RESUMO
Contamination by polycyclic aromatic hydrocarbons (PAHs) is an urgent environmental concern, given its atmospheric dispersion and deposition in water bodies and soils. These compounds and their nitrated and oxygenated derivatives, which can exhibit high toxicities, are prioritized in environmental analysis contexts. Amid the demand for precise analytical techniques, comprehensive two-dimensional chromatography coupled with mass spectrometry (GCxGC/Q-TOFMS) has emerged as a promising tool, especially in the face of challenges like co-elution. This study introduces an innovation in the pre-concentration and detection of PAHs using an extraction fiber based on polydimethylsiloxane (PDMS), offering greater robustness and versatility. The proposed technique, termed in-tube extraction, was developed and optimized to effectively retain PAHs and their derivatives in aqueous media, followed by GCxGC/Q-TOFMS determination. Fiber characterization, using techniques such as TG, DTG, FTIR, and SEM, confirmed the hydrophobic compounds retention properties of the PDMS. The determination method was validated, pointing to a significant advancement in the detection and analysis of PAHs in the environment, and proved effective even for traces of these compounds. The results showed that the detection limits (LOD) and quantification limits (LOQ) ranged from 0.07 ng L-1 to 1.50 ng L-1 and 0.33 ng L-1 to 6.65 ng L-1, respectively; recovery ranged between 72 % and 117 %; and the precision intraday and interday ranged from 1 % to 20 %. The fibers were calibrated in the laboratory, with exposure times for analysis in the equilibrium region ranging from 3 to 10 days. The partition coefficients between PDMS and water were also evaluated, showing logarithm values ranging from 2.78 to 5.98. The fibers were applied to the analysis of real water samples, demonstrating high capacity. Additionally, given the growing demand for sustainable methods, the approach presented here incorporates green chemistry principles, providing an efficient and eco-friendly solution to the current chemical analysis scenario.
RESUMO
The digital twin (DT), which involves creating a virtual replica of a physical asset or system, has emerged as a transformative set of tools across various industries. In the oil and gas (O&G) industry, the development of DTs represents a significant evolution in how companies manage complex operations, enhance safety, and optimize decision-making processes. Despite these significant advancements, the underlying tools, technologies, and frameworks for developing DTs in O&G applications remain non-standardized and unfamiliar to many O&G practitioners, highlighting the need for a systematic literature review (SLR) on the topic. Thus, this paper offers an SLR of the existing literature on DT development for O&G from 2018 onwards, utilizing Scopus and Web of Science Core Collection. We provide a comprehensive overview of this field, demonstrate how it is evolving, and highlight standard practices and research opportunities in the area. We perform broad classifications of the 98 studies, categorizing the DTs by their development methodologies, implementation objectives, data acquisition, asset digital development, data integration and preprocessing, data analysis and modeling, evaluation and validation, and deployment tools. We also include a bibliometric analysis of the selected papers, highlighting trends and key contributors. Given the increasing number of new DT developments in O&G and the many new technologies available, we hope to provide guidance on the topic and promote knowledge production and growth concerning the development of DTs for O&G.
RESUMO
Water deficiency and potential drought periods could be important ecological factors influencing cultivation areas and productivity once different crops are established. The principal supply of vegetable oil for oil crops is oil palm, and new challenges are emerging in the face of climatic changes. This study investigated the photosynthetic performance of 12 genotypes of Elaeis exposed to drought stress under controlled conditions. The assay included genotypes of Elaeis guineensis, Elaeis oleifera, and the interspecific O×G hybrid (E. oleifera × E. guineensis). The principal results showed that the E. guineensis genotype was the most efficient at achieving photosynthesis under drought stress conditions, followed by the hybrid and E. oleifera genotypes. The physiological parameters showed good prospects for vegetal breeding with different O×G hybrids, mainly because of their ability to maintain the equilibrium between CO2 assimilation and stomatal aperture. We validated 11 genes associated with drought tolerance, but no differences were detected. These results indicate that no allelic variants were represented in the RNA during sampling for the validated genotypes. In conclusion, this study helps to define genotypes that can be used as parental lines for oil palm improvement. The gas exchange data showed that drought stress tolerance could define guidelines to incorporate the available genetic resources in breeding programs across the early selection in nursery stages.
RESUMO
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L'Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off.
RESUMO
Sulfur is an essential nutrient for various physiological processes, including protein synthesis and enzyme activation. We aimed to evaluate how S-benzyl-L-cysteine (SBC), an inhibitor of the sulfur assimilation pathway, affects maize plants' growth, photosynthesis, and leaf proteomic profile. Thus, maize plants were grown for 14 days in vermiculite supplemented with SBC. Photosynthesis was assessed using light and CO2 response curves and chlorophyll a fluorescence. Leaf proteome analysis was conducted to evaluate photosynthetic protein biosynthesis, and ROS content was quantified to assess oxidative stress. Applying SBC resulted in a significant decrease in the growth of maize plants. The gas exchange analysis revealed that maize plants exhibited a diminished rate of CO2 assimilation attributable to both stomatal and non-stomatal limitations. Furthermore, SBC suppressed the activity of important elements involved in the photosynthetic electron transport chain (including photosystems I and II, cytochrome b6f, and ATP synthase) and enzymes responsible for the Calvin cycle, some of which have sulfur-containing prosthetic groups. Consequently, the diminished electron flow rate resulted in a substantial increase in the levels of ROS within the leaves. Our research highlights the crucial role of SBC in disrupting maize photosynthesis by limiting L-cysteine and assimilated sulfur availability, which are essential for the synthesis of protein and prosthetic groups and photosynthetic processes, emphasizing the potential of OAS-TL as a new herbicide site of action.
RESUMO
Training is instrumental in identifying and selecting cattle that exhibit greater cooperation with experimental conditions required in flow respirometry assays, like restraint and the use of a valved facial mask. In our study, a tailored training protocol for Nellore cattle facilitated their participation in flow respirometry assays with a valved facial mask. Over 127 days, 30 entire Nellore males, weighing 450 ± 25 kg and averaging 32 ± 2 months, underwent training from May to September 2022. The regimen involved gradually altering the animals' environment and providing positive reinforcement, divided into three phases. Physiological and behavioral responses to containment routines and facial mask use were meticulously assessed. Principal component analyses revealed dissimilarity patterns among the animals. Animals classified as less reactive showed increased acceptance of handling, reduced reactions to weighing, and greater tolerance of the facial mask. In the final phase, the least reactive animals tolerated wearing a valved mask for extended periods without notable changes in respiratory rate. The training protocol effectively identified and selected Nellore cattle displaying enhanced cooperation with restraint and mask use during flow respirometry assays, without apparent behavioral or physiological alterations.
RESUMO
OBJECTIVE: This work aimed to promote the interaction of a modified gas vesicle (GV) with cathepsin B (CTSB) protease and analysed their backscattered signal by ultrasound (US). METHODS: We modified the sequence of the gene coding for GvpC to contain a CTSB cleavage and expressed the protein in an Escherichia coli recombinant system. The protein was purified and added to GVs preparations in which the original GvpC was removed (ΔGV), constituting the modified GV (GV*). Western blot testing was used to compare GVs with GvpC and engineered GvpC at starting (T0) and after 24 h (T24) reacting with CTSB. A 21 MHz US B-mode and non-linear contrast mode (5% total power) imaged US phantoms having samples of GVwt, ΔGV (stripped GV), GV* and CTSB + GV*. Also, a 21 MHz US B-mode imaged US phantoms having a tumour cell line extracellular fraction (TCEF) and the TCEF + GV* sample. A 100% total US power was applied to collapse the GV structure. RESULTS: On Western blotting, we detected a decrease in engineered GvpC levels 24 h after the incubation of GV* with CTSB, compared with the concentration at T0, suggesting that CTSB cleaved the engineered GvpC. Regions-of-interest over image of phantom cross-sections were determined and the B-mode image mean grey-level intensity resulted in a significant (p < 0.05) increase comparing CTSB + GV* with PBS (control), GVwt, ΔGV and GV*. Non-linear mode image grey-level intensity from CTSB + GV* increased by 11.79, 7.86 and 14.75 dB from samples containing GVwt, ΔGV and GV*, respectively. GV preparations incubated with TCEF and the TCEF + GV* sample showed an increase of 81% in signal compared with TCEF + GVwt. CONCLUSION: The increased US backscattered signal intensity suggests GVs as a potential biosensor for protease activity, possibly aiding the detection of protease-rich tissue regions.
RESUMO
Resumen El análisis de los ácidos orgánicos urinarios juega un papel crucial en el diagnóstico y seguimiento de pacientes con trastornos metabólicos congénitos. La falta de datos completos, las variaciones en los hábitos alimentarios entre países y el aumento del consumo de alimentos procesados subrayan la necesidad de realizar investigaciones actualizadas. Con el fin de establecer los intervalos de confianza y medianas de ácidos orgánicos urinarios se evaluaron mediante cromatografía gaseosa acoplada a espectrometría de masas, 125 muestras de orina de pacientes sanos, con edades comprendidas entre 2 días y 13 años. Los resultados fueron analizados teniendo en cuenta el grupo etario, y evidenciaron que las concentraciones de la mayoría de los ácidos orgánicos urinarios varían de acuerdo a la edad, lo que enfatiza la importancia de los valores de referencia emparejados con la edad para interpretar los datos de los pacientes. Existen pocos informes en esta área; sin embargo, la comparación de estos resultados con los valores de referencia informados por otros trabajos muestra una concordancia razonable y las pocas disparidades podrían atribuirse a factores genéticos o influencias dietéticas. Se presentan resultados e interpretaciones de niños previamente diagnosticados con trastornos metabólicos y otras afecciones, lo que confirma la confiabilidad de nuestros datos y métodos analíticos. Este estudio proporciona datos de referencia esenciales para los profesionales clínicos, destaca la importancia de los valores de referencia específicos de la edad para diagnosticar y tratar con precisión a pacientes con trastornos metabólicos y sirve como recurso fundamental para futuras investigaciones en este campo.
Abstract Analysis of urinary organic acids plays a crucial role in the diagnosis and monitoring of patients with congenital metabolic disorders. The lack of complete data, variations in dietary habits between countries, and increasing consumption of processed foods highlight the need for up-to-date research. In order to establish the confidence intervals and medians of urinary organic acids, 125 urine samples from healthy patients, aged between 2 days and 13 years, were evaluated by gas chromatography coupled to mass spectrometry. The results were analysed taking into account the age group, showing that the concentrations of most urinary organic acids vary according to age, which emphasises the importance of paired age reference values to interpret patient data. There are few reports in this area; however, comparing our results with those reference values reported by other papers demonstrates reasonable agreement, and minor disparities could be attributed to genetic factors or dietary influences. Results and interpretations from children previously diagnosed with metabolic disorders and other conditions are presented, confirming the reliability of our data and analytical methods. This study provides essential reference data for clinicians, highlighting the importance of age-specific reference values to accurately diagnose and treat patients with metabolic disorders and serves as a critical resource for future research in this field.
Resumo A análise dos ácidos orgânicos urinários desempenha um papel crucial no diagnóstico e monitoramento de pacientes com distúrbios metabólicos congênitos. A falta de dados completos, as variações nos hábitos alimentares entre países e o aumento do consumo de alimentos processados destacam a necessidade de realizar pesquisas atualizadas. Para estabelecer os intervalos de confiança e medianas de ácidos orgânicos urinários, 125 amostras de urina de pacientes saudáveis, com idades entre 2 dias e 13 anos, foram avaliadas por cromatografia gasosa acoplada à espectrometria de massa. Os resultados foram analisados levando em consideração o grupo etário, evidenciando que as concentrações da maioria dos ácidos orgânicos urinários variam de acordo com a idade, o que destaca a importância dos valores de referência pareados com a idade para interpretar os dados dos pacientes. Há poucos relatos nesta área; no entanto, a comparação destes resultados com os valores de referência informados por outros trabalhos demonstra uma concordância razoável, e as poucas disparidades poderiam ser atribuídas a fatores genéticos ou influências dietéticas. São apresentados resultados e interpretações de crianças previamente diagnosticadas com distúrbios metabólicos e outras condições, o que confirma a confiabilidade de nossos dados e métodos analíticos. Este estudo fornece dados de referência essenciais para profissionais clínicos, enfatizando a importância dos valores de referência específicos da idade para diagnosticar e tratar com precisão pacientes com distúrbios metabólicos, e serve como recurso fundamental para futuras pesquisas nesse campo.
RESUMO
This study investigated the deactivation and regeneration of hierarchical zeolites in vacuum gas oil conversion, aiming to reach the equilibrium state seen in fluidized bed catalytic cracking (FCC). The research utilized various characterization techniques to analyze the properties of zeolites before and after coking and regeneration. Zeolite Y-0.20-S was found to have the highest gasoline selectivity and quality, mirroring industrial yields, and displayed notable stability across deactivation/regeneration cycles. Higher mesopore concentration in zeolites led to increased coke selectivity and better resistance to deactivation. The study observed a dominance of aromatic coke with a higher degree of condensation in these zeolites. Despite coke deposition affecting acid and textural properties, the regeneration process effectively restored these characteristics, proving its efficiency. The zeolites with greater mesoporosity retained their fundamental properties responsible for activity and selectivity, highlighting the importance of selecting materials that provide high conversions and maintain stability and product selectivity over multiple cycles. The Y-0.20-S zeolite, in particular, was identified as a promising candidate for commercial catalyst development for gasoline production, contributing to the FCC process's energy efficiency.
RESUMO
This study aimed to evaluate the toxicity of Piper hispidinervum essential oil (PHEO) against 11 Brazilian populations of Sitophilus zeamais (Coleoptera: Curculionidae). The effects of sublethal doses of PHEO on the behavior (walking and flying), respiration, and population growth (ri) of the insect populations were investigated. PHEO toxicity was determined through concentration-mortality bioassays, with mortality curves established using increasing PHEO concentrations ranging from 140.00 to 1000.00 µL kg-1. Behavior was evaluated based on walking distance, walking time, walking speed, walking time proportion, flight height, and flight takeoff success. Respiration was measured via the respiratory rate, while population growth (ri) was assessed through the instantaneous growth rate. All 11 populations of S. zeamais were susceptible to PHEO, showing no signs of resistance. The populations exhibited varying behavioral and physiological responses to sublethal exposure to PHEO, indicating different mitigation strategies. The results confirm that PHEO possesses insecticidal potential for controlling S. zeamais populations. However, the observed behavioral and physiological responses should be considered when establishing control measures in pest management programs for stored products.
Assuntos
Inseticidas , Óleos Voláteis , Piper , Gorgulhos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Gorgulhos/efeitos dos fármacos , Gorgulhos/fisiologia , Piper/química , Inseticidas/farmacologia , Inseticidas/toxicidade , Comportamento Animal/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/químicaRESUMO
Outcrops play an important role in groundwater recharge. Understanding groundwater origins, dynamics and its correlation with different water sources is essential for effective water resources management and planning in terms of quantity and quality. In the case of the Guarani Aquifer System (GAS) outcrop areas are particularly vulnerable to groundwater pollution due to direct recharge processes. This study focuses on the Alto Jacaré-Pepira sub-basin, a watershed near Brotas, a city in the central region of the state of São Paulo, Brazil, where groundwater is vital for supporting tourism, agriculture, urban water supply, creeks, river and wetlands. The area has a humid tropical climate with periods of both intense rainfall and drought, and the rivers remain perennial throughout the year. Therefore, the aim of this study is to investigate the interconnections between a spring and its potential sources of contribution, namely rain and groundwater, in order to elucidate the relationships between the different water sources. To achieve this, on-site monitoring of groundwater depth, rainfall amount, and stable isotope ratios (deuterium (2H) and oxygen-18 (18O)) from rain, spring discharge, and a monitoring well was carried out from 2013 to 2021. The results indicate that the mean and standard deviations for δ18O in rainwater exhibit higher variability, resulting in -4.49 ± 3.18 VSMOW, while δ18O values from the well show minor variations, similar to those of the spring, recording -7.25 ± 0.32 and -6.94 ± 0.28 VSMOW, respectively. The mixing model's outcomes reveal seasonal variations in water sources contribution and indicate that groundwater accounts for approximately 80 % of spring discharge throughout the year. Incorporating stable isotopes into hydrological monitoring provides valuable data for complementing watershed analysis. The values obtained support the significance of the aquifer as a primary source, thereby offering critical insights into stream dynamics of the region.
Assuntos
Deutério , Monitoramento Ambiental , Água Subterrânea , Isótopos de Oxigênio , Chuva , Água Subterrânea/química , Água Subterrânea/análise , Chuva/química , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Brasil , Deutério/análise , Estações do Ano , Modelos Teóricos , Movimentos da ÁguaRESUMO
The increase in the negative effects of global change promotes the search for alternatives to supply the demand for food worldwide aligned with the Sustainable Development Goals (SDGs) to ensure food security. Animal protein, which is a main source of nutrients in the diet of today's society, especially beef, which is one of the most demanded products nowadays, has been criticized not only for its high water consumption and land occupation for production but also for the emission of greenhouse gases (GHG) from enteric methane generated in the fermentation process within the bovine rumen and deforestation for the adaptation of pastures. This study is mainly motivated by the lack of quantifiable scientific information in Colombia on the environmental impacts of beef production. Therefore, it is intended to estimate some of the impacts of beef production in extensive systems using the life cycle assessment (LCA) method under a particular scenario considering all the production phases (from raw material to fattening, where the cattle are ready to be slaughtered). The study was conducted with data supplied by a farm in Antioquia, Colombia, and the functional unit (FU) was defined as 1 kg of live weight (LW). The scope of this study was gate-to-gate. "The 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories" (IPCC 2006; IPCC 2019) was used to calculate methane and nitrous oxide emissions. LCA modeling was developed with Ecoinvent database v3.8 and the Umberto LCA + software. It was found that the most affected category of damage was ecosystem quality, which represents 77% of the total, followed by human health at 17% and resources at 6%. The category impact of agricultural land occupation is the one that represents the most significant contribution to the ecosystem quality endpoint, with a percentage of 87%, due to the soil's compaction and the loss of the soil's properties. Additionally, the obtained carbon footprint for the system was 28.9 kg of CO2-eq/kg LW.
Assuntos
Gases de Efeito Estufa , Colômbia , Bovinos , Animais , Gases de Efeito Estufa/análise , Meio Ambiente , MetanoRESUMO
INTRODUCTION: Bisphenol A (BPA), an organic compound used to produce polycarbonate plastics and epoxy resins, has become a ubiquitous contaminant due to its high-volume production and constant release to the environment. Plant metabolomics can trace the stress effects induced by environmental contaminants to the variation of specific metabolites, making it an alternative way to study pollutants toxicity to plants. Nevertheless, there is an important knowledge gap in metabolomics applications in this area. OBJECTIVE: Evaluate the influence of BPA in French lettuce (Lactuca Sativa L. var capitata) leaves metabolic profile by gas chromatography coupled to mass spectrometry (GC-MS) using a hydroponic system. METHODS: Lettuces were cultivated in the laboratory to minimize biological variation and were analyzed 55 days after sowing (considered the plant's adult stage). Hexanoic and methanolic extracts with and without derivatization were prepared for each sample and analyzed by GC-MS. RESULTS: The highest number of metabolites was obtained from the hexanoic extract, followed by the derivatized methanolic extract. Although no physical differences were observed between control and contaminated lettuce leaves, the multivariate analysis determined a statistically significant difference between their metabolic profiles. Pathway analysis of the most affected metabolites showed that galactose metabolism, starch and fructose metabolism and steroid biosynthesis were significantly affected by BPA exposure. CONCLUSIONS: The preparation of different extracts from the same sample permitted the determination of metabolites with different physicochemical properties. BPA alters the leaves energy and membrane metabolism, plant growth could be affected at higher concentrations and exposition times.
Assuntos
Compostos Benzidrílicos , Cromatografia Gasosa-Espectrometria de Massas , Hidroponia , Lactuca , Metabolômica , Fenóis , Folhas de Planta , Compostos Benzidrílicos/análise , Lactuca/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Fenóis/metabolismo , Fenóis/análise , Metabolômica/métodos , Hidroponia/métodos , Metaboloma/efeitos dos fármacosRESUMO
The production of açaí seed waste from the commercial and extractive exploitation of the Euterpe oleraceae palm tree is a serious problem that contributes to environmental contamination and production of greenhouse gases, a fact that suggests the need for an environmentally correct destination for this waste produced on a large scale. To this end, this study was conducted to evaluate the potential of acaí seed biochar (BCA) in mitigating the toxic effects of copper in Brazilian mahogany plants, analyzing biometrics and gas exchange. The experimental design was in randomized blocks, with five blocks, in a 4 × 3 factorial scheme, corresponding to the control (without Cu) and three concentration of Cu (200, 400, and 600 mg Cu kg-1) and three levels of BCA (0%, 5% and 10%) proportional to the amount of soil in the pots, totaling sixty experimental units. The use of 5% BCA in soils contaminated with up to 200 mg kg-1 Cu promoted biometric increase (height, diameter, number of leaves), maintaining gas exchange (photosynthesis, stomatal conductance, transpiration, internal carbon and internal/external carbon), and consequently, maintaining water use efficiency in plants under abiotic stress, resulting in plant growth. The findings of this study allow us to indicate the use of biochar in remediating and improving the growth of plants grown in copper-contaminated soils. The production of biochar from açaí seeds is an ecologically sustainable alternative, because it reduces its accumulation on public roads and contributes to reducing soil pollution. In the context of public policies, biochar production could be a source of income in the context of the bioeconomy and circular economy practiced in the Amazon, because it is produced in large quantities.
Assuntos
Carvão Vegetal , Cobre , Poluentes do Solo , Poluentes do Solo/toxicidade , Solo/química , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Fotossíntese/efeitos dos fármacosRESUMO
Microplastics (MPs) are particles between 1 µm and 5 mm in size, originating mainly from poor solid waste and effluent management, that can reach water bodies from various sources. In freshwater environments, the occurrence, distribution, and characterization of this new class of pollutants are still little explored, especially in Brazil. The aim of this study was to assess the occurrence of MPs, as well as the presence and concentration of polychlorinated biphenyls (PCBs) sorbed to these particles in the surface waters of the Tietê River - SP. Surface water samples were collected in duplicate during the dry and wet seasons. The identification and characterization of the MPs was carried out through visual inspection and the chemical identity of the particles was verified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). For the analysis of PCBs adsorbed to the MPs, the sample extracts were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The MPs were found in concentrations ranging from 6.67 to 1530 particles m-3, with a predominance of the polymers polyethylene (PE, with 58.17 %) and polypropylene (PP, with 23.53 %). The main morphological categories identified were fragments (56.63 %), fibers (28.42 %), and transparent films (13.06 %). Higher abundances of PCBs were observed in the lower size range, between 0.106 and 0.35 mm. The total concentrations of PCBs in MPs ranged from 20.53 to 133.12 ng g-1. The results obtained here are relevant for understanding the dynamics and level of contamination of MPs and organic pollutants sorbed to these particles in the Tietê River, as well as helping with mitigation measures for the restoration and preservation of this ecosystem.
RESUMO
INTRODUCTION: Ethion is an organophosphate used as an acaricide and insecticide, that is restricted worldwide. In Colombia, pesticide poisoning is the third most common cause of chemical intoxication. On 9 October 2022, an outbreak of ethion poisoning occurred in Pereira. The aim of this study was to describe the clinical and epidemiological characteristics of the outbreak. METHODS: This is a descriptive study of an outbreak of organophosphate poisoning. The onset of symptoms occurred on 9 October 2022, following the consumption of empanadas. Information was collected on sociodemographic characteristics and clinical manifestations, as well as from paraclinical examinations. Data were obtained from clinical histories, field epidemiological investigations, and inspection visits. Food samples were collected for analysis by gas chromatography-mass spectrometry. Attack rates, proportions, and measures of central tendency, dispersion, and position were calculated. RESULTS: The case definition was met by 37 individuals with a median age of 30 years; all presented with muscarinic symptoms, 29 patients presented with nicotinic symptoms, and 20 patients presented with neurological symptoms. Males were the most affected (57%), and the most common time of symptom onset was 10:00 am. Twenty-three patients (62%) required intensive care unit admission, of whom 14 (38%) required mechanical ventilation. No deaths were reported. Erythrocyte acetylcholinesterase activity was reduced in all patients. Ethion was detected in mass-prepared maize and empanadas at concentrations greater than 0.1 mg/kg. The consumption of empanadas was identified as the common source. DISCUSSION: In Colombia, pesticide poisonings are the third most common type of poisoning caused by chemical substances reported to the National Health Institute through the National Public Health Surveillance System. In the present outbreak, ethion was in empanadas, likely due to contamination of cooking oil. CONCLUSIONS: We describe a large ethion-contaminated food poisoning outbreak reported in Colombia. The main symptoms were muscarinic, and the main treatment measures employed were atropine and respiratory support. Increased awareness of pesticide poisoning and training for food handlers are needed.
RESUMO
Platelet concentrates undergo progressive changes during storage, such as a decrease in pH. Additionally, pH and lactate production showed the strongest correlation with platelet survival in posttransfusion viability studies. pH measurement is a straightforward method for evaluating the quality control of blood components in blood bank practice. Our aim was to compare three pH assessment methods for canine platelet concentrates. The pH values of the canine platelet concentrates were assessed on the first day of storage using a calibrated pH meter, a portable gas analyzer and pH-indicator strips. The results from the pH meter and portable gas analyzer measurements were similar. The pH indicator strips presented higher average values compared to the other more reliable methods evaluated, which could result in the use of inadequate blood components. In conclusion, it is recommended to implement pH measurements using a pH meter for quality control in veterinary blood banks.
Assuntos
Bancos de Sangue , Plaquetas , Controle de Qualidade , Concentração de Íons de Hidrogênio , Animais , Cães/sangue , Plaquetas/química , Plaquetas/fisiologia , Bancos de Sangue/normas , Preservação de Sangue/veterinária , Preservação de Sangue/métodos , Preservação de Sangue/normasRESUMO
Ginger (Zingiber officinale), a globally distributed plant, is widely used in the industry for its flavourings, seasonings, and beverages. However, maintaining its quality and volatile components during processing has posed a challenge. This study, therefore, aimed to assess the impact of drying time (24, 48, and 72h) in a circulation oven at 40 °C on the chemical composition and yield of fresh and dried ginger. The essential oils were extracted using the hydrodistillation method, and their chemical analysis was conducted using gas chromatography. The drying time in the oven directly influenced the essential oil yield, with a longer time resulting in a higher yield. We identified 27 compounds in the essential oils, varying their predominance depending on the drying time. The PCA analysis revealed that the drying time can lead to the formation of different chemotypes for ginger, indicating that altering the drying time can yield significantly different chemical profiles.
RESUMO
OBJECTIVE: To determine the association between indoor air pollution and respiratory morbidities in children with bronchopulmonary dysplasia (BPD) recruited from the multicenter BPD Collaborative. STUDY DESIGN: A cross-sectional study was performed among participants <3 years old in the BPD Collaborative Outpatient Registry. Indoor air pollution was defined as any reported exposure to tobacco or marijuana smoke, electronic cigarette emissions, gas stoves, and/or wood stoves. Clinical data included acute care use and chronic respiratory symptoms in the past 4 weeks. RESULTS: A total of 1011 participants born at a mean gestational age of 26.4 ± 2.2 weeks were included. Most (66.6%) had severe BPD. More than 40% of participants were exposed to ≥1 source of indoor air pollution. The odds of reporting an emergency department visit (OR, 1.7; 95% CI, 1.18-2.45), antibiotic use (OR, 1.9; 95% CI, 1.12-3.21), or a systemic steroid course (OR, 2.18; 95% CI, 1.24-3.84) were significantly higher in participants reporting exposure to secondhand smoke (SHS) compared with those without SHS exposure. Participants reporting exposure to air pollution (not including SHS) also had a significantly greater odds (OR, 1.48; 95% CI, 1.08-2.03) of antibiotic use as well. Indoor air pollution exposure (including SHS) was not associated with chronic respiratory symptoms or rescue medication use. CONCLUSIONS: Exposure to indoor air pollution, especially SHS, was associated with acute respiratory morbidities, including emergency department visits, antibiotics for respiratory illnesses, and systemic steroid use.
RESUMO
The use of pesticides is often regarded as a fundamental aspect of conventional agriculture. However, these compounds have gained recognition as some of the oldest and most widely employed xenobiotic contaminants, necessitating effective strategies for human biomonitoring. In this context, a method was developed for the determination of 16 legacy organochlorine pesticides, 6 metabolites of current pesticides (2,4-D, malathion, parathion, fipronil, pyraclostrobin, cypermethrin, permethrin, cyfluthrin), and 1 triazine herbicide (atrazine) in serum. Samples were prepared with water, formic acid, acetonitrile, and ultrasound irradiation, followed by solid-phase extraction with Oasis Prime HLB. Subsequently, metabolites from current pesticides underwent derivatization using MTBSTFA with 1% TBDMSCl for analysis via gas chromatography-tandem mass spectrometry (GC-MS/MS), employing an SLB-5MS fused silica capillary column. Analytical curves were generated with limits of quantification from 0.3 to 4.0 ng.mL-1. Accuracy ranged from 69 to 124%, and the coefficient of variation from 2 to 28%. Moreover, determining 1-(4-chlorophenyl)-1H-pyrazol-3-ol was suggested as a biomarker for pyraclostrobin biomonitoring. This analytical approach facilitated the determination of both legacy and metabolites of current pesticides in the same serum sample, presenting an interesting and cost-effective option for large cohorts, and multi-omics studies that evaluate time-dependent biomarkers in blood samples, thereby enabling biomonitoring within the same matrix. Furthermore, a proof-of-concept involving 10 volunteers demonstrated exposure to 9 pesticides at mean concentrations measured in ng mL-1, consistent with findings from various biomonitoring initiatives.