RESUMO
Immobilization of the Geotrichum candidum (CCT 1205) cell with functionalized silica creates promising biocatalysts for production of É-caprolactone. The results obtained by immobilization of the whole cell on SiO2-NH2 and SiO2-SH supports indicate that the presence of reactive functional groups on the support may promote effective chemical bonds with the cell walls resulting the decreased dehydrogenases enzyme activity (5% yield in less than 2h) and consequently, increased Baeyer-Villiger monooxygenases enzyme activity with redacting of 25% of time reaction when is used SiO2-NH2 as support and 50% through use of SiO2-SH as support relative to free cells when cyclohexanone is used as a substrate. The catalysts SiO2-NH2-Geotrichum candidum and SiO2-SH-Geotrichum candidum were recycling and reused in the É-caprolactone synthesis from cyclohexanone, and the biocatalysts promoted a quantitative conversion up to the eighth reaction cycle. KEY POINTS: ⢠Immobilized microorganism is more efficient than free cell in the caprolactone synthesis. ⢠The reaction times for amino and thiol groups in support were 3 h and 2 h, respectively. ⢠These catalysts showed higher É-caprolactone conversion at higher concentrations.
Assuntos
Geotrichum , Dióxido de Silício , Caproatos , LactonasRESUMO
In this study, silica and functionalized silica materials (3-aminopropyl and 3-mercapto derivatives) were successfully used for the removal of the pesticides bentazone and imazapyc from aqueous solutions. Adsorbent materials were characterized by BET isotherms and FT-IR spectroscopy (confirming the functionalization), and their equilibrium adsorption capacity was evaluated at different ionic strengths. It is observed that the maximum adsorption capacities decrease in the order 3-aminopropyl-derivative > silica >3-mercaptopropyl derivative. An increase in ionic strength produces an enhancement in the removal of pesticides. All isotherms are Ib-type and follow the Langmuir model, suggesting a monolayer physical adsorption process.
Assuntos
Dióxido de Silício , Poluentes Químicos da Água , Adsorção , Benzotiadiazinas , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , ÁguaRESUMO
Ion-exchange supports have been prepared via sequential functionalization of silica-based materials with (3Glycidyloxypropyl)trimethoxysilane (GPTMS) (Epx-SiO2) and activation with glycine (Gly-Epx-SiO2) in order to immobilize lipase from Thermomyces lanuginosus (TLL) via adsorption. Rice husk silica (RHS) was selected as support with the aim of comparing its performance with commercial silica (Immobead S60S). Sequential functionalization/activation of SiO2-based supports has been confirmed by AFM, SEM and N2 adsorption-desorption analyses. Maximum TLL adsorption capacities of 14.8⯱â¯0.1â¯mg/g and 16.1⯱â¯0.6â¯mg/g using RHS and Immobead S60S as supports, respectively, have been reached. The Sips isotherm model has been used which was well fitted to experimental data on TLL adsorption. Catalytic activities of immobilized TLL were assayed by olive oil emulsion hydrolysis and butyl stearate synthesis via an esterification reaction. Hydrolytic activity of the biocatalyst prepared with a commercial support (357.6⯱â¯11.2â¯U/g) was slightly higher than that of Gly-Epx-SiO2 prepared with RHS (307.4⯱â¯7.2â¯U/g). On the other hand, both biocatalysts presented similar activity (around 90% conversion within 9-10â¯h of reaction) and reusability after 6 consecutive cycles of butyl stearate synthesis in batch systems.
Assuntos
Biocatálise , Enzimas Imobilizadas/metabolismo , Compostos de Epóxi/química , Eurotiales/enzimologia , Glicina/química , Lipase/metabolismo , Dióxido de Silício/química , Enzimas Imobilizadas/química , Esterificação , Concentração de Íons de Hidrogênio , Hidrólise , Troca Iônica , Lipase/química , Estearatos/químicaRESUMO
Aim: Polyether pores were designed and tetracycline-loaded mesoporous silica materials, with their surface decorated by silver ions, were prepared, with the aim of reaching high antibacterial activity. Meanwhile, mammalian cell cytotoxicity and hemolytic effects were not observed using material concentrations tenfold the ones optimized for the bactericidal tests. Methods: Pore size was tuned by changing the polyether content and the surface was covalently decorated with silver thiolate groups. Results: We showed that the biological activity was enhanced by modulating silver ions and tetracycline releases by tuning silver thiolate group concentration on the silica surface and/or by modulating the pH of the environment. Conclusion: The combined use of tetracycline and silver ions with the mesoporous drug-delivery carrier was a very effective strategy against susceptible and tetracycline-resistant Escherichia coli bacteria.
RESUMO
Chemisorption of Eu3+ and Tb3+ on SBA-15 functionalized with succinic groups has been studied by in situ steady-state fluorescence measurements. The enhancement of the emission sensitive bands indicates that both ions adsorb forming inner-sphere surface complexes. Adsorption is a fast process that attains equilibrium in about 5min. The variation of the peaks maxima (I592 and I616, for europium, and I490 and I545, for terbium) with the total ion concentration is accounted for by the sum of the contributions due to the adsorbed and free ions. The former contribution is langmuirian. At pH 4.5, the respective adsorption constants are 5×105 and 3×105M-1, and the maximum adsorption capacities are 5.10×10-4 and 5.23×10-4molg-1. The mismatch between the latter values and the number of attached carboxylic groups is discussed. Comparison with other functionalized mesoporous silicas indicates that the anchored succinic groups are very efficient for removing lanthanide ions from aqueous solutions.
RESUMO
Lipases from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) wereimmobilized on functionalized silica particles aiming their use in the synthesis of fructose oleate in a tert-butyl alcohol/water system. Silica particles were chemically modified with octyl (OS), octyl plus glutaraldehyde (OSGlu), octyl plus glyoxyl(OSGlx), and octyl plus epoxy groups(OSEpx). PFL was hyperactivated on all functionalized supports (more than 100% recovered activity) using low protein loading (1 mg/g), however, for TLL, this phenomenon was observed only using octyl-silica (OS). All prepared biocatalysts exhibited high stability by incubating in tert-butyl alcohol (half-lives around 50 h at 65 °C). The biocatalysts prepared using OS and OSGlu as supports showed excellent performance in the synthesis of fructose oleate. High estersynthesis was observed when a small amount of water (1%, v/v) was added to the organic phase, allowing an ester productivity until five times (0.88-0.96 g/L.h) higher than in the absence of water (0.18-0.34 g/L.h) under fixed enzyme concentration (0.51 IU/g of solvent). Maximum ester productivity (16.1-18.1 g/L.h) was achieved for 30 min of reaction catalyzed by immobilized lipases on OS and OSGlu at 8.4 IU/mL of solvent. Operational stability tests showed satisfactory stability after four consecutive cycles of reaction.
Assuntos
Enzimas Imobilizadas , Frutose/química , Lipase/metabolismo , Ácido Oleico/síntese química , Dióxido de Silício , Biocatálise , Estabilidade Enzimática , Lipase/química , Modelos Moleculares , Conformação Molecular , Solventes , ÁguaRESUMO
OBJECTIVE: The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. METHODS: Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. RESULTS: The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. SIGNIFICANCE: The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites.