Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Health Place ; 89: 103304, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084115

RESUMO

Windermere is a complex and contested freshwater site which encounters fluctuating social and environmental pressures. Swimmers at Windermere regularly practice across all four seasons while negotiating social concerns such as access, conflicting user groups, public health communications, and swim safety, alongside environmental complications including extreme weather, wastewater, run-off, plastic pollution, algal blooms, biosecurity, and climate change. Simultaneously, these entangled pressures generate ongoing adaptation, ambivalence, and avoidance within the swim communities. Furthermore, they disrupt individualised and inwardly focused understandings of 'healthy' outdoor swimming practices. In contribution to the special issue (on outdoor swimming), this article reflects on how outdoor swimming researchers may methodologically attend to these social and environmental complexities within contested lacustrine environments through an immersive 12-month wet ethnographic approach, combining 'lake-hangouts' and 'swim-along interviews' with different swimmers at Windermere. The article discusses how these relational in-situ approaches can continue to broaden inwardly focused understandings of 'healthy' outdoor swimming practices towards the wider social and environmental relations for both the participants and researcher. The article also highlights senses of ambivalence and ethical tension while negotiating conflicting concerns of ill-health, in and out of Windermere's fragile waters.

2.
Aquat Toxicol ; 273: 107032, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39068809

RESUMO

Million tons of tires become waste every year, and the so-called End-of-Life Tires (ELTs) are ground into powder (ELT-dp; size < 0.8 mm) and granules (ELT-dg; 0.8 < size < 2.5 mm) for recycling. The aim of this study was to evaluate the sub-lethal effects of three different concentrations (0.1, 1, and 10 mg/L) of aqueous suspensions from ELT-dp and ELT-dg on Danio rerio (zebrafish) larvae exposed from 0 to 120 h post-fertilization (hpf). Chronic effects were assessed through biomarkers, real-time PCR, and proteomics. We observed a significant increase in swimming behavior and heart rate only in specimens exposed to ELT-dp suspensions at 1 and 10 mg/L, respectively. Conversely, the activities of detoxifying enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) showed significant modulation only in specimens exposed to ELT-dg groups. Although no effects were observed through real-time PCR, proteomics highlighted alterations induced by the three ELT-dp concentrations in over 100 proteins involved in metabolic pathways of aromatic and nitrogen compounds. The results obtained suggest that the toxic mechanism of action (MoA) of ELT suspensions is mainly associated with the induction of effects by released chemicals in water, with a higher toxicity of ELT-dp compared to ELT-dg.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Poluentes Químicos da Água/toxicidade , Suspensões , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Microplásticos/toxicidade , Larva/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ecotoxicologia , Natação , Biomarcadores/metabolismo , Proteômica
3.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38906843

RESUMO

AIMS: The purpose of this work was to study extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) in freshwaters, hospital effluents, and wastewaters during two sampling campaigns in 2021. METHODS AND RESULTS: Water sampling was performed at 24 stations in the Ourthe watershed in Belgium. A total of 644 ESBL (n = 642) and AmpC (n = 2) E. coli strains were isolated. Disk-diffusion assays were performed following the EUCAST's recommendations. All strains were tested for the presence of blaCTX-M-1, blaCTX-M-2, and blaCTX-M-9 gene groups by PCR. Genes belonging to blaCTX-M-1 and blaCTX-M-9 groups were detected, respectively, in 73.6% and 14.9% of the strains. No blaCTX-M-2 group's gene was found. A subset of strains (n = 40) was selected for whole genome sequencing. Escherichia coli serotype O18: H7 ST 1463 was predominant (n = 14) in the sequenced strains and showed pathogenicity in the Galleria mellonella larvae model. ß-lactamase genes identified were blaCTX-M (n = 21), with blaCTX-M-15 mostly represented (n = 15), as well as blaTEM (n = 11), blaOXA (n = 7), blaSHV (n = 9), and carbapenemase (CP) genes were observed in several strains-blaKPC-3 (n = 19), blaNDM-1 (n = 1), blaVIM-1 (n = 2), and blaOXA-244 (n = 2)-even from freshwaters. CONCLUSIONS: ESBL-EC are widely distributed in the aquatic environment in Belgium and contain a variety of ESBL and CP genes.


Assuntos
Escherichia coli , Água Doce , Hospitais , Águas Residuárias , beta-Lactamases , beta-Lactamases/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Águas Residuárias/microbiologia , Água Doce/microbiologia , Animais , Bélgica , Microbiologia da Água , Sequenciamento Completo do Genoma , Mariposas/microbiologia , Proteínas de Bactérias/genética , Antibacterianos/farmacologia
4.
PeerJ ; 12: e17346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737739

RESUMO

Background: Together with the intensification of dry seasons in Neotropical regions, increasing deforestation is expected to exacerbate species extinctions, something that could lead to dramatic shifts in multitrophic communities and ecosystem functions. Recent studies suggest that the effects of habitat loss are greater where precipitation has decreased. Yet, experimental studies of the pure and interactive effects of drought and deforestation at ecosystem level remain scarce. Methods: Here, we used rainshelters and transplantation from rainforest to open areas of natural microcosms (the aquatic ecosystem and microbial-faunal food web found within the rainwater-filled leaves of tank bromeliads) to emulate drought and deforestation in a full factorial experimental design. We analysed the pure and interactive effects of our treatments on functional community structure (including microorganisms, detritivore and predatory invertebrates), and on leaf litter decomposition in tank bromeliad ecosystems. Results: Drought or deforestation alone had a moderate impact on biomass at the various trophic level, but did not eliminate species. However, their interaction synergistically reduced the biomass of all invertebrate functional groups and bacteria. Predators were the most impacted trophic group as they were totally eliminated, while detritivore biomass was reduced by about 95%. Fungal biomass was either unaffected or boosted by our treatments. Decomposition was essentially driven by microbial activity, and did not change across treatments involving deforestation and/or drought. Conclusions: Our results suggest that highly resistant microorganisms such as fungi (plus a few detritivores) maintain key ecosystem functions in the face of drought and habitat change. We conclude that habitat destruction compounds the problems of climate change, that the impacts of the two phenomena on food webs are mutually reinforcing, and that the stability of ecosystem functions depends on the resistance of a core group of organisms. Assuming that taking global action is more challenging than taking local-regional actions, policy-makers should be encouraged to implement environmental action plans that will halt habitat destruction, to dampen any detrimental interactive effect with the impacts of global climate change.


Assuntos
Conservação dos Recursos Naturais , Secas , Ecossistema , Animais , Bromeliaceae , Cadeia Alimentar , Biomassa , Floresta Úmida , Invertebrados/fisiologia
5.
J Therm Biol ; 121: 103862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38703597

RESUMO

Elevation gradients provide powerful study systems for examining the influence of environmental filters in shaping species assemblages. High-mountain habitats host specific high-elevation assemblages, often comprising specialist species adapted to endure pronounced abiotic stress, while such harsh conditions prevent lowland species from colonizing or establishing. While thermal tolerance may drive the altitudinal segregation of ectotherms, its role in structuring aquatic insect communities remains poorly explored. This study investigates the role of thermal physiology in shaping the current distribution of high-mountain diving beetles from the Sierra Nevada Iberian mountain range and closely related lowland species. Cold tolerance of five species from each altitudinal zone was measured estimating the supercooling point (SCP), lower lethal temperature (LLT) and tolerance to ice enclosure, while heat tolerance was assessed from the heat coma temperature (HCT). Alpine species exhibited wider fundamental thermal niches than lowland species, likely associated with the broader range of climatic conditions in high-mountain areas. Cold tolerance did not seem to prevent lowland species from colonizing higher elevations, as most studied species were moderately freeze-tolerant. Therefore, fundamental thermal niches seem not to fully explain species segregation along elevation gradients, suggesting that other thermal tolerance traits, environmental factors, and biotic interactions may also play important roles.


Assuntos
Altitude , Termotolerância , Animais , Besouros/fisiologia , Ecossistema , Aclimatação , Temperatura Baixa
6.
Sci Rep ; 14(1): 8903, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632373

RESUMO

Ecosystem services (ES) are essential to sustainable development at multiple spatial scales. Monitoring ES potential (ESP) at the metropolitan level is imperative to sustainable cities. We developed a procedure for long-term monitoring of metropolitan ESP dynamics, utilizing open-source land use land cover (LULC) data and the expert matrix method. We compared the ESP results of 38 European Capital Metropolitan Areas (ECMA) regarding biodiversity integrity, drinking water provision, flood protection, air quality, water purification, and recreation & tourism. Our results show significant declines in ESP across ECMA due to LULC alteration between 2006, 2012, and 2018. We found that ECMA in post-socialist European countries like Poland (Warszawa) have experienced high rates of land use transformation with a remarkable impact on ESP. Surprisingly, we found that Fennoscandinan ECMA, like Helsinki, Stockholm, and Oslo which lead the cumulative ESP ranking, faced the ESP reduction of the highest impact in recent years. The correlation analysis of ESP dynamics to urban expansion and population growth rates suggests that inattentive urbanization processes impact ESP more than population growth. We unveil the implications of our results to the EU and global level agendas like the European Nature Conservation Law and the Sustainable Development Goals.

7.
Environ Sci Pollut Res Int ; 31(21): 31479-31491, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635096

RESUMO

The present study demonstrates the presence of the neurotoxin ß-N-methylamino-L-alanine and its cyanobacterial producers in irrigation water and grains of some cereal plants from farmlands irrigated with Nile River water in Egypt. BMAA detected by LC-MS/MS in phytoplankton samples was found at higher concentrations of free form (0.84-11.4 µg L-1) than of protein-bound form (0.16-1.6 µg L-1), in association with the dominance of cyanobacteria in irrigation water canals. Dominant cyanobacterial species isolated from these irrigation waters including Aphanocapsa planctonica, Chroococcus minutus, Dolichospermum lemmermanni, Nostoc commune, and Oscillatoria tenuis were found to produce different concentrations of free (4.8-71.1 µg g-1 dry weight) and protein-bound (0.1-11.4 µg g-1 dry weight) BMAA. In the meantime, BMAA was also detected in a protein-bound form only in grains of corn (3.87-4.51 µg g-1 fresh weight) and sorghum (5.1-7.1 µg g-1 fresh weight) plants, but not in wheat grains. The amounts of BMAA accumulated in these grains correlated with BMAA concentrations detected in relevant irrigation water canals. The presence of BMAA in cereal grains would constitute a risk to human and animal health upon consumption of contaminated grains. The study, therefore, suggests continuous monitoring of BMAA and other cyanotoxins in irrigation waters and edible plants to protect the public against exposure to such potent toxins.


Assuntos
Irrigação Agrícola , Diamino Aminoácidos , Grão Comestível , Grão Comestível/química , Humanos , Diamino Aminoácidos/análise , Neurotoxinas/análise , Cianobactérias/metabolismo , Egito , Monitoramento Ambiental , Toxinas de Cianobactérias
8.
J Hazard Mater ; 469: 134000, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508107

RESUMO

The ubiquitous presence of water-soluble polymers (WSPs) in freshwater environments raises concerns regarding potential threats to aquatic organisms. This study investigated, for the first time, the effects of widely used WSPs -polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), and polyethylene glycol (PEG)- using a multi-level approach in the freshwater biological model Daphnia magna. This integrated assessment employed a suite of biomarkers, evaluation of swimming behaviour, and proteomic analysis to investigate the effects of three environmentally relevant concentrations (0.001, 0.5, and 1 mg/L) of the tested WSPs from molecular to organismal levels, assessing both acute and chronic effects. Our findings reveal that exposure to different WSPs induces specific responses at each biological level, with PEG being the only WSP inducing lethal effects at 0.5 mg/L. At the physiological level, although all WSPs impacted both swimming performance and heart rate of D. magna specimens, PAA exhibited the greatest effects on the measured behavioural parameters. Furthermore, proteomic analyses demonstrated altered protein profiles following exposure to all WSPs, with PVA emerging as the most effective.


Assuntos
Poluentes Químicos da Água , Água , Animais , Água/farmacologia , Polímeros/toxicidade , Daphnia magna , Proteoma , Proteômica , Daphnia , Poluentes Químicos da Água/toxicidade
9.
Microbiome ; 12(1): 65, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539229

RESUMO

BACKGROUND: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake. RESULTS: AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplankton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accuracy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to contain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying conditions of the freshwater environment. CONCLUSIONS: Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating this information with the indicator of primary production (Chlorophyll-a) and existing ecological models, we show that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplankton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration in further ecological models.


Assuntos
Lagos , Processos Fototróficos , Lagos/microbiologia , Bactérias/genética , Biomassa , Bactérias Aeróbias/genética , Bactérias Aeróbias/metabolismo , Fitoplâncton/genética
10.
Environ Monit Assess ; 196(3): 281, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368304

RESUMO

The evaluation of environmental and spatial influence in freshwater systems is crucial for the conservation of aquatic diversity. So, we evaluated communities of Odonata in streams inside and outside sustainable use areas in the Brazilian western Amazon. We predicted that these streams would differ regarding habitat integrity and species α and ß diversity. We also predict that environmental and spatial variables will be important for both suborders, but with more substantial effects on Zygoptera species, considering their nature of forest-specialist. The study was conducted in 35 streams, 19 inside and 16 outside sustainable use areas. The streams outside presented high species richness, abundance, and number of exclusive forest-specialist species from Zygoptera and higher scores of habitat integrity. In contrast, one sustainable use area presented the lowest values of these metrics. Besides, we found that environmental and spatial variables were significantly associated to Zygoptera species composition, but not with Anisoptera, which can be explained by their cosmopolitan nature. Our results indicated that an interplay between environmental and spatial processes determines the structure of the metacommunities of Zygoptera. The less effective dispersal rates and narrow ecological tolerance of Zygoptera species make them more influenced by local conditions and dispersal limitation, and more sensible to habitat modifications. We highlight the importance of improving the local management of the sustainable use areas by environmental agencies, mainly on areas that are losing their capacity to maintain the aquatic fauna, and implementation of social policies toward traditional people.


Assuntos
Odonatos , Humanos , Animais , Rios , Brasil , Monitoramento Ambiental , Ecossistema , Insetos , Biodiversidade
11.
Sci Total Environ ; 912: 168884, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042177

RESUMO

The monitoring of plastic contamination in freshwaters is still pioneering in comparison with marine environments, and few studies analyzed the distribution of these pollutants in both aqueous and bottom compartments of continental waters. Therefore, the aim of this study was the comparison of plastic pollution in both waters and sediments of four Po River tributaries (Ticino, Adda, Oglio and Mincio Rivers), which outflow from the main Italian sub-alpine Lakes, in order to establish the strengths and weaknesses of both matrices. The main results pointed out a heterogeneous plastic contamination, with the lowest values in Ticino (0.9 ± 0.5 plastics/m3 in waters and 6.8 ± 4.5 plastics/kg dry weight - d.w. - in sediments) and the highest in Mincio (62.9 ± 53.9 plastics/m3 in waters and 26.5 ± 13.3 plastics/kg d.w in sediments), highlighting a plastic amount in sediments four times higher than waters. Plastic pollution, mainly due to microplastics, was associated principally to a domestic input in both waters and sediments of Ticino and Adda Rivers, as well as in sediments of Oglio, while an industrial pollution was found in waters and sediments of Mincio and Oglio waters. Our data clearly highlighted as the monitoring of both matrices provide complementary information for a holistic risk assessment of these emerging contaminants in freshwaters: the aqueous matrix provides an instantaneous picture of contamination, while sediments the history of pollution.

12.
Sci Total Environ ; 912: 169039, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056660

RESUMO

Freshwaters are considered to be the most vulnerable ecosystems facing biological invasions, and the red swamp crayfish (Procambarus clarkii) is one of the most widespread aquatic invasive species in the world. P. clarkii has negative impacts on water quality in the lakes that it invades by, for instance, increasing their turbidity and nutrient concentrations and reducing macrophyte biomass. However, native taxa such as snails and mussels could potentially help to maintain a clear-water status in lakes by grazing on periphyton or by phytoplankton filtration. To examine the potential negative effects of P. clarkii on the clear-water state in lakes dominated by the macrophyte Vallisneria denseserrulata and the potential for native species to buffer these effects, we tested the crayfish impact in the absence and presence of the snail Bellamya aeruginosa and the mussel Sinanodonta woodiana at different biomasses. In the presence of crayfish, total suspended solids, total phosphorus, and chlorophyll a concentrations significantly increased compared to the control treatments without crayfish. However, when crayfish coexisted with snails or mussels, these three environmental variables all decreased in concentration compared to the crayfish-only treatment. Low (500 g/m2) and high (1500 g/m2) snail or mussel biomass had similar buffering effects. Macrophyte biomass in the crayfish and high mussel biomass treatment was 43 % higher than in the crayfish-only treatment. Native molluscs therefore alleviated the negative effects of crayfish on lake water quality and promoted native macrophyte growth. We conclude that a thriving native mollusc community may help in maintaining the clear-water state in lakes following crayfish invasion.


Assuntos
Astacoidea , Ecossistema , Animais , Clorofila A , Qualidade da Água , Biomassa , Lagos , Caramujos
13.
Sci Total Environ ; 912: 169396, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114036

RESUMO

We paired mercury (Hg) concentrations in dragonfly larvae with water chemistry in 29 U.S. national parks to highlight how ecological and biogeochemical context (habitat, dissolved organic carbon [DOC]) influence drivers of Hg bioaccumulation. Although prior studies have defined influences of biogeochemical variables on Hg production and bioaccumulation, it has been challenging to determine their influence across diverse habitats, regions, or biogeochemical conditions within a single study. We compared global (i.e., all sites), habitat-specific, and DOC-class models to illuminate how these controls on biotic Hg vary. Although the suite of important biogeochemical factors across all sites (e.g., aqueous Hg, DOC, sulfate [SO42-], and pH) was consistent with general findings in the literature, contrasting the restricted models revealed more nuanced controls on biosentinel Hg. Comparing habitats, aqueous (filtered) total mercury (THg) and SO42- were important in lentic systems whereas aqueous (filtered) methylmercury (MeHg), DOC, pH, and SO42- were important in lotic and wetland systems. The ability to identify important variables varied among habitats, with less certainty in lentic (model weight (W) = 0.05) than lotic (W = 0.11) or wetland habitats (W = 0.23), suggesting that biogeochemical drivers of bioaccumulation are more variable, or obscured by other aspects of Hg cycling, in these habitats. Results revealed a contrast in the importance of aqueous MeHg versus aqueous THg between DOC-classes: in low-DOC sites (<8.5 mg/L), availability of upstream inputs of MeHg appeared more important for bioaccumulation; in high-DOC sites (>8.5 mg/L) THg was more important, suggesting a link to in-situ controls on bioavailability of Hg for MeHg production. Mercury bioaccumulation (indicated by bioaccumulation factor) was more efficient in low DOC-class sites, likely due to reduced partitioning of aqueous MeHg to DOC. Together, findings highlight substantial variation in the drivers of Hg bioaccumulation and suggest consideration of these factors in natural resource management and decision-making.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Odonatos , Poluentes Químicos da Água , Animais , Mercúrio/análise , Larva , Matéria Orgânica Dissolvida , Bioacumulação , Poluentes Químicos da Água/análise , Ecossistema , Água , Monitoramento Ambiental
14.
Chemosphere ; 344: 140375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804963

RESUMO

Gastropod shells are calcified structures made of several crystal layers. They grow throughout the lifecycle of mollusks by integrating some of the chemical elements present in their environment, including metals. This characteristic means mollusks can be useful bioindicators of metal exposure. The present study aimed to better understand the role of layer composition on metal accumulation. To that end, the gastropods Radix balthica were collected in a French river adjacent to a municipal wastewater treatment plant. Microchemical metal analyses in the different shell layers were performed by Femtosecond-Laser Ablation Inductively Coupled Plasma Mass Spectrometry (Fs-LA-ICP-MS) and analyses of the molecular environment of the metals were performed by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Strontium, Ba and Mn were well distributed within the whole shell and the high concentrations of these elements were found to be related to the aragonite structure of the shell. Copper, Ni, Pb and Zn were mostly present at the outer surfaces of the shell where the organic constituents were more concentrated. The analysis of metal distribution in shell layers could improve our understanding of the relationships between metal exposure and accumulation in mollusks, therefore providing evidences of their use as powerful integrated bioindicator of metal contamination.


Assuntos
Gastrópodes , Animais , Metais/análise , Espectrometria de Massas/métodos , Cobre/análise , Moluscos , Biomarcadores Ambientais
15.
Environ Sci Pollut Res Int ; 30(50): 109643-109658, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37777704

RESUMO

The aims of this study were to investigate the presence, possible sources, and potential ecological risks of synthetic musk fragrances in freshwaters and sediments of the main tributaries of a deep subalpine lake in Northern Italy. The total musk concentrations ranged from few ng L-1 up to values > 500 ng L-1, depending on river characteristics: water flow and the presence of wastewater effluents proved to be the main factors affecting fragrance concentrations. The water flow may indeed dilute fragrance input mainly deriving from treated wastewaters. Good correlations (determination coefficients > 0.60) between synthetic fragrances concentrations and parameters related to anthropogenic impacts confirmed this hypothesis: synthetic fragrances were mainly detected in most polluted rivers crossing urbanized areas. Sediment analysis highlighted accumulation of fragrances in this matrix. Concentrations of synthetic fragrances up to 329 ng g-1 organic carbon were measured in sediments of the most contaminated rivers Boesio and Bardello, which also show the highest nutrient content. The preliminary environmental risk assessment revealed that present levels of synthetic musk fragrances do not pose any risk to the studied environmental compartments. However, a probable medium risk level was evidenced during the dry season in the most contaminated rivers Boesio and Bardello. For these reasons, small rivers draining urbanized watersheds and affected by wastewater effluents should be considered synthetic musk contamination hotspots that warrant further research.


Assuntos
Perfumes , Poluentes Químicos da Água , Odorantes/análise , Águas Residuárias , Água Doce/análise , Rios , Água/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco
16.
Environ Pollut ; 337: 122549, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37730145

RESUMO

Co-contamination of freshwaters by nanoplastics (NPs; ≤ 1 µm) and metals is an emerging concern. Aquatic hyphomycetes play a crucial role as primary decomposers in these ecosystems. However, concurrent impacts of NPs and metals on the cellular and physiological activities of these fungi remain poorly understood. Here, the effects of environmentally realistic concentrations of two types of polystyrene (PS) NPs (bare and -COOH; up to 25 µg L-1) and copper (Cu; up to 50 µg L-1) individually and all possible combinations (NPs types and Cu) on Articulospora tetracladia, a prevalent aquatic hyphomycete, were investigated. Endpoints measured were intracellular reactive oxygen species accumulation, plasma membrane disruption and fungal growth. The results suggest that functionalised (-COOH) NPs enhance Cu adsorption, as revealed by spectroscopic analyses. Notably, NPs, Cu and their co-exposure to A. tetracladia can lead to ROS accumulation and plasma membrane disruption. In most cases, exposure to treatments containing -COOH NPs with Cu showed greater cellular response and suppressed fungal growth. By contrast, exposure to Cu individually showed stimulatory effects on fungal growth. Overall, this study provides novel insight that functionalisation of NPs facilitates metal adsorption, thus modulating the impacts of metals on aquatic fungi.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Cobre/toxicidade , Cobre/química , Microplásticos , Ecossistema , Metais/toxicidade , Água Doce , Poliestirenos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Nanopartículas/química
17.
Sci Total Environ ; 902: 166023, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541516

RESUMO

Microplastics in the aquatic environment can interact with aquatic plants, but the consequences of these interactions are poorly understood. Therefore, the aim of this study was to investigate the effects of microplastics commonly found in the environment, namely polyethylene (PE) fragments, polyacrylonitrile (PAN) fibres, tire wear (TW) particles under a relevant environmental concentration (5000 particles/L) on the growth, cell viability, physiology, and elemental content of the aquatic macrophyte Elodea canadensis. The effects of microplastics were compared to those of natural wood particles. The results showed that all types of microplastics adhered to plant tissues, but the effect on leaves (leaf damage area) was greatest at PE > PAN > TW, while the effect of natural particles was comparable to that of the control. None of the microplastics studied affected plant growth, lipid, carbohydrate, or protein content. Electron transport system activity was significantly higher in plants exposed to PAN fibres and PE fragments, but also when exposed to natural particles, while chlorophyll a content was negatively affected only by PE fragments and TW particles. Elemental analysis of plant tissue showed that in some cases PAN fibres and TW particles caused increased metal content. The results of this study indicated that aquatic macrophytes may respond differently to exposure to microplastics than to natural particles, likely through the combined effects of mechanical damage and chemical stress.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Clorofila A/metabolismo , Hydrocharitaceae/metabolismo , Sobrevivência Celular , Polietileno/metabolismo , Poluentes Químicos da Água/análise
18.
Environ Pollut ; 332: 121959, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271363

RESUMO

The concentration of nanoplastics (NPs) is expected to increase in aquatic environments thus potentially threatening freshwater organisms through interactions with plastic particles that variously float, circulate in the water column or sink into the benthos. Studies into the mechanisms of any NP effects are still scarce, particularly with respect to the regenerative ability of biota for which there is no recognised model organism. The present study therefore aimed to investigate behavioural and regeneration responses of the freshwater planarian Girardia tigrina after 10 days exposed to along a gradient 0.01-10 mg/L of poly (styrene-co-methyl methacrylate) NPs (∼426 ± 175 nm). Exposure to NPs induced a significant reduction in planarian feeding rate even at low concentrations (LOEC of 0.01 mg/L), while head regeneration was delayed in a clear dose response way (LOEC of 0.1 mg/L for blastema length). Planaria locomotion assessed was not affected. Our results highlight the potential adverse effects of exposure to poly (styrene-co-methyl methacrylate) NPs and show that feeding behaviour and regeneration of a freshwater benthic organism can be indicators of the resulting toxicity. Planarians are becoming widely used model organisms in ecotoxicology and can help to address potential effects of plastic polymers on regeneration.


Assuntos
Planárias , Poluentes Químicos da Água , Animais , Microplásticos , Poluentes Químicos da Água/toxicidade , Água Doce , Organismos Aquáticos , Metacrilatos/farmacologia , Estirenos
19.
Sci Total Environ ; 888: 164163, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201834

RESUMO

In this study, we investigated the interactions between titanium dioxide (nTiO2) and zinc oxide (nZnO) nanoparticles and polyethylene microplastics (MPs) with respect to their adsorption and subsequent desorption in aquatic media. Adsorption kinetic models revealed rapid adsorption of nZnO compared to nTiO2, while nTiO2 was adsorbed to a greater extent - four times more nTiO2 (67%) was adsorbed on MPs than nZnO (16%). The low adsorption of nZnO can be explained by the partial dissolution of zinc from nZnO in the form of Zn(II) and/or Zn(II) aqua-hydroxo complexes (e.g. [Zn(OH)]+, [Zn(OH)3]-, [Zn(OH)4]2-), which were not adsorbed on MPs. Adsorption isotherm models indicated that the adsorption process is controlled by physisorption for both nTiO2 and nZnO. The desorption of nTiO2 was low (up to 27%) and not pH dependent, and only nanoparticles were desorbed from the MPs surface. On the other hand, the desorption of nZnO was pH dependent; at a slightly acidic pH (pH = 6), 89% of the adsorbed zinc was desorbed from the MPs surface and the majority were in the form of nanoparticles; at a slightly alkaline pH (pH = 8.3), 72% of the zinc was desorbed, but the majority were in the soluble form of Zn(II) and/or Zn(II) aqua-hydroxo complexes. These results demonstrated the complexity and variability of interactions between MPs and metal engineered nanoparticles and contribute to a better understanding of their fate in the aquatic environment.

20.
Glob Chang Biol ; 29(13): 3759-3780, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021672

RESUMO

Climate and land-use/land-cover change ("global change") are restructuring biodiversity, globally. Broadly, environmental conditions are expected to become warmer, potentially drier (particularly in arid regions), and more anthropogenically developed in the future, with spatiotemporally complex effects on ecological communities. We used functional traits to inform Chesapeake Bay Watershed fish responses to future climate and land-use scenarios (2030, 2060, and 2090). We modeled the future habitat suitability of focal species representative of key trait axes (substrate, flow, temperature, reproduction, and trophic) and used functional and phylogenetic metrics to assess variable assemblage responses across physiographic regions and habitat sizes (headwaters through large rivers). Our focal species analysis projected future habitat suitability gains for carnivorous species with preferences for warm water, pool habitats, and fine or vegetated substrates. At the assemblage level, models projected decreasing habitat suitability for cold-water, rheophilic, and lithophilic individuals but increasing suitability for carnivores in the future across all regions. Projected responses of functional and phylogenetic diversity and redundancy differed among regions. Lowland regions were projected to become less functionally and phylogenetically diverse and more redundant while upland regions (and smaller habitat sizes) were projected to become more diverse and less redundant. Next, we assessed how these model-projected assemblage changes 2005-2030 related to observed time-series trends (1999-2016). Halfway through the initial projecting period (2005-2030), we found observed trends broadly followed modeled patterns of increasing proportions of carnivorous and lithophilic individuals in lowland regions but showed opposing patterns for functional and phylogenetic metrics. Leveraging observed and predicted analyses simultaneously helps elucidate the instances and causes of discrepancies between model predictions and ongoing observed changes. Collectively, results highlight the complexity of global change impacts across broad landscapes that likely relate to differences in assemblages' intrinsic sensitivities and external exposure to stressors.


Assuntos
Biodiversidade , Mudança Climática , Animais , Filogenia , Ecossistema , Peixes/fisiologia , Clima Desértico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...