Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.052
Filtrar
1.
Heliyon ; 10(12): e32775, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994106

RESUMO

Background and aim: Citrus production represents an important activity for the national economy and a source of income for farmers in Benin. However, fungal diseases are a major constraint to production intensification. The aim of this study is to assess farmers' perceptions on citrus fungal diseases in production areas in Benin. Methods: A survey was conducted among 417 farmers between July and December 2021 in four major citrus-producing agro-ecological zones (zones V, VI, VII and VIII) to collect their perceptions, knowledge and management practices of citrus fungal diseases. Results: Farmers reported that fungal diseases are one of the main constraints to citrus production, including black spot, anthracnose, brown rot, sooty mold and fruit rot. Among them, black spot disease is the most severe, causing damage to production. According to farmers, symptoms appear on fruit after fruit set, with a very remarkable presence and high incidence at maturity. Although farmers are most of times aware of the damage caused by fungal diseases with adverse consequences on their income, they have a poor knowledge of appropriate phytosanitary products to manage these diseases. Indeed, the majority of farmers (>60 %) use chemical insecticides, which they reported to be ineffective against citrus fungal diseases. Although chemical insecticides are their only recourse, almost 40 % use nothing to control these diseases. Farmers stated that climatic variability is a factor favoring the development of diseases, leading to reduced production. Conclusions: Among the several citrus fungal diseases, black spot is perceived as the most damaging, causing greater yield losses under favorable conditions, coupled with an almost total absence of appropriate control methods. This study contributes to the reorganization of the citrus industry and to decision-making on capacity building for farmers in terms of orchard pest protection, in order to guarantee better production of marketable and exportable fruit.

2.
Open Forum Infect Dis ; 11(6): ofae257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887484

RESUMO

Treatments for emerging and rare invasive fungal diseases (IFDs) represent a critical unmet medical need. For IFDs that occur less frequently than invasive aspergillosis, such as mucormycosis, hyalohyphomycosis, and phaeohyphomycosis, randomized controlled clinical trials are impractical and unlikely to meet urgent public health needs. Understanding regulatory approaches for approval of drugs for rare cancers and rare metabolic diseases could help meet the challenges of studying drugs for rare IFDs. A single-arm, controlled clinical trial with a high-quality external control(s), with confirmatory evidence from nonclinical studies, including pharmacokinetic/pharmacodynamic data in predictive animal models of the disease may support findings of effectiveness of new drugs and biologics. Control populations may include historical controls from published literature, patient registries, and/or contemporaneous external control groups. Continuous engagement among clinicians, industrial sponsors, and regulatory agencies to develop consensus on trial design and innovative development pathways for emergent and rare invasive fungal diseases is important.

3.
Angew Chem Int Ed Engl ; : e202405823, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856634

RESUMO

Invasive fungal disease accounts for ~3.8 million deaths annually, an unacceptable rate that urgently prompts the discovery of new knowledge-driven treatments. We report the use of camelid single-domain nanobodies (Nbs) against fungal ß-1,3-glucanosyltransferases (Gel) involved in ß-1,3-glucan transglycosylation. Crystal structures of two Nbs with Gel4 from Aspergillus fumigatus revealed binding to a dissimilar CBM43 domain and a highly conserved catalytic domain across fungal species, respectively. Anti-Gel4 active site Nb3 showed significant antifungal efficacy in vitro and in vivo prophylactically and therapeutically against different A. fumigatus and Cryptococcus neoformans isolates, reducing the fungal burden and disease severity, thus significantly improving immunocompromised animal survival. Notably, C. deneoformans (serotype D) strains were more susceptible to Nb3 and genetic Gel deletion than C. neoformans (serotype A) strains, indicating a key role for ß-1,3-glucan remodelling in C. deneoformans survival. These findings add new insights about the role of b-1,3-glucan in fungal biology and demonstrate the potential of nanobodies in targeting fungal enzymes to combat invasive fungal diseases.

4.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930506

RESUMO

Biotic stress in cotton plants caused by the phytopathogenic fungus Colletotrichum gossypii var. cephalosporioides triggers symptoms of ramulosis, a disease characterized by necrotic spots on young leaves, followed by death of the affected branch's apical meristem, plant growth paralysis, and stimulation of lateral bud production. Severe cases of ramulosis can cause up to 85% yield losses in cotton plantations. Currently, this disease is controlled exclusively by using fungicides. However, few studies have focused on biological alternatives for mitigating the effects of contamination by C. gossypii var. cephalosporioides on cotton plants. Thus, the hypothesis raised is that endophytic fungi isolated from an Arecaceae species (Butia purpurascens), endemic to the Cerrado biome, have the potential to reduce physiological damage caused by ramulosis, decreasing its severity in these plants. This hypothesis was tested using plants grown from seeds contaminated with the pathogen and inoculated with strains of Gibberella moniliformis (BP10EF), Hamigera insecticola (BP33EF), Codinaeopsis sp. (BP328EF), G. moniliformis (BP335EF), and Aspergillus sp. (BP340EF). C. gossypii var. cephalosporioides is a leaf pathogen; thus, the evaluations were focused on leaf parameters: gas exchange, chlorophyll a fluorescence, and oxidative metabolism. The hypothesis that inoculation with endophytic strains can mitigate physiological and photochemical damage caused by ramulosis in cotton was confirmed, as the fungi improved plant growth and stomatal index and density, increased net photosynthetic rate (A) and carboxylation efficiency (A/Ci), and decreased photochemical stress (ABS/RC and DI0/RC) and oxidative stress by reducing enzyme activity (CAT, SOD, and APX) and the synthesis of malondialdehyde (MDA). Control plants developed leaves with a low adaxial stomatal index and density to reduce colonization of leaf tissues by C. gossypii var. cephalosporioides due to the absence of fungal antagonism. The Codinaeopsis sp. strain BP328EF can efficiently inhibit C. gossypii var. cephalosporioides in vitro (81.11% relative inhibition), improve gas exchange parameters, reduce photochemical stress of chlorophyll-a, and decrease lipid peroxidation in attacked leaves. Thus, BP328EF should be further evaluated for its potential effect as a biological alternative for enhancing the resistance of G. hirsutum plants and minimizing yield losses caused by C. gossypii var. cephalosporioides.

5.
Mol Biol Rep ; 51(1): 708, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824228

RESUMO

BACKGROUND: Groundnut is vulnerable to the major foliar fungal disease viz., late leaf spot (LLS) and rust in kharif season, which results in severe yield losses. Until now, LLS and rust resistance linked markers were developed based on GPBD 4 as a major donor source and were validated in its derivatives only, which restricted their use in marker assisted selection (MAS) involving other donors. METHODS AND RESULTS: The current study focused to validate LLS and rust resistance linked markers employing advanced breeding lines of F6 generation, derived from nine different crosses involving nine diverse parents, to identify potential markers for marker-assisted breeding of LLS and rust resistance in groundnut. Out of 28-trait linked markers used for validation, 8 were polymorphic (28.57%). Marker-trait association (MTA) and Single Marker Analysis (SMA) revealed that the SSR marker pPGPseq5D05 is significantly associated with both LLS (15.8% PVE) and rust (17.5% PVE) resistance, whereas, the marker IPAHM103 is tightly linked with rust resistance (26.8% PVE) alone. In silico analysis revealed that the marker gene for IPAHM103 is a zinc finger protein and the marker gene for pPGPseq5D05 is an ADP-ribosylation factor GTPase-activating protein. Both these protein products impart resistance or tolerance to biotic stress in crop plants. Two other markers namely, GMLQ975 and pPGPseq13A10 were also found to be associated with LLS resistance explaining MTA up to 60%. CONCLUSION: These gene specific markers will enable us to screen more number of germplasm lines or newly developed lines in MAS schemes for LLS and rust resistance using a wide range of resistant sources.


Assuntos
Arachis , Resistência à Doença , Doenças das Plantas , Resistência à Doença/genética , Arachis/genética , Arachis/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Marcadores Genéticos , Melhoramento Vegetal/métodos , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética , Genes de Plantas/genética , Mapeamento Cromossômico/métodos
6.
Front Fungal Biol ; 5: 1338726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711422

RESUMO

Fungal diseases have emerged as a significant global health threat, with the potential to cause widespread outbreaks and significant morbidity and mortality. Anticipating future pandemic fungal diseases is essential for effective preparedness and response strategies. This comprehensive literature review aims to provide a comprehensive analysis of the existing research on this topic. Through an extensive examination of scholarly articles, this review identifies potential fungal pathogens that have the potential to become pandemics in the future. It explores the factors contributing to the emergence and spread of these fungal diseases, including climate change, globalization, and antimicrobial resistance. The review also discusses the challenges in diagnosing and treating these diseases, including limited access to diagnostic tools and antifungal therapies. Furthermore, it examines the strategies and interventions that can be employed to mitigate the impact of future pandemic fungal diseases, such as improved surveillance systems, public health education, and research advancements. The findings of this literature review contribute to our understanding of the potential risks posed by fungal diseases and provide valuable insights for public health professionals and policymakers in effectively preparing for and responding to future pandemic outbreaks. Overall, this review emphasizes the importance of proactive measures and collaborative efforts to anticipate and mitigate the impact of future pandemic fungal diseases.

7.
New Phytol ; 243(2): 537-542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803104

RESUMO

Ten years ago, (black) stem rust - the most damaging of wheat (Triticum aestivum) rusts - re-emerged in western Europe. Disease incidences have since increased in scale and frequency. Here, we investigated the likely underlying causes and used those to propose urgently needed mitigating actions. We report that the first large-scale UK outbreak of the wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt), in 2022 may have been caused by timely arrival of airborne urediniospores from southwest Europe. The drive towards later-maturing wheat varieties in the UK may be exacerbating Pgt incidences, which could have disastrous consequences. Indeed, infection assays showed that two UK Pgt isolates from 2022 could infect over 96% of current UK wheat varieties. We determined that the temperature response data in current disease risk simulation models are outdated. Analysis of germination rates for three current UK Pgt isolates showed substantial variation in temperature response functions, suggesting that the accuracy of disease risk simulations would be substantially enhanced by incorporating data from prevailing Pgt isolates. As Pgt incidences continue to accelerate in western Europe, we advocate for urgent action to curtail Pgt losses and help safeguard future wheat production across the region.


Assuntos
Doenças das Plantas , Caules de Planta , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Europa (Continente) , Caules de Planta/microbiologia , Puccinia/patogenicidade , Puccinia/fisiologia , Temperatura , Basidiomycota/fisiologia , Basidiomycota/patogenicidade , Reino Unido/epidemiologia
8.
J Clin Immunol ; 44(5): 121, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758287

RESUMO

Autosomal recessive CARD9 deficiency can underly deep and superficial fungal diseases. We identified two Japanese patients, suffering from superficial and invasive Candida albicans diseases, carrying biallelic variants of CARD9. Both patients, in addition to another Japanese and two Korean patients who were previously reported, carried the c.820dup CARD9 variant, either in the homozygous (two patients) or heterozygous (three patients) state. The other CARD9 alleles were c.104G > A, c.1534C > T and c.1558del. The c.820dup CARD9 variant has thus been reported, in the homozygous or heterozygous state, in patients originating from China, Japan, or South Korea. The Japanese, Korean, and Chinese patients share a 10 Kb haplotype encompassing the c.820dup CARD9 variant. This variant thus originates from a common ancestor, estimated to have lived less than 4,000 years ago. While phaeohyphomycosis caused by Phialophora spp. was common in the Chinese patients, none of the five patients in our study displayed Phialophora spp.-induced disease. This difference between Chinese and our patients probably results from environmental factors. (161/250).


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Efeito Fundador , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/deficiência , Masculino , Feminino , Candidíase Mucocutânea Crônica/genética , Candidíase Mucocutânea Crônica/diagnóstico , Haplótipos , Mutação/genética , Ásia Oriental , Alelos , Candida albicans/genética , Adulto , Linhagem , Povo Asiático/genética
9.
Antibiotics (Basel) ; 13(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786116

RESUMO

Central nervous system (CNS) lesions, especially invasive fungal diseases (IFDs), in immunocompromised patients pose a great challenge in diagnosis and treatment. We report the case of a 48-year-old man with acute myeloid leukaemia and probable pulmonary aspergillosis, who developed hyposthenia of the left upper limb, after achieving leukaemia remission and while on voriconazole. Magnetic resonance imaging (MRI) showed oedematous CNS lesions with a haemorrhagic component in the right hemisphere with lepto-meningitis. After 2 weeks of antibiotics and amphotericin-B, brain biopsy revealed chronic inflammation with abscess and necrosis, while cultures were negative. Clinical recovery was attained, he was discharged on isavuconazole and allogeneic transplant was postponed, introducing azacitidine as a maintenance therapy. After initial improvement, MRI worsened; brain biopsy was repeated, showing similar histology; and 16S metagenomics sequencing analysis was positive (Veilonella, Pseudomonas). Despite 1 month of meropenem, MRI did not improve. The computer tomography and PET scan excluded extra-cranial infectious-inflammatory sites, and auto-immune genesis (sarcoidosis, histiocytosis, CNS vasculitis) was deemed unlikely due to the histological findings and unilateral lesions. We hypothesised possible IFD with peri-lesion inflammation and methyl-prednisolone was successfully introduced. Steroid tapering is ongoing and isavuconazole discontinuation is planned with close follow-up. In conclusion, the management of CNS complications in immunocompromised patients needs an interdisciplinary approach.

10.
Plants (Basel) ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38592798

RESUMO

The increased cultivation of high THC-containing Cannabis sativa L. (cannabis), particularly in greenhouses, has resulted in a greater incidence of diseases and molds that can negatively affect the growth and quality of the crop. Among them, the most important diseases are root rots (Fusarium and Pythium spp.), bud rot (Botrytis cinerea), powdery mildew (Golovinomyces ambrosiae), cannabis stunt disease (caused by hop latent viroid), and a range of microbes that reduce post-harvest quality. An integrated management approach to reduce the impact of these diseases/microbes requires combining different approaches that target the reproduction, spread, and survival of the associated pathogens, many of which can occur on the same plant simultaneously. These approaches will be discussed in the context of developing an integrated plan to manage the important pathogens of greenhouse-grown cannabis at different stages of plant development. These stages include the maintenance of stock plants, propagation through cuttings, vegetative growth of plants, and flowering. The cultivation of cannabis genotypes with tolerance or resistance to various pathogens is a very important approach, as well as the maintenance of pathogen-free stock plants. When combined with cultural approaches (sanitation, management of irrigation, and monitoring for diseases) and environmental approaches (greenhouse climate modification), a significant reduction in pathogen development and spread can be achieved. The use of preventive applications of microbial biological control agents and reduced-risk biorational products can also reduce disease development at all stages of production in jurisdictions where they are registered for use. The combined use of promising strategies for integrated disease management in cannabis plants during greenhouse production will be reviewed. Future areas for research are identified.

11.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674112

RESUMO

Ascochyta blight and Fusarium root rot are the most serious fungal diseases of pea, caused by D. pinodes and F. avenaceum, respectively. Due to the lack of fully resistant cultivars, we proposed the use of biologically synthesized silver nanoparticles (bio-AgNPs) as a novel protecting agent. In this study, we evaluated the antifungal properties and effectiveness of bio-AgNPs, in in vitro (poisoned food technique; resazurin assay) and in vivo (seedlings infection) experiments, against D. pinodes and F. avenaceum. Moreover, the effects of diseases on changes in the seedlings' metabolic profiles were analyzed. The MIC for spores of both fungi was 125 mg/L, and bio-AgNPs at 200 mg/L most effectively inhibited the mycelium growth of D. pinodes and F. avenaceum (by 45 and 26%, respectively, measured on the 14th day of incubation). The treatment of seedlings with bio-AgNPs or fungicides before inoculation prevented the development of infection. Bio-AgNPs at concentrations of 200 mg/L for D. pinodes and 100 mg/L for F. avenaceum effectively inhibited infections' spread. The comparison of changes in polar metabolites' profiles revealed disturbances in carbon and nitrogen metabolism in pea seedlings by both pathogenic fungi. The involvement of bio-AgNPs in the mobilization of plant metabolism in response to fungal infection is also discussed.


Assuntos
Antifúngicos , Fusarium , Nanopartículas Metálicas , Pisum sativum , Doenças das Plantas , Plântula , Prata , Pisum sativum/microbiologia , Pisum sativum/efeitos dos fármacos , Pisum sativum/metabolismo , Plântula/microbiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Antifúngicos/química , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Prata/química , Prata/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Testes de Sensibilidade Microbiana
12.
Mar Drugs ; 22(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667797

RESUMO

The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.


Assuntos
Antifúngicos , Organismos Aquáticos , Animais , Antifúngicos/farmacologia , Produtos Biológicos/farmacologia , Fungos/efeitos dos fármacos , Metabolismo Secundário
13.
Antimicrob Agents Chemother ; 68(5): e0145523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551346

RESUMO

Fosmanogepix [FMGX, APX001; active form: manogepix (MGX), APX001A] is a first-in-class, intravenous (IV)/oral antifungal currently being evaluated for invasive fungal disease treatment. Data from two phase 1, placebo-controlled studies [IV-oral switch (study 1) and multiple IV doses (study 2)] evaluating FMGX tolerability, and pharmacokinetics (PK) are presented. Healthy adults (study 1: 18-65 years; study 2: 18-55 years) were eligible (randomized 3:1 to FMGX: placebo). Eleven participants completed study 1. In study 2, 51 participants (48 planned + 3 replacement) were enrolled in six cohorts (8 participants each; 34 completed the study). In study 1, overall MGX systemic exposures were comparable from day 1 to day 42 of dosing; steady-state plasma concentrations were achieved in ≤24 h following two IV loading doses (1,000 mg) and exposures maintained after switching [IV (600 mg) to daily oral doses (800 mg)]. FMGX was safe and well-tolerated. In study 2, FMGX IV doses (loading doses twice daily/maintenance doses once daily; 3-h infusion) of 1,500/900 mg (cohort A), 900/900 mg (cohort B), and 1,000/900 mg (cohort C: with ondansetron) were not well-tolerated; most participants reported nausea and infrequent vomiting. FMGX IV doses of 1,000/750 mg (cohort D), 1,000/850 mg (cohort E), and 1,000/900 mg (cohort F: ondansetron prn) were relatively better tolerated. Steady-state systemic exposures were achieved between days 2 and 4. All cohorts had similar geometric mean (GM) concentrations during maintenance dosing and similar GM PK parameters. Dosing regimen evaluated in study 1 was safe, well-tolerated, and may be used for future clinical evaluations.


Assuntos
Antifúngicos , Voluntários Saudáveis , Humanos , Adulto , Masculino , Feminino , Administração Oral , Pessoa de Meia-Idade , Antifúngicos/farmacocinética , Antifúngicos/administração & dosagem , Antifúngicos/efeitos adversos , Antifúngicos/uso terapêutico , Adulto Jovem , Adolescente , Administração Intravenosa , Método Duplo-Cego
14.
J Mycol Med ; 34(2): 101473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493607

RESUMO

Diagnosis and management of fungal infections are challenging in both animals and humans, especially in immunologically weakened hosts. Due to its broad spectrum and safety profile when compared to other antifungals, itraconazole (ITZ) has been widely used in the treatment and prophylaxis of fungal infections, both in human and veterinary medicine. The dose and duration of management depend on factors such as the type of fungal pathogen, the site of infection, sensitivity to ITZ, chronic stages of the disease, the health status of the hosts, pharmacological interactions with other medications and the therapeutic protocol used. In veterinary practice, ITZ doses generally vary between 3 mg/kg and 50 mg/kg, once or twice a day. In humans, doses usually vary between 100 and 400 mg/day. As human and veterinary fungal infections are increasingly associated, and ITZ is one of the main medications used, this review addresses relevant aspects related to the use of this drug in both clinics, including case reports and different clinical aspects available in the literature.


Assuntos
Antifúngicos , Itraconazol , Micoses , Humanos , Antifúngicos/uso terapêutico , Antifúngicos/administração & dosagem , Itraconazol/uso terapêutico , Micoses/tratamento farmacológico , Micoses/veterinária , Micoses/microbiologia , Animais , Medicina Veterinária/métodos
15.
Intensive Care Med ; 50(4): 502-515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512399

RESUMO

PURPOSE: The aim of this document was to develop standardized research definitions of invasive fungal diseases (IFD) in non-neutropenic, adult patients without classical host factors for IFD, admitted to intensive care units (ICUs). METHODS: After a systematic assessment of the diagnostic performance for IFD in the target population of already existing definitions and laboratory tests, consensus definitions were developed by a panel of experts using the RAND/UCLA appropriateness method. RESULTS: Standardized research definitions were developed for proven invasive candidiasis, probable deep-seated candidiasis, proven invasive aspergillosis, probable invasive pulmonary aspergillosis, and probable tracheobronchial aspergillosis. The limited evidence on the performance of existing definitions and laboratory tests for the diagnosis of IFD other than candidiasis and aspergillosis precluded the development of dedicated definitions, at least pending further data. The standardized definitions provided in the present document are aimed to speed-up the design, and increase the feasibility, of future comparative research studies.


Assuntos
Aspergilose , Candidíase Invasiva , Infecções Fúngicas Invasivas , Adulto , Humanos , Consenso , Infecções Fúngicas Invasivas/diagnóstico , Aspergilose/diagnóstico , Candidíase Invasiva/diagnóstico , Unidades de Terapia Intensiva
16.
Front Immunol ; 15: 1349027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550600

RESUMO

Invasive fungal diseases have profound effects upon human health and are on increase globally. The World Health Organization (WHO) in 2022 published the fungal priority list calling for improved public health interventions and advance research. Drosophila melanogaster presents an excellent model system to dissect host-pathogen interactions and has been proved valuable to study immunopathogenesis of fungal diseases. In this review we highlight the recent advances in fungal-Drosophila interplay with an emphasis on the recently published WHO's fungal priority list and we focus on available tools and technologies.


Assuntos
Drosophila melanogaster , Micoses , Animais , Humanos , Drosophila melanogaster/microbiologia , Drosophila , Saúde Pública
17.
Microorganisms ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543604

RESUMO

Over 60% of emerging infectious diseases in humans are zoonotic, often originating from wild animals. This long-standing ecological phenomenon has accelerated due to human-induced environmental changes. Recent data show a significant increase in fungal infections, with 6.5 million cases annually leading to 3.7 million deaths, indicating their growing impact on global health. Despite the vast diversity of fungal species, only a few are known to infect humans and marine mammals. Fungal zoonoses, especially those involving marine mammals like cetaceans, are of global public health concern. Increased human-cetacean interactions, in both professional and recreational settings, pose risks for zoonotic disease transmission. This review focuses on the epidemiology, clinical manifestations, and zoonotic potential of major fungal pathogens shared in humans and cetaceans, highlighting their interspecies transmission capability and the challenges posed by antifungal resistance and environmental changes. It underscores the need for enhanced awareness and preventative measures in high-risk settings to protect public health and marine ecosystems.

18.
Plant Dis ; : PDIS01240251RE, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38468134

RESUMO

Field surveys conducted during 2021 and 2022 in Western Sicily, Italy, revealed the presence of common fig trees severely affected by trunk and crown root canker and bark cracking. Moreover, in conjunction with the symptomatic tissues, the same surveyed plants showed the presence of bark beetle holes and internal wood galleries. The predominant beetle Criphalus dilutus was previously reported attacking figs in Sicily. Phylogenetic analyses based on multilocus DNA data showed the presence of different fungal taxa associated with disease symptoms, including Botryosphaeria dothidea, Ceratocystis ficicola, Diaporthe foeniculina, Neocosmospora bostrycoides, N. perseae, and Neofusicoccum luteum. Pathogenicity tests conducted on potted fig plants showed that all the species were pathogenic to fig, with C. ficicola and Neocosmospora spp. as the most aggressive fungal species. Moreover, isolations conducted from the bodies of emerging adult insects recovered from disease samples confirmed the presence of C. ficicola and Neocosmospora spp., suggesting the potential involvement of C. dilutus in their dissemination.

19.
Ther Adv Infect Dis ; 11: 20499361241228345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328511

RESUMO

Background: It is of utmost importance to monitor any change in the epidemiology of fungal diseases that may arise from a change in the number of the at-risk population or the availability of local data. Objective: We sought to update the 2015 publication on the incidence and prevalence of serious fungal diseases in Uganda. Methods: Using the Leading International Fungal Education methodology, we reviewed published data on fungal diseases and drivers of fungal diseases in Uganda. Regional or global data were used where there were no Ugandan data. Results: With a population of ~45 million, we estimate the annual burden of serious fungal diseases at 4,099,357 cases (about 9%). We estimated the burden of candidiasis as follows: recurrent Candida vaginitis (656,340 cases), oral candidiasis (29,057 cases), and esophageal candidiasis (74,686 cases) in HIV-infected people. Cryptococcal meningitis annual incidence is estimated at 5553 cases, Pneumocystis pneumonia at 4604 cases in adults and 2100 cases in children. For aspergillosis syndromes, invasive aspergillosis annual incidence (3607 cases), chronic pulmonary aspergillosis (26,765 annual cases and 63,574 5-year-period prevalent cases), and prevalence of allergic bronchopulmonary aspergillosis at 75,931 cases, and severe asthma with fungal sensitization at 100,228 cases. Tinea capitis is common with 3,047,989 prevalent cases. For other mycoses, we estimate the annual incidence of histoplasmosis to be 646 cases and mucormycosis at 9 cases. Conclusion: Serious fungal diseases affect nearly 9% of Ugandans every year. Tuberculosis and HIV remain the most important predisposition to acute fungal infection necessitating accelerated preventive, diagnostic, and therapeutic interventions for the management of these diseases.


How common are serious fungal infections in Uganda? Why was the study done? This study was conducted to provide an updated understanding of the occurrence and impact of serious fungal diseases in Uganda. The aim was to monitor changes in the epidemiology of fungal diseases related to shifts in the at-risk population or the availability of local data. What did the researchers do? Utilizing the Leading International Fungal Education methodology, the research team systematically reviewed published data on fungal diseases in Uganda. In instances where Ugandan data was unavailable, regional, or global data were incorporated. This method allowed for a thorough examination of the incidence and prevalence of various serious fungal diseases, considering the local context. What did the researchers find? With a population of approximately 45 million, the study estimated that nearly 9% of Ugandans, totalling around 4,099,357 individuals, are affected by serious fungal diseases annually. Notable findings include the prevalence of recurrent Candida vaginitis, oral candidiasis, and oesophageal candidiasis in HIV-infected individuals. Cryptococcal meningitis and Pneumocystis pneumonia were identified as significant contributors, along with various aspergillosis syndromes and widespread cases of tinea capitis. What do the findings mean? These findings underscore the substantial impact of serious fungal diseases on the health of almost 9% of the Ugandan population each year. Recognizing tuberculosis and HIV as major predisposing factors, the study calls for urgent interventions to prevent, diagnose, and treat these diseases effectively. The identified targets, including improved access to essential antifungal medications, training of health care workers on fungal diseases, and increasing access to essential diagnostics. These interventions can significantly contribute to improving public health outcomes in Uganda.

20.
Plant Physiol Biochem ; 207: 108421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335887

RESUMO

Plant fungal diseases impose a formidable challenge for global agricultural productivity, a meticulous examination of host-pathogen interactions. In this intricate study, an exhaustive investigation was conducted on infected tomatoes obtained from Egyptian fields, leading to the precise molecular identification of the fungal isolate as Alternaria alternata (OP881811), and the isolate showed high identity with Chinese isolates (ON973896 and ON790502). Subsequently, fourteen diverse tomato cultivars; Cv Ferment, Cv 103, Cv Damber, Cv 186, Cv 4094, Cv Angham, Cv N 17, Cv Gesma, Cv 010, Cv branch, cv 2020, Cv 023, Cv Gana and Cv 380 were meticulously assessed to discern their susceptibility levels upon inoculation with Alternaria alternata. Thorough scrutiny of disease symptom manifestation and the extent of tomato leaf damage ensued, enabling a comprehensive evaluation of cultivar responses. Results unveiled a spectrum of plant susceptibility, with three cultivars exhibiting heightened vulnerability (Cv Ferment, Cv 103 and Cv Damber), five cultivars displaying moderate susceptibility (Cv 186, Cv 4094, Cv Angham, Cv N 17 and Cv Gesma), and six cultivars demonstrating remarkable resilience to the pathogen (Cv 010, Cv branch, cv, 2020; Cv 023, Cv Gana and Cv 380). In order to gain a thorough understanding of the underlying physiological patterns indicative of plant resistance against A. alternata, an in-depth exploration of polyphenols, flavonoids, and antioxidant enzymes ensued. These key indicators were closely examined, offering valuable insights into the interplay between plant physiology and pathogen response. Robust correlations emerged, with higher contents of these compounds correlating with heightened susceptibility, while lower levels were indicative of enhanced plant tolerance. In tandem with the physiological assessment, a thorough investigation of four pivotal defensive genes (PR5, PPO, PR3, and POX) was undertaken, employing cutting-edge Real-Time PCR technology. Gene expression profiles displayed intriguing variations across the evaluated tomato cultivars, ultimately facilitating the classification of cultivars into distinct groups based on their levels of resistance, moderate susceptibility, or heightened sensitivity. By unravelling the intricate dynamics of plant susceptibility, physiological responses, and patterns of gene expression, this comprehensive study paves the way for targeted strategies to combat plant fungal diseases. The findings contribute valuable insights into host-pathogen interactions and empower agricultural stakeholders with the knowledge required to fortify crop resilience and safeguard global food security.


Assuntos
Micoses , Solanum lycopersicum , Solanum lycopersicum/genética , Estresse Fisiológico , Alternaria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...