Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Front Plant Sci ; 15: 1361771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633465

RESUMO

Introduction: Fruit size is an important economic trait affecting jujube fruit quality, which has always been the focus of marker-assisted breeding of jujube traits. However, despite a large number of studies have been carried out, the mechanism and key genes regulating jujube fruit size are mostly unknown. Methods: In this study, we used a new analysis method Quantitative Trait Loci sequencing (QTL-seq) (bulked segregant analysis) to screen the parents 'Yuhong' and 'Jiaocheng 5' with significant phenotypic differences and mixed offspring group with extreme traits of large fruit and small fruit, respectively, and, then, DNA mixed pool sequencing was carried out to further shortening the QTL candidate interval for fruit size trait and excavated candidate genes for controlling fruit size. Results: The candidate intervals related to jujube fruit size were mainly located on chromosomes 1, 5, and 10, and the frequency of chromosome 1 was the highest. Based on the QTL-seq results, the annotation results of ANNOVAR were extracted from 424 SNPs (single-nucleotide polymorphisms) and 164 InDels (insertion-deletion), from which 40 candidate genes were selected, and 37 annotated candidate genes were found in the jujube genome. Four genes (LOC107428904, LOC107415626, LOC125420708, and LOC107418290) that are associated with fruit size growth and development were identified by functional annotation of the genes in NCBI (National Center for Biotechnology Information). The genes can provide a basis for further exploration and identification on genes regulating jujube fruit size. Discussion: In summary, the data obtained in this study revealed that QTL intervals and candidate genes for fruit size at the genomic level provide valuable resources for future functional studies and jujube breeding.

2.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611519

RESUMO

Olive (Olea europaea L.) is one of the major oil fruit tree crops worldwide. However, the mechanisms underlying olive fruit growth remain poorly understood. Here, we examine questions regarding the interaction of endoreduplication, cell division, and cell expansion with olive fruit growth in relation to the final fruit size by measuring fruit diameter, pericarp thickness, cell area, and ploidy level during fruit ontogeny in three olive cultivars with different fruit sizes. The results demonstrate that differences in the fruit size are related to the maximum growth rate between olive cultivars during early fruit growth, about 50 days post-anthesis (DPA). Differences in fruit weight between olive cultivars were found from 35 DPA, while the distinctive fruit shape became detectable from 21 DPA, even though the increase in pericarp thickness became detectable from 7 DPA in the three cultivars. During early fruit growth, intense mitotic activity appeared during the first 21 DPA in the fruit, whereas the highest cell expansion rates occurred from 28 to 42 DPA during this phase, suggesting that olive fruit cell number is determined from 28 DPA in the three cultivars. Moreover, olive fruit of the large-fruited cultivars was enlarged due to relatively higher cell division and expansion rates compared with the small-fruited cultivar. The ploidy level of olive fruit pericarp between early and late growth was different, but similar among olive cultivars, revealing that ploidy levels are not associated with cell size, in terms of different 8C levels during olive fruit growth. In the three olive cultivars, the maximum endoreduplication level (8C) occurred just before strong cell expansion during early fruit growth in fruit pericarp, whereas the cell expansion during late fruit growth occurred without preceding endoreduplication. We conclude that the basis for fruit size differences between olive cultivars is determined mainly by different cell division and expansion rates during the early fruit growth phase. These data provide new findings on the contribution of fruit ploidy and cell size to fruit size in olive and ultimately on the control of olive fruit development.

3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612673

RESUMO

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Assuntos
Cucurbita , Frutas , Frutas/genética , Cucurbita/genética , Multiômica , Regulação para Baixo , Carotenoides , Glucose
4.
Plant J ; 118(6): 1872-1888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481350

RESUMO

As a plant-specific transcription factor, lateral organ boundaries domain (LBD) protein was reported to regulate plant growth and stress response, but the functional research of subfamily II genes is limited. SlMYC2, a master regulator of Jasmonic acid response, has been found to exhibit high expression levels in fruit and has been implicated in the regulation of fruit ripening and resistance to Botrytis. However, its role in fruit expansion remains unknown. In this study, we present evidence that a subfamily II member of LBD, namely SlLBD40, collaborates with SlMYC2 in the regulation of fruit expansion. Overexpression of SlLBD40 significantly promoted fruit growth by promoting mesocarp cell expansion, while knockout of SlLBD40 showed the opposite result. Similarly, SlMYC2 knockout resulted in a significant decrease in cell expansion within the fruit. Genetic analysis indicated that SlLBD40-mediated cell expansion depends on the expression of SlMYC2. SlLBD40 bound to the promoter of SlEXPA5, an expansin gene, but did not activate its expression directly. While, the co-expression of SlMYC2 and SlLBD40 significantly stimulated the activation of SlEXPA5, leading to an increase in fruit size. SlLBD40 interacted with SlMYC2 and enhanced the stability and abundance of SlMYC2. Furthermore, SlMYC2 directly targeted and activated the expression of SlLBD40, which is essential for SlLBD40-mediated fruit expansion. In summary, our research elucidates the role of the interaction between SlLBD40 and SlMYC2 in promoting cell expansion in tomato fruits, thus providing novel insights into the molecular genetics underlying fruit growth.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética
5.
BMC Plant Biol ; 24(1): 184, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475704

RESUMO

Using the blueberry cultivar "Powderblue" after pollination, fruits at different developmental stages were collected for study. The transverse and longitudinal diameters, individual fruit weight, and fruit water content were measured during their development. Employing tissue sectioning and microscopy techniques, we systematically studied the morphological features and anatomical structures of the fruits and seeds at various developmental stages, aiming to elucidate the cytological patterns during blueberry fruit development. The results of our study revealed that the "Powderblue" blueberry fruit growth and development followed a double "S" curve. Mature "Powderblue" blueberries were blue-black in color, elliptical in shape, with five locules, an inferior ovary, and an average fruit weight of 1.73 ± 0.17 g, and a moisture content of 78.865 ± 0.9%. Blueberry fruit flesh cells were densely arranged with no apparent intercellular spaces, and mesocarp cells accounted for 52.06 ± 7.4% of fruit cells. In the early fruit development stages, the fruit flesh cells were rapidly dividing, significantly increasing in number but without greatly affecting the fruit's morphological characteristics. During the later stages of fruit development, the expansion of the fruit flesh cells became prominent, resulting in a noticeable increase in the fruit's dimensions. Except for the epidermal cells, cells in all fruit tissues showed varying degrees of rupture as fruit development progressed, with the extent of cell rupture increasing, becoming increasingly apparent as the fruit gradually softened. Additionally, numerous brachysclereids (stone cells) appeared in the fruit flesh cells. Stone cells are mostly present individually in the fruit flesh tissue, while in the placental tissue, they often group together. The "Powderblue" blueberry seeds were light brown, 4.13 ± 0.42 mm long, 2.2 ± 0.14 mm wide, with each fruit containing 50-60 seeds. The "Powderblue" seeds mainly consisted of the seed coat, endosperm, and embryo. The embryo was located at the chalazal end in the center of the endosperm and was spatially separated. The endosperm, occupying the vast majority of the seed volume, comprised both the chalazal and outer endosperm, and the endosperm developed and matured before the embryo. As the seed developed, the seed coat was gradually lignified and consisted of palisade-like stone cells externally and epidermal layer cells internally.


Assuntos
Mirtilos Azuis (Planta) , Frutas , Gravidez , Feminino , Humanos , Mirtilos Azuis (Planta)/química , Placenta , Sementes , Endosperma
6.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554534

RESUMO

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Assuntos
Frutas , Giberelinas , Reguladores de Crescimento de Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Mol Breed ; 44(1): 1, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222974

RESUMO

Final fruit size of apple (Malus domestica) cultivars is related to both mesocarp cell division and cell expansion during fruit growth, but it is unclear whether the cell division and/or cell enlargement determine most of the differences in fruit size between Malus species. In this study, by using an interspecific hybrid population between Malus asiatica "Zisai Pearl" and Malus domestica cultivar "Red Fuji," we found that the mesocarp cell number was the main causal factor of diversity in fruit size between Malus species. Rapid increase in mesocarp cell number occurred prior to 28 days after anthesis (DAA), while cell size increased gradually after 28 DAA until fruit ripening. Six candidate genes related to auxin signaling or cell cycle were predicted by combining the RNA-seq data and previous QTL data for fruit weight. Two InDels and 10 SNPs in the promoter of a small auxin upregulated RNA gene MdSAUR36 in Zisai Pearl led to a lower promoter activity than that of Red Fuji. One non-synonymous SNP G/T at 379 bp downstream of the ATG codon of MdSAUR36, which was heterozygous in Zisai Pearl, exerted significant genotype effects on fruit weight, length, and width. Transgenic apple calli by over-expressing or RNAi MdSAUR36 confirmed that MdSAUR36 participated in the negative regulation of mesocarp cell division and thus apple fruit size. These results could provide new insights in the molecular mechanism of small fruit size in Malus accession and be potentially used in molecular assisted breeding via interspecific hybridization. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01441-4.

8.
Front Plant Sci ; 14: 1276178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046605

RESUMO

The olive (Olea europaea L.) is the most cultivated tree crop in the Mediterranean and among the most cultivated tree crops worldwide. Olive yield is obtained by the product of fruit number and fruit size; therefore, understanding fruit development, in terms of both number and size, is commercially and scientifically relevant. This article reviews the literature on fruit development, from the flower to the mature fruit, considering factors that affect both fruit size and number. The review focuses on olive but includes literature on other species when relevant. The review brings the different factors affecting different phases of fruit development, addressed separately in the literature, under a single frame of interpretation. It is concluded that the different mechanisms regulating the different phases of fruit development, from pistil abortion to fruit set and fruit size, can be considered as different aspects of the same overall strategy, that is, adjusting fruit load to the available resources while striving to achieve the genetically determined fruit size target and the male and female fitness targets.

9.
Physiol Plant ; 175(6): e14065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148242

RESUMO

For sweet cherry, fruit size is one of the main targets in breeding programs owing to the high market value of larger fruits. KLUH/CYP78A5 is an important regulator of seed/fruit size in several plant species, but its molecular mechanism is largely unknown. In this study, we characterized the function of PavKLUH in the regulation of sweet cherry fruit size. The ectopic overexpression of PavKLUH in Arabidopsis increased the size of its siliques and seeds, whereas virus-induced gene silencing of PavKLUH in sweet cherry significantly decreased fruit size by restricting mesocarp cell expansion. We screened out an AP2/ERF transcription factor containing a B3-like domain, designated as PavRAV2, which was able to physically interact with PavKLUH promoter in a yeast one-hybrid (Y1H) system. In Y1H assays, electrophoretic mobility shift assays, and dual-luciferase reporter analyses, PavRAV2 directly bound to the promoter of PavKLUH in vitro and in vivo, and suppressed PavKLUH expression. Silencing of PavRAV2 resulted in enlarged fruit as a result of enhanced mesocarp cell expansion. Together, our results provide new insights into signaling pathways related to fruit size, and outline a possible mechanism for how the RAV transcription factor directly regulates CYP78A family members to influence fruit size and development.


Assuntos
Prunus avium , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Agric Food Chem ; 71(46): 18046-18058, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37957030

RESUMO

Fruit size is crucial for fruit trees, as it contributes to both quality and yield. However, the underlying mechanism of fruit size regulation remains largely unknown. Taking advantage of using a fruit double-sized bud mutant of Chinese jujube, "Jinkuiwang" and its wild type, "Jinsixiaozao", we carried out a comprehensive study on the mechanism of fruit size development in jujube. Using weighted gene coexpression network analyses, a number of candidate regulators for fruit size including those involved in hormonal signaling pathways, transcription factors, and heat shock proteins were identified. A hub gene named cytokinin oxidase/dehydrogenase 5 (ZjCKX5), responsible for cytokinin degradation, was found to play a negative role in regulating fruit size development, and overexpressing ZjCKX5 in tomato and Arabidopsis resulted in much smaller fruits and dwarf plants. Furthermore, another two hub genes, ZjWRKY23 and ZjWRKY40 transcription factors, were found to participate in fruit size regulation by targeting and downregulating the ZjCKX5 expression. Overexpressing ZjWRKY23 or ZjWRKY40 in tomato led to much larger fruits and promoted plant architecture. Based on these results, a molecular framework for jujube fruit size regulation, namely, ZjWRKY-ZjCKX5 module, was proposed. This study provides a new insight into the molecular networks underlying fruit size regulation.


Assuntos
Frutas , Oxirredutases , Fatores de Transcrição , Ziziphus , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Oxirredutases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ziziphus/genética
11.
Plants (Basel) ; 12(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005729

RESUMO

The cultivated olive (Olea europaea L. subsp. europaea var. europaea) is one of the most valuable fruit trees worldwide. However, the hormonal mechanisms underlying the fruit growth and ripening in olives remain largely uncharacterized. In this study, we investigated the physiological and hormonal changes, by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), as well as the expression patterns of hormone-related genes, using quantitative real-time PCR (qRT-PCR) analysis, during fruit growth and ripening in two olive cultivars, 'Arbequina' and 'Picual', with contrasting fruit size and shape as well as fruit ripening duration. Hormonal profiling revealed that olive fruit growth involves a lowering of auxin (IAA), cytokinin (CKs), and jasmonic acid (JA) levels as well as a rise in salicylic acid (SA) levels from the endocarp lignification to the onset of fruit ripening in both cultivars. During olive fruit ripening, both abscisic acid (ABA) and anthocyanin levels rose, while JA levels fell, and SA levels showed no significant changes in either cultivar. By contrast, differential accumulation patterns of gibberellins (GAs) were found between the two cultivars during olive fruit growth and ripening. GA1 was not detected at either stage of fruit development in 'Arbequina', revealing a specific association between the GA1 and 'Picual', the cultivar with large sized, elongated, and fast-ripening fruit. Moreover, ABA may play a central role in regulating olive fruit ripening through transcriptional regulation of key ABA metabolism genes, whereas the IAA, CK, and GA levels and/or responsiveness differ between olive cultivars during olive fruit ripening. Taken together, the results indicate that the relative absence or presence of endogenous GA1 is associated with differences in fruit morphology and size as well as in the ripening duration in olives. Such detailed knowledge may be of help to design new strategies for effective manipulation of olive fruit size as well as ripening duration.

12.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37818893

RESUMO

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Assuntos
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamanho do Órgão/genética , Gigantismo/genética , Locos de Características Quantitativas/genética , Solanum/genética , Frutas/genética
13.
Am J Bot ; 110(8): e16211, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459470

RESUMO

PREMISE: Variation in fruit and seed traits could originate from selection pressures exerted by frugivores or other ecological factors (adaptive hypotheses) and developmental constraints (by-product hypotheses) or chance. METHODS: We evaluated fruit and leaf traits for nearly 850 plant species from a rainforest in Tinigua Park, Colombia. Through a series of linear regressions controlling for the phylogenetic signal of the traits (minimum N = 542), we tested (1) whether the allometry between seed width and length depends on seed dispersal system (Mazer and Wheelwright's adaptive hypothesis of allometry for species dispersed in the guts of animals = endozoochory) and (2) whether fruit length is associated with leaf length (i.e., Herrera's by-product hypothesis derived from the assumption that both organs develop from homologous structures). RESULTS: We found a strong negative allometric association between seed width and length for seeds of endozoochorous species, as expected; but also, for anemochorous species. We found a positive relationship between fruit and leaf length, but this relationship was not evident for zoochorous species. Fruit size was highly correlated with seed size. CONCLUSIONS: The allometry between seed length and width varied among dispersal systems, supporting that fruit and seed morphology has been modified by interactions with frugivores and by the possibility to rotate for some wind dispersed species. We found some support for the hypothesis on developmental constraints because fruit and leaf size were positively correlated, but the predictive power of the relationship was low (10-15%).


PREMISA: La variación en los rasgos de frutos y semillas de las plantas podría tener su origen en las presiones de selección ejercidas por los frugívoros u otros factores ecológicos (hipótesis adaptativas), así como en limitaciones del desarrollo (hipótesis de subproductos) o en el azar. MÉTODOS: Nosotros evaluamos rasgos de frutos y hojas en cerca de 850 especies de plantas de un bosque húmedo tropical en el Parque Nacional Natural Tinigua, Colombia. Usando una serie de regresiones lineales que controlan por la señal filogenética de dichos rasgos (mínimo N = 542), nosotros probamos (1) si la alometría entre el ancho y largo de la semilla depende del sistema de dispersión de la semilla (i.e., hipótesis adaptativa de Mazer y Wheelwright; en la que se espera una alometría negativa para especies dispersadas por endozoocoria) y (2) si el largo del fruto está asociado con el largo de la hoja (i.e., la hipótesis del subproducto de Herrera derivada de la suposición de que ambos órganos se desarrollan a partir de estructuras homólogas). RESULTADOS: Nosotros encontramos una fuerte asociación alométrica negativa entre el ancho y el largo de las semillas para las semillas de las especies endozoócoras, como era de esperar; pero también, para las especies anemócoras. Nosotros también hallamos una relación positiva entre el largo del fruto y de la hoja, pero esta relación no fue evidente para las especies endozoócoras. Detectamos que el tamaño del fruto esta altamente correlacionado con el tamaño de la semilla. CONCLUSIONES: La alometría entre el largo y el ancho de la semilla varió entre sistemas de dispersión, lo que sugiere que la morfología de frutos y semillas ha sido moldeada por interacciones con frugívoros en el caso de las semillas endozoócoras y por la posibilidad de rotar para algunas especies dispersadas por el viento. Aunque el poder predictivo de la relación entre el tamaño del fruto y de la hoja fue bajo (10-15%), nosotros encontramos un apoyo moderado a la hipótesis sobre las limitaciones del desarrollo, ya que el tamaño del fruto y de la hoja estaban correlacionados positivamente.


Assuntos
Frutas , Dispersão de Sementes , Animais , Frutas/anatomia & histologia , Floresta Úmida , Filogenia , Sementes/anatomia & histologia , Folhas de Planta
14.
Genes (Basel) ; 14(6)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37372313

RESUMO

IL52 is a valuable introgression line obtained from interspecific hybridization between cultivated cucumber (Cucumis sativus L., 2n = 14) and the wild relative species C. hystrix Chakr. (2n = 24). IL52 exhibits high resistance to a number of diseases, including downy mildew, powdery mildew, and angular leaf spot. However, the ovary- and fruit-related traits of IL52 have not been thoroughly investigated. Here, we conducted quantitative trait loci (QTL) mapping for 11 traits related to ovary size, fruit size, and flowering time using a previously developed 155 F7:8 RIL population derived from a cross between CCMC and IL52. In total, 27 QTL associated with the 11 traits were detected, distributed on seven chromosomes. These QTL explained 3.61% to 43.98% of the phenotypic variance. Notably, we identified a major-effect QTL (qOHN4.1) on chromosome 4 associated with the ovary hypanthium neck width and further delimited it into a 114-kb candidate region harboring 13 candidate genes. Furthermore, the QTL qOHN4.1 is co-localized with the QTL detected for ovary length, mature fruit length, and fruit neck length, all residing within the consensus QTL FS4.1, suggesting a plausible pleiotropic effect.


Assuntos
Cucumis sativus , Locos de Características Quantitativas , Cucumis sativus/genética , Frutas/genética , Ovário , Fenótipo
15.
Front Plant Sci ; 14: 1155755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152121

RESUMO

Early fruit growth in peach is characterized by cell production. Cytokinins have established roles in regulating cell division and may regulate cell production during early fruit growth. However, the role of active cytokinins and regulation of their metabolism are not well characterized in the peach fruit. In this study, fruit growth parameters, concentrations of active cytokinin bases and a cytokinin riboside, and expression of three key cytokinin metabolism-related gene families were determined during early fruit growth. Early fruit growth was associated with intensive cell production until around 40 days after full bloom. During the early stages of this period, trans-zeatin (tZ), isopentenyladenine (iP), dihydrozeatin (DHZ) and tZ-riboside (tZR), displayed higher abundance which declined rapidly by 3.5- to 16-fold during the later stages. Changes in concentration of active cytokinin bases were consistent with roles for them in regulating cell production. Expression analyses of members of cytokinin biosynthesis-related gene families, ISOPENTENYL TRANSFERASE (IPT) and LONELY GUY (LOG), further indicated that mechanisms of synthesis of cytokinin metabolites and their activation are functional within the fruit pericarp. Changes in expression of multiple members of the LOG family paralleled changes in active cytokinin concentrations. Specifically, transcript abundance of LOG3 and LOG8 were correlated with concentrations of tZ, and iP and DHZ, respectively, suggesting that the direct activation pathway is an important route for active cytokinin base synthesis during early fruit development. Transcript abundance of two CYTOKININ OXIDASE (CKX) genes, CKX1 and CKX2, was consistent with roles in cytokinin catabolism during later stages of early fruit growth. Together, these data support a role for active cytokinins synthesized in the fruit pericarp in regulating early fruit growth in peach.

16.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240096

RESUMO

Fruit size is one of the essential quality traits and influences the economic value of apricots. To explore the underlying mechanisms of the formation of differences in fruit size in apricots, we performed a comparative analysis of anatomical and transcriptomics dynamics during fruit growth and development in two apricot cultivars with contrasting fruit sizes (large-fruit Prunus armeniaca 'Sungold' and small-fruit P. sibirica 'F43'). Our analysis identified that the difference in fruit size was mainly caused by the difference in cell size between the two apricot cultivars. Compared with 'F43', the transcriptional programs exhibited significant differences in 'Sungold', mainly in the cell expansion period. After analysis, key differentially expressed genes (DEGs) most likely to influence cell size were screened out, including genes involved in auxin signal transduction and cell wall loosening mechanisms. Furthermore, weighted gene co-expression network analysis (WGCNA) revealed that PRE6/bHLH was identified as a hub gene, which interacted with 1 TIR1, 3 AUX/IAAs, 4 SAURs, 3 EXPs, and 1 CEL. Hence, a total of 13 key candidate genes were identified as positive regulators of fruit size in apricots. The results provide new insights into the molecular basis of fruit size control and lay a foundation for future breeding and cultivation of larger fruits in apricot.


Assuntos
Prunus armeniaca , Prunus armeniaca/genética , Frutas , Transcriptoma , Melhoramento Vegetal , Perfilação da Expressão Gênica
17.
Plants (Basel) ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176971

RESUMO

The weather variations around the world are already having a profound impact on agricultural production. This impacts apple production and the quality of the product. Through agricultural precision, growers attempt to optimize both yield and fruit size and quality. Two experiments were conducted using field-grown "Gala" apple trees in Geneva, NY, USA, in 2021 and 2022. Mature apple trees (Malus × domestica Borkh. cv. Ultima "Gala") grafted onto G.11 rootstock planted in 2015 were used for the experiment. Our goal was to establish a relationship between stem water potential (Ψtrunk), which was continuously measured using microtensiometers, and the growth rate of apple fruits, measured continuously using dendrometers throughout the growing season. The second objective was to develop thresholds for Ψtrunk to determine when to irrigate apple trees. The economic impacts of different irrigation regimes were evaluated. Three different water regimes were compared (full irrigation, rainfed and rain exclusion to induce water stress). Trees subjected the rain-exclusion treatment were not irrigated during the whole season, except in the spring (April and May; 126 mm in 2021 and 100 mm in 2022); that is, these trees did not receive water during June, July, August and half of September. Trees subjected to the rainfed treatment received only rainwater (515 mm in 2021 and 382 mm in 2022). The fully irrigated trees received rain but were also irrigated by drip irrigation (515 mm in 2021 and 565 mm in 2022). Moreover, all trees received the same amount of water out of season in autumn and winter (245 mm in 2021 and 283 mm in 2022). The microtensiometer sensors detected differences in Ψtrunk among our treatments over the entire growing season. In both years, experimental trees with the same trunk cross-section area (TCSA) were selected (23-25 cm-2 TCSA), and crop load was adjusted to 7 fruits·cm-2 TCSA in 2021 and 8.5 fruits·cm-2 TCSA in 2022. However, the irrigated trees showed the highest fruit growth rates and final fruit weight (157 g and 70 mm), followed by the rainfed only treatment (132 g and 66 mm), while the rain-exclusion treatment had the lowest fruit growth rate and final fruit size (107 g and 61 mm). The hourly fruit shrinking and swelling rate (mm·h-1) measured with dendrometers and the hourly Ψtrunk (bar) measured with microtensiometers were correlated. We developed a logistic model to correlate Ψtrunk and fruit growth rate (g·h-1), which suggested a critical value of -9.7 bars for Ψtrunk, above which there were no negative effects on fruit growth rate due to water stress in the relatively humid conditions of New York State. A support vector machine model and a multiple regression model were developed to predict daytime hourly Ψtrunk with radiation and VPD as input variables. Yield and fruit size were converted to crop value, which showed that managing water stress with irrigation during dry periods improved crop value in the humid climate of New York State.

18.
Plant Dis ; 107(11): 3403-3413, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37208821

RESUMO

Colletotrichum isolates from apple leaves with symptoms of Glomerella leaf spot (GLS) can cause fruit rot and several small lesion spots, here called Colletotrichum fruit spot (CFS). This work investigated the epidemiological relevance of Colletotrichum species obtained from leaves with GLS in causing diseases in immature apple fruit by comparing different fruit sizes (phenological stages) for symptom development. In the first experiment, five Colletotrichum species were inoculated in 'Gala' (Ø = 5.5 cm) and 'Eva' (Ø = 4.8 cm) fruit in the field (2016/17 season). Subsequently, C. chrysophilum and C. nymphaeae were inoculated in fruit of different sizes (Ø = 2.4 to 6.3 cm) in the field (2017/18 and 2021/22 seasons) and in the laboratory according to the phenological stages of growing fruit. At harvest of the immature inoculated fruit in the field, only CFS symptoms were observed in both cultivars. For Gala, the CFS incidence reached 50% regardless of season, pathogen species, and fruit size. For Eva, CFS symptoms were observed after inoculation with C. melonis in the 2016/17 season and in smaller fruit inoculated with C. chrysophilum and C. nymphaeae in 2021/22. During postharvest, bitter rot symptoms developed, but did not seem to come from CFS symptoms. It can be concluded that the Gala cultivar has a high susceptibility to CFS caused by the two Colletotrichum species of the greatest epidemiological importance for GLS in Brazil in all fruit sizes tested.


Assuntos
Colletotrichum , Malus , Phyllachorales , Colletotrichum/genética , Frutas , Doenças das Plantas
19.
Plant J ; 114(6): 1285-1300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932869

RESUMO

Fruit size and shape are controlled by genes expressed during the early developmental stages of fruit. Although the function of ASYMMETRIC LEAVES 2 (AS2) in promoting leaf adaxial cell fates has been well characterized in Arabidopsis thaliana, the molecular mechanisms conferring freshy fruit development as a spatial-temporal expression gene in tomato pericarp remain unclear. In the present study, we verified the transcription of SlAS2 and SlAS2L, two homologs of AS2, in the pericarp during early fruit development. Disruption of SlAS2 or SlAS2L caused a significant decrease in pericarp thickness as a result of a reduction in the number of pericarp cell layers and cell area, leading to smaller tomato fruit size, which revealed their critical roles in tomato fruit development. In addition, leaves and stamens exhibited severe morphological defects in slas2 and slas2l single mutants, as well as in the double mutants. These results demonstrated the redundant and pleiotropic functions of SlAS2 and SlAS2L in tomato fruit development. Yeast two-hybrid and split-luciferase complementation assays showed that both SlAS2 and SlAS2L physically interact with SlAS1. Molecular analyses further indicated that SlAS2 and SlAS2L regulate various downstream genes in leaf and fruit development, and that some genes participating in the regulation of cell division and cell differentiation in the tomato pericarp are affected by these genes. Our findings demonstrate that SlAS2 and SlAS2L are vital transcription factors required for tomato fruit development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética
20.
Int J Biol Macromol ; 234: 123729, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801296

RESUMO

In higher plants, COP1 (Constitutively Photomorphogenic 1) acts as a central regulator of light-signaling networks and globally conditions the target proteins via the ubiquitin-proteasome pathway. However, the function of COP1-interacting proteins in light-regulated fruit coloration and development remains unknown in Solanaceous plants. Here, a COP1-interacting protein-encoding gene, SmCIP7, expressed specifically in the eggplant (Solanum melongena L.) fruit, was isolated. Gene-specific silencing of SmCIP7 using RNA interference (RNAi) significantly altered fruit coloration, fruit size, flesh browning, and seed yield. SmCIP7-RNAi fruits showed evident repression of the accumulation of anthocyanins and chlorophyll, indicating functional similarities between SmCIP7 and AtCIP7. However, the reduced fruit size and seed yield indicated SmCIP7 had evolved a distinctly new function. With the comprehensive application of HPLC-MS, RNA-seq, qRT-PCR, Y2H, BiFC, LCI, and dual-luciferase reporter system (DLR™), it was found that SmCIP7, a COP1 interactive protein in light signaling promoted anthocyanin accumulation, probably by regulating the transcription of SmTT8. Additionally, the drastic up-regulation of SmYABBY1, a homologous gene of SlFAS, might account for the strongly retarded fruit growth in SmCIP7-RNAi eggplant. Altogether, this study proved that SmCIP7 is an essential regulatory gene to modulate fruit coloration and development, serving as a key gene locus in eggplant molecular breeding.


Assuntos
Frutas , Solanum melongena , Antocianinas/genética , Antocianinas/metabolismo , Solanum melongena/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...