceramic layers appears to offer the potential to induce more favourable stress states within the veneer-ceramic when compared with conventional sintered manufacturing routes. CLINICAL SIGNIFICANCE: The current investigation suggests that the stressing patterns that arise in all-ceramic restorations fabricated using CAD/CAM for both the core and veneer-ceramic layers differ from those that occur in conventionally sintered bilayer restorations. Further work is required to ascertain whether such differences will translate into improved clinical outcomes.
Assuntos
Cerâmica/química , Desenho Assistido por Computador , Colagem Dentária , Materiais Dentários/química , Facetas Dentárias , Ítrio/química , Zircônio/química , Condicionamento Ácido do Dente/métodos , Algoritmos , Óxido de Alumínio/química , Compostos Inorgânicos de Carbono/química , Cimentação/métodos , Corrosão Dentária/métodos , Polimento Dentário/métodos , Módulo de Elasticidade , Análise de Elementos Finitos , Temperatura Alta , Humanos , Ácido Fluorídrico/química , Microscopia Eletrônica de Varredura , Fosfatos/química , Maleabilidade , Cimentos de Resina/química , Silanos/química , Compostos de Silício/química , Estresse Mecânico , Propriedades de SuperfícieRESUMO
The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations.