Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Rep Med ; : 101628, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38986621

RESUMO

Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.CART cells induces similar internalization of CD5 on target cells, transiently shielding them from cytotoxicity. However, this protection is short-lived, as sustained activity of CD5.CART cells in patients with T cell malignancies results in full ablation of CD5+ T cells while sparing healthy T cells naturally lacking CD5. These results indicate that continuous downmodulation of the target antigen in CD5.CART cells produces effective fratricide resistance without undermining their on-target cytotoxicity.

2.
Transplant Cell Ther ; 30(2): 171-186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37866783

RESUMO

Chimeric antigen receptor T cell (CAR-T) immunotherapy has revolutionized the treatment of relapsed and refractory B cell-derived hematologic malignancies. Currently, there are 6 Food and Drug Administration-approved commercial CAR-T products that target antigens exclusively expressed on malignant B cells or plasma cells. However, concurrent advancement for patients with rarer and more aggressive T cell-derived hematologic malignancies have not yet been achieved. CAR-T immunotherapies are uniquely limited by challenges related to CAR-T product manufacturing and intrinsic tumor biology. In this review tailored for practicing clinician-scientists, we discuss the major barriers of CAR-T implementation against T cell-derived neoplasms and highlight specific scientific advancements poised to circumvent these obstacles. We summarize salient early-stage clinical trials implementing novel CAR-T immunotherapies specifically for patients with relapsed and/or refractory T cell neoplasms. Finally, we highlight novel manufacturing and treatment strategies that are poised to have a meaningful future clinical impact.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Estados Unidos , Humanos , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia/efeitos adversos , Neoplasias Hematológicas/terapia
3.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139060

RESUMO

Natural killer (NK) cells are a vital component of cancer immune surveillance. They provide a rapid and potent immune response, including direct cytotoxicity and mobilization of the immune system, without the need for antigen processing and presentation. NK cells may also be better tolerated than T cell therapy approaches and are susceptible to various gene manipulations. Therefore, NK cells have become the focus of extensive translational research. Gamida Cell's nicotinamide (NAM) platform for cultured NK cells provides an opportunity to enhance the therapeutic potential of NK cells. CD38 is an ectoenzyme ubiquitously expressed on the surface of various hematologic cells, including multiple myeloma (MM). It has been selected as a lead target for numerous monoclonal therapeutic antibodies against MM. Monoclonal antibodies target CD38, resulting in the lysis of MM plasma cells through various antibody-mediated mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, significantly improving the outcomes of patients with relapsed or refractory MM. However, this therapeutic strategy has inherent limitations, such as the anti-CD38-induced depletion of CD38-expressing NK cells, thus hindering ADCC. We have developed genetically engineered NK cells tailored to treat MM, in which CD38 was knocked-out using CRISPR-Cas9 technology and an enhanced chimeric antigen receptor (CAR) targeting CD38 was introduced using mRNA electroporation. This combined genetic approach allows for an improved cytotoxic activity directed against CD38-expressing MM cells without self-inflicted NK-cell-mediated fratricide. Preliminary results show near-complete abolition of fratricide with a 24-fold reduction in self-lysis from 19% in mock-transfected and untreated NK cells to 0.8% of self-lysis in CD38 knock-out CAR NK cells. Furthermore, we have observed significant enhancements in CD38-mediated activity in vitro, resulting in increased lysis of MM target cell lines. CD38 knock-out CAR NK cells also demonstrated significantly higher levels of NK activation markers in co-cultures with both untreated and αCD38-treated MM cell lines. These NAM-cultured NK cells with the combined genetic approach of CD38 knockout and addition of CD38 CAR represent a promising immunotherapeutic tool to target MM.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Células Matadoras Naturais , Citotoxicidade Celular Dependente de Anticorpos
4.
Cells ; 12(16)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37626869

RESUMO

Chimeric-antigen-receptor (CAR) T-cell therapy for CD19-expressing B-cell malignancies is already widely adopted in clinical practice. On the other hand, the development of CAR-T-cell therapy for T-cell malignancies is in its nascent stage. One of the potential targets is CD26, to which we have developed and evaluated the efficacy and safety of the humanized monoclonal antibody YS110. We generated second (CD28) and third (CD28/4-1BB) generation CD26-targeted CAR-T-cells (CD26-2G/3G) using YS110 as the single-chain variable fragment. When co-cultured with CD26-overexpressing target cells, CD26-2G/3G strongly expressed the activation marker CD69 and secreted IFNgamma. In vitro studies targeting the T-cell leukemia cell line HSB2 showed that CD26-2G/3G exhibited significant anti-leukemia effects with the secretion of granzymeB, TNFα, and IL-8, with 3G being superior to 2G. CD26-2G/3G was also highly effective against T-cell lymphoma cells derived from patients. In an in vivo mouse model in which a T-cell lymphoma cell line, KARPAS299, was transplanted subcutaneously, CD26-3G inhibited tumor growth, whereas 2G had no effect. Furthermore, in a systemic dissemination model in which HSB2 was administered intravenously, CD26-3G inhibited tumor growth more potently than 2G, resulting in greater survival benefit. The third-generation CD26-targeted CAR-T-cell therapy may be a promising treatment modality for T-cell malignancies.


Assuntos
Linfoma de Células T , Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T , Antígenos CD28 , Dipeptidil Peptidase 4 , Anticorpos Monoclonais , Terapia Baseada em Transplante de Células e Tecidos
5.
J Cancer Res Clin Oncol ; 149(14): 13459-13475, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37468610

RESUMO

T cell malignancies represent a diverse collection of leukemia/lymphoma conditions in humans arising from aberrant T cells. Such malignancies are often associated with poor clinical prognoses, cancer relapse, as well as progressive resistance to anti-cancer treatments. While chimeric antigen receptor (CAR) T cell immunotherapy has emerged as a revolutionary treatment strategy that is highly effective for treating B cell malignancies, its application as a treatment for T cell malignancies remains to be better explored. Furthermore, the effectiveness of CAR-T treatment in T cell malignancies is significantly influenced by the quality of contamination-free CAR-T cells during the manufacturing process, as well as by multiple characteristics of such malignancies, including the sharing of antigens across normal and malignant T cells, fratricide, and T cell aplasia. In this review, we provide a detailed account of the current developments in the clinical application of CAR-T therapy to treat T cell malignancies, offer strategies for addressing current challenges, and outline a roadmap toward its effective implementation as a broad treatment option for this condition.

6.
ACS Synth Biol ; 12(4): 1081-1093, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37011906

RESUMO

In recent years, targeted protein degradation (TPD) of plasma membrane proteins by hijacking the ubiquitin proteasome system (UPS) or the lysosomal pathway has emerged as a novel therapeutic avenue in drug development to address and inhibit canonically difficult targets. While TPD strategies have been successful in targeting cell surface receptors, these approaches are limited by the availability of suitable binders to generate heterobifunctional molecules. Here, we present the development of a nanobody (VHH)-based degradation toolbox termed REULR (Receptor Elimination by E3 Ubiquitin Ligase Recruitment). We generated human and mouse cross-reactive nanobodies against five transmembrane PA-TM-RING-type E3 ubiquitin ligases (RNF128, RNF130, RNF167, RNF43, and ZNRF3), covering a broad range and selectivity of tissue expression, with which we characterized the expression in human and mouse cell lines and immune cells (PBMCs). We demonstrate that heterobifunctional REULR molecules can enforce transmembrane E3 ligase interactions with a variety of disease-relevant target receptors (EGFR, EPOR, and PD-1) by induced proximity, resulting in effective membrane clearance of the target receptor at varying levels. In addition, we designed E3 ligase self-degrading molecules, "fratricide" REULRs (RNF128, RNF130, RENF167, RNF43, and ZNRF3), that allow downregulation of one or several E3 ligases from the cell surface and consequently modulate receptor signaling strength. REULR molecules represent a VHH-based modular and versatile "mix and match" targeting strategy for the facile modulation of cell surface proteins by induced proximity to transmembrane PA-TM-RING E3 ligases.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
7.
Vaccines (Basel) ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36680011

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL), a form of T-cell malignancy, is a typically aggressive hematological malignancy with high rates of disease relapse and a poor prognosis. Current guidelines do not recommend any specific treatments for these patients, and only allogeneic stem cell transplant, which is associated with potential risks and toxicities, is a curative therapy. Recent clinical trials showed that immunotherapies, including monoclonal antibodies, checkpoint inhibitors, and CAR T therapies, are successful in treating hematologic malignancies. CAR T cells, which specifically target the B-cell surface antigen CD19, have demonstrated remarkable efficacy in the treatment of B-cell acute leukemia, and some progress has been made in the treatment of other hematologic malignancies. However, the development of CAR T-cell immunotherapy targeting T-cell malignancies appears more challenging due to the potential risks of fratricide, T-cell aplasia, immunosuppression, and product contamination. In this review, we discuss the current status of and challenges related to CAR T-cell immunotherapy for T-ALL and review potential strategies to overcome these limitations.

8.
J Forensic Leg Med ; 93: 102453, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495782

RESUMO

INTRODUCTION: The present research aims at analyzing criminological and medico-legal characteristics of intra-familiar homicides occurred in two major Italian cities (Milano and Monza) from the beginning of 2006 to the end of 2021. METHODS: Cases were identified using the Institutional database of the Institute of Legal Medicine of Milan, where all the autopsies of victims were performed. Data about these cases were obtained from autopsies findings, preliminary investigation reports, local papers and victim relatives' interviews. In this period 11,480 autopsies were performed: 392 were homicides and, among these, 94 were confirmed as intra-familiar homicides (as a result of 84 events). Cases were classified according to the classic definition of intimate partner violence (referring only to an intra-familiar context), parricides, filicides, fratricides, familicides and grannicides. Age, sex, nationality and risk factors of the victims and perpetrators, as well as methods of murder were registered for each case. Only in some cases, motives for murder were known. RESULTS: The most frequent type of intra-familiar homicides was intimate partner violence (41.5%), followed by parricides (16%, mainly matricides), filicides (10.7%) and fratricides (6.4%). 9.6% of the total number of events were familicides. Risk factors were frequently involved, in particular among perpetrators and in the group of parricides, while among siblicides they showed minimal relevance. Overall, psychiatric pathologies were the main risk factors involved (at least 23.8%), unlike extrafamiliar homicides, where previous criminal report or involvement in illicit traffics are frequently reported among perpetrators. This finding enlightens the difficulties of caring for a relative with a mental disorder, who can become dangerous for the domestic caregiver. Furthermore, the high number of physical illness and the advanced age of victims points out the tragical consequences of the lack of social support system for these categories of people. METHODS: of murder were mainly cold steel (30-31.9%) and firearms (21-22.3%). However choking/manual ligature (9-9.6%), blunt force trauma inflicted using objects found on the scenario or bare handed (16-17%) and combined methods (11-11.7%) were frequently represented confirming the expected high level of impulsivity related to this kind of crime.


Assuntos
Violência por Parceiro Íntimo , Transtornos Mentais , Humanos , Homicídio , Etnicidade , Medicina Legal
9.
Mol Ther ; 31(1): 24-34, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36086817

RESUMO

Chimeric antigen receptor (CAR)-mediated targeting of T lineage antigens for the therapy of blood malignancies is frequently complicated by self-targeting of CAR T cells or their excessive differentiation driven by constant CAR signaling. Expression of CARs targeting CD7, a pan-T cell antigen highly expressed in T cell malignancies and some myeloid leukemias, produces robust fratricide and often requires additional mitigation strategies, such as CD7 gene editing. In this study, we show fratricide of CD7 CAR T cells can be fully prevented using ibrutinib and dasatinib, the pharmacologic inhibitors of key CAR/CD3ζ signaling kinases. Supplementation with ibrutinib and dasatinib rescued the ex vivo expansion of unedited CD7 CAR T cells and allowed regaining full CAR-mediated cytotoxicity in vitro and in vivo on withdrawal of the inhibitors. The unedited CD7 CAR T cells persisted long term and mediated sustained anti-leukemic activity in two mouse xenograft models of human T cell acute lymphoblastic leukemia (T-ALL) by self-selecting for CD7-, fratricide-resistant CD7 CAR T cells that were transcriptionally similar to control CD7-edited CD7 CAR T cells. Finally, we showed feasibility of cGMP manufacturing of unedited autologous CD7 CAR T cells for patients with CD7+ malignancies and initiated a phase I clinical trial (ClinicalTrials.gov: NCT03690011) using this approach. These results indicate pharmacologic inhibition of CAR signaling enables generating functional CD7 CAR T cells without additional engineering.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Linfócitos T , Imunoterapia Adotiva/métodos , Dasatinibe/metabolismo , Estudos de Viabilidade , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
10.
Cells ; 11(24)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552738

RESUMO

Historical standard of care treatments of T-cell malignancies generally entailed the use of cytotoxic and depleting approaches. These strategies are, however, poorly validated and record dismal long-term outcomes. More recently, the introduction and approval of chimeric antigen receptor (CAR)-T cell therapy has revolutionized the therapy of B-cell malignancies. Translating this success to the T-cell compartment has so far proven hazardous, entangled by risks of fratricide, T-cell aplasia, and product contamination by malignant cells. Several strategies have been utilized to overcome these challenges. These include the targeting of a selective cognate antigen exclusive to T-cells or a subset of T-cells, disruption of target antigen expression on CAR-T constructs, use of safety switches, non-viral transduction, and the introduction of allogeneic compounds and gene editing technologies. We herein overview these historical challenges and revisit the opportunities provided as potential solutions. An in-depth understanding of the tumor microenvironment is required to optimally harness the potential of the immune system to treat T-cell malignancies.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva , Neoplasias/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
11.
Oncoimmunology ; 11(1): 2093426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898704

RESUMO

Successful translation of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors has proved to be troublesome, mainly due to the complex tumor microenvironment promoting T cell dysfunction and antigen heterogeneity. Mesothelin (MSLN) has emerged as an attractive target for CAR T cell therapy of several solid malignancies, including ovarian cancer. To improve clinical response rates with MSLN-CAR T cells, a better understanding of the mechanisms impacting CAR T cell functionality in vitro is crucial. Here, we demonstrated superior cytolytic capacity of CD28-costimulated MSLN-CAR T cells (M28z) relative to 4-1BB-costimulated MSLN-CAR T cells (MBBz). Furthermore, CD28-costimulated MSLN CAR T cells displayed enhanced cytolytic capacity against tumor spheroids with heterogeneous MSLN expression compared to MBBz CAR T cells. In this study, we identified CAR-mediated trogocytosis as a potential impeding factor for successful MSLN-CAR T cell therapy due to fratricide killing and contributing to tumor antigen heterogeneity. Moreover, we link antigen-dependent upregulation of LAG-3 with reduced CAR T cell functionality. Taken together, our study highlights the therapeutic potential and bottlenecks of MSLN-CAR T cells, providing a rationale for combinatorial treatment strategies.


Assuntos
Neoplasias Ovarianas , Linfócitos T , Antígenos CD28/metabolismo , Feminino , Humanos , Mesotelina , Neoplasias Ovarianas/terapia , Trogocitose , Microambiente Tumoral
12.
Mol Ther Oncolytics ; 24: 719-728, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35317521

RESUMO

Although chimeric antigen receptor (CAR) T cell immunotherapy has shown promising significance in B cell malignancies, success against T cell malignancies remains unsatisfactory because of shared antigenicity between normal and malignant T cells, resulting in fratricide and hindering CAR production for clinical treatment. Here, we report a new strategy of blocking the CD7 antigen on the T cell surface with a recombinant anti-CD7 antibody to obtain a sufficient amount of CD7-targeting CAR-T cells for T cell acute lymphoblastic leukemia (T-ALL) treatment. Feasibility was evaluated systematically, revealing that blocking the CD7 antigen with an antibody effectively blocked CD7-derived fratricide, increased the expansion rate, reduced the proportion of regulatory T (Treg) cells, maintained the stem cell-like characteristics of T cells, and restored the proportion of the CD8+ T cell population. Ultimately, we obtained anti-CD7 CAR-T cells that were specifically and effectively able to kill CD7 antigen-positive target cells, obviating the need for complex T cell modifications. This approach is safer than previous methods and provides a new, simple, and feasible strategy for clinical immunotherapies targeting CD7-positive malignant tumors.

13.
Ther Adv Hematol ; 13: 20406207221143025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601636

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has been approved for relapsed/refractory B-cell lymphomas and greatly improves disease outcomes. The impressive success has inspired the application of this approach to other types of tumors. The relapsed/refractory T-cell malignancies are characteristic of high heterogeneity and poor prognoses. The efficacy of current treatments for this group of diseases is limited. CAR-T therapy is a promising solution to ameliorate the current therapeutic situation. One of the major challenges is that normal T-cells typically share mutual antigens with malignant cells, which causes fratricide and serious T-cell aplasia. Moreover, T-cells collected for CAR transduction could be contaminated by malignant T-cells. The selection of suitable target antigens is of vital importance to mitigate fratricide and T-cell aplasia. Using nanobody-derived or naturally selected CAR-T is the latest method to overcome fratricide. Allogeneic CAR-T products and CAR-NK-cells are expected to avoid tumor contamination. Herein, we review the advances in promising target antigens, the current results of CAR-T therapy clinical trials in T-cell malignancies, the obstacles of CAR-T therapy in T-cell malignancies, and the solutions to these issues.

14.
Am J Cancer Res ; 11(11): 5263-5281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873460

RESUMO

The great success of chimeric antigen receptor T (CAR-T)-cell therapy in B-cell malignancies has significantly promoted its rapid expansion to other targets and indications, including T-cell malignancies and acute myeloid leukemia. However, owing to the life-threatening T-cell hypoplasia caused by CD7-CAR-T cells specific cytotoxic against normal T cells, as well as CAR-T cell-fratricide caused by the shared CD7 antigen on the T-cell surface, the clinical application of CD7 as a potential target for CD7+ malignancies is lagging. Here, we generated CD7ΔT cells using an anti-CD7 nanobody fragment coupled with an endoplasmic reticulum/Golgi retention domain and demonstrated that these cells transduced with CD7-CAR could prevent fratricide and achieve expansion. Additionally, CD7ΔCD7-CAR-T cells exhibited robust antitumor potiential against CD7+ tumors in vitro as well as in cell-line and patient-derived xenograft models of CD7-positive malignancies. Furthermore, we confirmed that the antitumor activity of CD7-CAR-T cells was positively correlated with the antigen density of tumor cells. This strategy adapts well with current clinical-grade CAR-T-cell manufacturing processes and can be rapidly applied for the therapy of patients with CD7+ malignancies.

15.
Stem Cell Res Ther ; 12(1): 527, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620233

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has been prosperous in the treatment of patients with various types of relapsed/refractory (R/R) B-cell malignancies including diffuse large B-cell lymphoma (DLBCL), B-cell acute lymphoblastic leukemia (B-ALL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma (MM). However, this type of therapy has faced serious hindrances in combating T-cell neoplasms. R/R T-cell malignancies are generally associated with poor clinical outcomes, and the available effective treatment approaches are very limited. CAR-T therapy of T-cell malignancies has unique impediments in comparison with that of B-cell malignancies. Fratricide, T-cell aplasia, and product contamination with malignant T cells when producing autologous CAR-Ts are the most important challenges of CAR-T therapy in T-cell malignancies necessitating in-depth investigations. Herein, we highlight the preclinical and clinical efforts made for addressing these drawbacks and also review additional potent stratagems that could improve CAR-T therapy in T-cell malignancies.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Adulto , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
16.
Cells ; 10(5)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068819

RESUMO

Trogocytosis is an active process whereby plasma membrane proteins are transferred from one cell to the other cell in a cell-cell contact-dependent manner. Since the discovery of the intercellular transfer of major histocompatibility complex (MHC) molecules in the 1970s, trogocytosis of MHC molecules between various immune cells has been frequently observed. For instance, antigen-presenting cells (APCs) acquire MHC class I (MHCI) from allografts, tumors, and virally infected cells, and these APCs are subsequently able to prime CD8+ T cells without antigen processing via the preformed antigen-MHCI complexes, in a process called cross-dressing. T cells also acquire MHC molecules from APCs or other target cells via the immunological synapse formed at the cell-cell contact area, and this phenomenon impacts T cell activation. Compared with naïve and effector T cells, T regulatory cells have increased trogocytosis activity in order to remove MHC class II and costimulatory molecules from APCs, resulting in the induction of tolerance. Accumulating evidence suggests that trogocytosis shapes T cell functions in cancer, transplantation, and during microbial infections. In this review, we focus on T cell trogocytosis and the related inflammatory diseases.


Assuntos
Proteínas Sanguíneas/metabolismo , Linfócitos T/citologia , Animais , Apresentação de Antígeno/imunologia , Antígenos , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/citologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Sistema Imunitário , Sinapses Imunológicas , Inflamação , Ativação Linfocitária/imunologia , Complexo Principal de Histocompatibilidade , Camundongos , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Reguladores/imunologia
17.
Oncotarget ; 12(9): 878-890, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33953842

RESUMO

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7-9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNß. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNß would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNß treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.

19.
Appl Ergon ; 84: 103032, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31987515

RESUMO

The Sustained Attention to Response Task (SART) is a computer based Go-No-Go response task. Participants respond to frequently occurring neutral stimuli and withhold responses to rare target stimuli. Researchers have suggested the inhibition demands of the SART may mirror those which occur in some firearm accidents. Participants in the present experiment used a simulated nonlethal weapon to subdue threats (images of people holding guns) on large screens. Participants completed a target rich task (high Go low No-Go, like a SART), a target sparse task (low Go/high No-Go), a verbal recall task, and dual versions of the target rich and target sparse tasks with the verbal recall task as the secondary task. Results provided further evidence that some accidental shootings may result from failures of response inhibition and that additional cognitive load is detrimental to overall performance. Future studies should explore the role of response inhibition in realistic firearm scenarios.


Assuntos
Inibição Psicológica , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Ferimentos por Arma de Fogo/prevenção & controle , Adolescente , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Destreza Motora/fisiologia , Análise e Desempenho de Tarefas
20.
Antibiotics (Basel) ; 8(4)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766366

RESUMO

In the context of a post-antibiotic era, the phenomenon of microbial allolysis, which is defined as the partial killing of bacterial population induced by other cells of the same species, may take on greater significance. This phenomenon was revealed in some bacterial species such as Streptococcus pneumoniae and Bacillus subtilis, and has been suspected to occur in some other species or genera, such as enterococci. The mechanisms of this phenomenon, as well as its role in the life of microbial populations still form part of ongoing research. Herein, we describe recent developments in allolysis in the context of its practical benefits as a form of cell death that may give rise to developing new strategies for manipulating the life and death of bacterial communities. We highlight how such findings may be viewed with importance and potential within the fields of medicine, biotechnology, and pharmacology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...