Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Circ Res ; 135(1): 174-197, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900852

RESUMO

GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and ß-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of ß-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Transdução de Sinais , Descoberta de Drogas , História do Século XXI , História do Século XX
2.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791266

RESUMO

Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gßγ-activated phospholipase C (PLC)-ß/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.


Assuntos
Catecolaminas , Receptores Adrenérgicos alfa 2 , Receptores Acoplados a Proteínas G , Animais , Células PC12 , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Catecolaminas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Adipocinas/metabolismo , Células Cromafins/metabolismo , Transdução de Sinais , Norepinefrina/metabolismo , Norepinefrina/farmacologia
3.
Acta Pharm Sin B ; 14(3): 1222-1240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486990

RESUMO

Hyperplasia and migration of fibroblast-like synoviocytes (FLSs) are the key drivers in the pathogenesis of rheumatoid arthritis (RA) and joint destruction. Abundant Yes-associated protein (YAP), which is a powerful transcription co-activator for proliferative genes, was observed in the nucleus of inflammatory FLSs with unknown upstream mechanisms. Using Gene Expression Omnibus database analysis, it was found that Salvador homolog-1 (SAV1), the pivotal negative regulator of the Hippo-YAP pathway, was slightly downregulated in RA synovium. However, SAV1 protein expression is extremely reduced. Subsequently, it was revealed that SAV1 is phosphorylated, ubiquitinated, and degraded by interacting with an important serine-threonine kinase, G protein-coupled receptor (GPCR) kinase 2 (GRK2), which was predominately upregulated by GPCR activation induced by ligands such as prostaglandin E2 (PGE2) in RA. This process further contributes to the decreased phosphorylation, nuclear translocation, and transcriptional potency of YAP, and leads to aberrant FLSs proliferation. Genetic depletion of GRK2 or inhibition of GRK2 by paroxetine rescued SAV1 expression and restored YAP phosphorylation and finally inhibited RA FLSs proliferation and migration. Similarly, paroxetine treatment effectively reduced the abnormal proliferation of FLSs in a rat model of collagen-induced arthritis which was accompanied by a significant improvement in clinical manifestations. Collectively, these results elucidate the significance of GRK2 regulation of Hippo-YAP signaling in FLSs proliferation and migration and the potential application of GRK2 inhibition in the treatment of FLSs-driven joint destruction in RA.

4.
Chinese Pharmacological Bulletin ; (12): 189-194, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013617

RESUMO

Aim To establish a stable hepatic stellate cell ( HSC ) -specific G protein-coupled receptor kinase 2 ( GRK2 ) knockout mice and provide the important animal model for further studying the biological function of GRK2 in HSC. Methods The loxP-labeled Grk2 gene mouse (Grk2

6.
Biochem Pharmacol ; 216: 115795, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690571

RESUMO

Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation. Moreover, siRNA-mediated depletion of endogenous GRK2 expression, or GRK2 inhibitors, compound 101 or paroxetine, prevented AngII and ET1-promoted ASMC growth. Depletion of GRK2 expression or inhibition of GRK2 activity ablated the prolonged phase of AngII and ET-stimulated ERK signalling, while enhancing and prolonging UTP-stimulated ERK signalling. Increased GRK2 expression enhanced and prolonged AngII and ET1-stimulated ERK signalling, but suppressed UTP-stimulated ERK signalling. In ASMC prepared from 6-week-old WKY and SHR, AngII and ET1-stimulated proliferation rates were similar, however, in cultures prepared from 12-week-old rats AngII and ET1-stimulated growth was enhanced in SHR-derived ASMC, which was reversed following depletion of GRK2 expression. Furthermore, in ASMC cultures isolated from 6-week-old WKY and SHR rats, AngII and ET1-stimulated ERK signals were similar, while in cultures from 12-week-old rats ERK signals were both enhanced and prolonged in SHR-derived ASMC, and were reversed to those seen in age-matched WKY-derived ASMC following pre-treatment of SHR-derived ASMC with compound 101. These data indicate that the presence of GRK2 and its catalytic activity are essential to enable pro-proliferative vasoconstrictors to promote growth via recruitment and activation of the ERK signalling pathway in ASMC.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , Hipertensão , Vasoconstritores , Animais , Ratos , Angiotensina II/farmacologia , Proliferação de Células , Células Cultivadas , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Uridina Trifosfato/farmacologia , Vasoconstritores/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo
7.
Pestic Biochem Physiol ; 194: 105481, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532313

RESUMO

RNA interference (RNAi) is recognized as a new and environmentally friendly pest control strategy due to its high specificity. However, the RNAi efficiency is relatively low in many sucking insect pests, such as Apolygus lucorum. Therefore, there is an urgent need to develop new and effective ways of dsRNA delivery. Bacterially expressed or T7 synthesized dsRNA targeting a G Protein-Coupled Receptor Kinase 2 gene was mixed with chitosan in a 1:2 ratio by mass. The size of the chitosan/dsRNA nanoparticles was 69 ± 12 nm, and the TEM and AFM images showed typical spherical or ellipsoidal structures. The chitosan nanoparticles protected the dsRNA from nuclease activity, and pH and temperature-dependent degradation, and the fluorescently-tagged nanoparticles were found to be stable on the surface of green bean plants (48 h) (Phaseolus vulgaris) and were absorbed by midgut epithelial cells and transported to hemolymph. Once fed to the A. lucorum nymph, chitosan/dsRNA could effectively inhibit the expression of the G protein-coupled receptor kinase 2 gene (70%), and led to significantly increase mortality (50%), reduced weight (26.54%) and a prolonged developmental period (8.04%). The feeding-based and chitosan-mediated dsRNA delivery method could be a new strategy for A. lucorum management, providing an effective tool for gene silencing of piercing-sucking insects.


Assuntos
Quitosana , Heterópteros , Animais , Quitosana/farmacologia , Quitosana/química , Heterópteros/genética , Interferência de RNA , Inativação Gênica , Insetos/genética , RNA de Cadeia Dupla/genética , Receptores Acoplados a Proteínas G/genética
8.
Acta Pharmacol Sin ; 44(10): 1989-2003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37268711

RESUMO

Patients with rheumatoid arthritis (RA) have a much higher incidence of cardiac dysfunction, which contributes to the high mortality rate of RA despite anti-arthritic drug therapy. In this study, we investigated dynamic changes in cardiac function in classic animal models of RA and examined the potential effectors of RA-induced heart failure (HF). Collagen-induced arthritis (CIA) models were established in rats and mice. The cardiac function of CIA animals was dynamically monitored using echocardiography and haemodynamics. We showed that cardiac diastolic and systolic dysfunction occurred in CIA animals and persisted after joint inflammation and that serum proinflammatory cytokine (IL-1ß, TNF-α) levels were decreased. We did not find evidence of atherosclerosis (AS) in arthritic animals even though cardiomyopathy was significant. We observed that an impaired cardiac ß1AR-excitation contraction coupling signal was accompanied by sustained increases in blood epinephrine levels in CIA rats. Furthermore, serum epinephrine concentrations were positively correlated with the heart failure biomarker NT-proBNP in RA patients (r2 = +0.53, P < 0.0001). In CIA mice, treatment with the nonselective ßAR blocker carvedilol (2.5 mg·kg-1·d-1, for 4 weeks) or the specific GRK2 inhibitor paroxetine (2.5 mg·kg-1·d-1, for 4 weeks) effectively rescued heart function. We conclude that chronic and persistent ß-adrenergic stress in CIA animals is a significant contributor to cardiomyopathy, which may be a potential target for protecting RA patients against HF.


Assuntos
Artrite Experimental , Artrite Reumatoide , Cardiomiopatias , Insuficiência Cardíaca , Humanos , Camundongos , Ratos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Roedores , Adrenérgicos/efeitos adversos , Artrite Reumatoide/tratamento farmacológico , Citocinas , Insuficiência Cardíaca/tratamento farmacológico , Epinefrina/efeitos adversos
9.
Front Pharmacol ; 13: 972397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188529

RESUMO

Hydroxychloroquine (HCQ) is derivative of the heterocyclic aromatic compound quinoline, which has been used for the treatment of autoimmune diseases. The central purpose of this study was to investigate therapeutic effects and inflammatory immunological molecular mechanism of HCQ in experimental autoimmune hepatitis (AIH). Treatment with HCQ ameliorated hepatic pathologic damage, inflammatory infiltration, while promoted regulatory T cell (Treg) and down-regulated CD8+T cell differentiation in AIH mice induced by S-100 antigen. In vitro, HCQ also suppressed pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-12) secretion, promoted anti-inflammatory cytokine (TGF-ß1) secretion. HCQ mainly impaired T cell lipid metabolism but not glycolysis to promote Treg differentiation and function. Mechanistically, HCQ down-regulated GRK2 membrane translocation in T cells, inhibited GRK2-PI3K interaction to reduce the PI3K recruiting to the membrane, followed by suppressing the phosphorylation of PI3K-AKT-mTOR signal. Pretreating T cells with paroxetine, a GRK2 inhibitor, disturbed HCQ effect to T cells. HCQ also reversed the activation of the PI3K-AKT axis by 740 Y-P (PI3K agonist). Meanwhile, HCQ inhibited the PI3K-AKT-mTOR, JAK2-STAT3-SOCS3 and increased the AMPK signals in the liver and T cells of AIH mice. In conclusion, HCQ exhibited specific and potent therapeutic effects on AIH and attendant liver injury, which was attributed to HCQ acted on GRK2 translocation, inhibited metabolism-related PI3K-AKT and inflammation-related JAK2-STAT3 signal in T lymphocytes, thereby modulating lipid metabolism of T cell function to regulate Treg differentiation and function.

10.
JACC Basic Transl Sci ; 7(6): 563-579, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35818501

RESUMO

Heart disease remains the leading cause of death, and mortality rates positively correlate with the presence of obesity and diabetes. Despite the correlation between cardiac and metabolic dysregulation, the mechanistic pathway(s) of interorgan crosstalk still remain undefined. This study reveals that cardiac-restricted expression of an amino-terminal peptide of GRK2 (ßARKnt) preserves systemic and cardiac insulin responsiveness, and protects against adipocyte maladaptive hypertrophy in a diet-induced obesity model. These data suggest a cardiac-driven mechanism to ameliorate maladaptive cardiac remodeling and improve systemic metabolic homeostasis that may lead to new treatment modalities for cardioprotection in obesity and obesity-related metabolic syndromes.

11.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887281

RESUMO

The G-protein-coupled receptor kinase 2 (GRK2) is an important regulator of inflammation and pathological macrophage phenotype in a variety of diseases. We hypothesize that Gßγ-GRK2 signaling promotes the early inflammatory response and chondrocyte loss in osteoarthritis (OA). Using the destabilization of the medial meniscus (DMM) model in 12-week-old male C57BL/6 mice, we determined the role of Gßγ-GRK2 signaling in synovitis, macrophage activation, and OA development. We achieved Gßγ-GRK2 inhibition at the time of DMM by administering the Gßγ inhibitor "gallein" and the GRK2 inhibitor "paroxetine" daily, starting from 2 days before DMM surgery, for a duration of 1 or 12 weeks. Synovial and cartilage structural changes were evaluated by histomorphometry, and molecular events and macrophage activation were examined. We studied the direct role of Gßγ-GRK2 in synovitis and macrophage activation in vitro using SW982 and THP1 cells. Continuous Gßγ-GRK2 inhibition initiated at the time of DMM attenuated OA development and decreased chondrocyte loss more effectively than delayed treatment. GRK2 expression and the M1 macrophage phenotype were elevated in the inflamed synovium, while early gallein and paroxetine treatment for 1 and 12 weeks following DMM resulted in their reduction and an upregulated M2 macrophage phenotype. In vitro experiments showed that Gßγ-GRK2 inhibition attenuated synoviocyte inflammation and the M1 phenotype. We show that early Gßγ-GRK2 inhibition is of higher therapeutic efficacy in OA than delayed inhibition, as it prevents OA development by inhibiting the early inflammatory response.


Assuntos
Osteoartrite , Sinovite , Animais , Anti-Inflamatórios , Modelos Animais de Doenças , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo
12.
Exp Ther Med ; 24(2): 523, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35837026

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease. Enhanced G protein coupled receptor kinase 2 (GRK2) translocation and prostaglandin E4 receptor (EP4) desensitization play a critical role in fibroblast-like synoviocytes (FLS) dysfunction. Paeoniflorin-6'O-benzene sulfonate (CP-25) exerts a protective effect in arthritis in the RA animal models. To demonstrate the role of Gßγ in EP4 desensitization and the mechanisms of CP-25 that protects FLS in RA, RA-FLS and adjuvant-induced arthritis (AA-FLS) were isolated from synovium of RA patients and AA rats. RA-FLS, AA-FLS and MH7A were treated with CP-25, Gßγ agonist and antagonist. The cell membrane expression of EP4, GRK2, and Gßγ were detected using western blot analysis. Co-immunoprecipitation (Co-IP) and immunofluorescence were adopted to detect the interactions of GRK2-Gßγ, GRK2-EP4, and EP4-Gßγ. Cell Counting Kit-8 and Transwell assay were used to analyze the proliferation and migration of the FLS. An increased membrane expression of GRK2 and Gßγ, enhanced GRK2-Gßγ interaction and decreased EP4 membrane expression in the RA synovial tissue were identified. In vitro, prostaglandin E2 (PGE2) enhanced the proliferation and migration of FLS. CP-25 exhibited an inhibition effect similar to Gßγ inhibitor, which downregulated GRK2-EP4 interaction, blocked the translocation of GRK2, and reversed EP4 desensitization, leading to the suppression of the proliferation and migration induced by PGE2. These results elucidated that an enhanced GRK2-Gßγ interaction was involved in the EP4 desensitization and dysfunction. CP-25 regulated EP4-GRK2-Gßγ signaling and re-sensitized EP4 by inhibiting GRK2-Gßγ interaction. The regulation of EP4-Gßγ-GRK2 signaling may be a novel potential therapeutic target in RA.

13.
Int Immunopharmacol ; 108: 108678, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364431

RESUMO

Aryl hydrocarbon receptor (Ahr) is thought to be a crucial factor that regulates immune responses, which may be involved in the pathogenesis of autoimmune inflammation including rheumatoid arthritis (RA). The results of our group in recent years have shown that Paeoniflorin-6'-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin, has a good effect on improving RA animal models. However, whether the anti-arthritis effect of CP-25 is related to Ahr remains unclear. Here, we showed that CP-25 treatment ameliorated adjuvant-induced arthritis (AA), a rat model of RA, by inhibiting Ahr-related activities in fibroblasts like synoviocytes (FLS). AA rats were treated with CP-25 or paroxetine from days 17 to 33 after immunization. We showed that CP-25 alleviated arthritis symptoms and the pathological changes. Treatment with CP-25 decreased the expression of Ahr in the synovium of AA rats. CP-25 inhibited the expression of Ahr and the G protein-coupled receptor kinase 2 (GRK2) as well as the co-expression of GRK2 with Ahr in FLS of AA rats. Furthermore, CP-25 down-regulated the production of Kyn in FLS of AA rats. These results suggested that CP-25 may inhibit the expression and activation of Ahr. Besides, treatment with CP-25 reduced the proliferation and migration of MH7A caused by Ahr activation. In addition, we also demonstrated that CP-25 down-regulated the total and nuclear expression of Ahr and the expression of GRK2 in Kyn-treated MH7A. Moreover, the co-expression and co-localization of Ahr and GRK2in Kyn-treated MH7A were also repressed by CP-25. The data presented here demonstrated that CP-25 suppressed FLS dysfunction in rats with AA, which were associated with reduced Ahr activation and the interaction between Ahr and GRK2.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos , Glucosídeos , Monoterpenos , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo , Membrana Sinovial/patologia
14.
Cells ; 11(4)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203304

RESUMO

The RAF kinase inhibitor protein, RKIP, is a dual inhibitor of the RAF1 kinase and the G protein-coupled receptor kinase 2, GRK2. By inhibition of the RAF1-MAPK (mitogen-activated protein kinase) pathway, RKIP acts as a beneficial tumour suppressor. By inhibition of GRK2, RKIP counteracts GRK2-mediated desensitisation of G protein-coupled receptor (GPCR) signalling. GRK2 inhibition is considered to be cardioprotective under conditions of exaggerated GRK2 activity such as heart failure. However, cardioprotective GRK2 inhibition and pro-survival RAF1-MAPK pathway inhibition counteract each other, because inhibition of the pro-survival RAF1-MAPK cascade is detrimental for the heart. Therefore, the question arises, what is the net effect of these apparently divergent functions of RKIP in vivo? The available data show that, on one hand, GRK2 inhibition promotes cardioprotective signalling in isolated cardiomyocytes. On the other hand, inhibition of the pro-survival RAF1-MAPK pathway by RKIP deteriorates cardiomyocyte viability. In agreement with cardiotoxic effects, endogenous RKIP promotes cardiac fibrosis under conditions of cardiac stress, and transgenic RKIP induces heart dysfunction. Supported by next-generation sequencing (NGS) data of the RKIP-induced cardiac transcriptome, this review provides an overview of different RKIP functions and explains how beneficial GRK2 inhibition can go awry by RAF1-MAPK pathway inhibition. Based on RKIP studies, requirements for the development of a cardioprotective GRK2 inhibitor are deduced.


Assuntos
Miócitos Cardíacos , Neoplasias , Proteína de Ligação a Fosfatidiletanolamina , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos/metabolismo , Neoplasias/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo
15.
Biol Res ; 55(1): 5, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115050

RESUMO

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Assuntos
Eletroacupuntura , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Microglia/fisiologia , Manejo da Dor , Animais , Inflamação/induzido quimicamente , Inflamação/terapia , Camundongos , Neurônios , Dor/induzido quimicamente
16.
Chinese Pharmacological Bulletin ; (12): 832-841, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1014079

RESUMO

Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of And-inflammatory and Immune Medicine, Ministry of Education .Anhui Collaborative Innovation Center of And-Inflammatory and Immune Medicine, Rheumatoid Arthritis Research Center of Anhui Medical University, Jlefei ,230032, China,Aim To reveal the role of the abnormal activation of G protein-coupled receptor kinase 2(GRK2)and abnormal signal transduction of JAK1-STAT1 in the abnormal immune response of rheumatoid arthritis(RA)by exploring the effects of GRK2 on the JAK1-STAT1 signaling pathway in dendritic cells(DCs)of collagen-induced arthritis(CIA)mice and the undelying mechanisms,so as to provide a basis for revealing the new mechanism of RA.Methods The CIA model was established,and the co-stimulatory molecular level of DCs was detected by flow cytometry,the cytokine levels of plasma in mice were detected by ELISA,and the expression of p-JAK1,p-STAT1 and GRK2 in spleen tissues was detected by immunohistochemistry.Bone marrow cells were induced into DCs in vitro and stimulated with IFN-α and PGE2 for 48 h.Flow cytometry was used to detect the level of co-stimulatory molecules and phagocytosis of DCs,and ELISA to detect the level of cytokines in cell supernatant.CO-IP was employed to detect the co-localization of GRK2 and JAK1 in DCs.Western blotting was used to detect the expression of JAK1-STAT1 and the cell membrane expression of GRK2.Imaging flow cytometry was applied to detect the nucleation rate of p-STAT1.Results In vivo the level of co-stimulatory molecules of dendritic cells of CIA mouse increased,and the expression of GRK2 and p-JAK1,p-STAT1 in spleen was positively correlated.The co-localization of GRK2 and JAK1 in spleen of the CIA group decreased significantly.In vitro GRK2 inhibitors reduced the level of costimulatory molecules,cytokines IL-6 and TNF-α,the expression of JAK1 and STAT1,the expression of GRK2 in the cell membrane,and the rate of p-STAT1 nuclear translocation,and increased the Ag uptake capacity of DCs and the co-localization rate of GRK2 and JAK1.Conclusions The abnormal GRK2 transfer to the cell membrane in DCs mediates the maturation of DCs and the activation of the JAK1-STAT1 signaling pathway.Inhibition of GRK2 transfer membrane can restore its control of the JAK1-STAT1 signal transduction of DCs,reduce the maturation of DCs,and play an important role in improving mouse CIA.

17.
Biol. Res ; 55: 5-5, 2022. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1383910

RESUMO

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and down-regulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Assuntos
Animais , Camundongos , Eletroacupuntura , Microglia/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Manejo da Dor , Dor/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/terapia , Neurônios
18.
Clin Sci (Lond) ; 135(20): 2341-2356, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34622918

RESUMO

Renal vascular reactivity to vasoconstrictors is preserved in sepsis in opposition to what happens in the systemic circulation. We studied whether this distinct behavior was related to α1 adrenergic receptor density, G protein-coupled receptor kinase 2 (GRK2) and the putative role of nitric oxide (NO). Sepsis was induced in female mice by cecal ligation and puncture (CLP). Wildtype mice were treated with prazosin 12 h after CLP or nitric oxide synthase 2 (NOS-2) inhibitor, 30 min before and 6 and 12 h after CLP. In vivo experiments and biochemistry assays were performed 24 h after CLP. Sepsis decreased the systemic mean arterial pressure (MAP) and the vascular reactivity to phenylephrine. Sepsis also reduced basal renal blood flow which was normalized by treatment with prazosin. Sepsis led to a substantial decrease in GRK2 level associated with an increase in α1 adrenergic receptor density in the kidney. The disappearance of renal GRK2 was prevented in NOS-2-KO mice or mice treated with 1400 W. Treatment of non-septic mice with an NO donor reduced GRK2 content in the kidney. Therefore, our results show that an NO-dependent reduction in GRK2 level in the kidney leads to the maintenance of a normal α1 adrenergic receptor density. The preservation of the density and/or functionality of this receptor in the kidney together with a higher vasoconstrictor tonus in sepsis lead to vasoconstriction. Thus, the increased concentration of vasoconstrictor mediators together with the preservation (and even increase) of the response to them may help to explain sepsis-induced acute kidney injury.


Assuntos
Injúria Renal Aguda/etiologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Rim/metabolismo , Sepse/complicações , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Pressão Arterial , Modelos Animais de Doenças , Feminino , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Circulação Renal , Sepse/metabolismo , Sepse/fisiopatologia , Fatores de Tempo
19.
Cell Signal ; 88: 110152, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555505

RESUMO

Hypertension is associated with increased production and circulation of vasoconstrictors, resulting in enhanced signalling through their cognate G protein-coupled receptors (GPCR). Prolonged vasoconstrictor GPCR signalling increases arterial contraction and stimulates signalling pathways that promote vascular smooth muscle cell (VSMC) proliferation, contributing to the development of atherosclerotic plaques, re-stenosis lesions and vascular remodelling. GPCR signalling through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) promotes VSMC proliferation. In VSMC, G protein-coupled receptor kinase 2 (GRK2) is known to regulate numerous vasoconstrictor GPCRs and their downstream signalling pathways. As GRK2 is implicated in controlling various aspects of cellular growth, we examined whether GRK2 could affect VSMC proliferation. Using two indices of cell growth, we show that PI3K inhibition and depletion of GRK2 expression produced a similar ablation of pro-proliferative vasoconstrictor-stimulated VSMC growth. Furthermore, GRK2-knockdown ablated the sustained phase of endothelin-1 and angiotensin-II-stimulated Akt phosphorylation, whilst the peak (5 min) phase was unaffected. Conversely, the GRK2 inhibitor compound 101 did not affect vasoconstrictor-driven Akt phosphorylation. Vasoconstrictor-stimulated phosphorylation of the Akt substrates GSK3α and GSK3ß was ablated following RNAi-mediated GRK2 depletion, or after PI3K inhibition. Moreover, GRK2 knockdown prevented endothelin-1 and angiotensin-II from increasing cyclin D1 expression. These data suggest GRK2 expression is essential to facilitate vasoconstrictor-driven VSMC proliferation through its ability to promote efficient prolonged PI3K-Akt signalling, and thus relieve the GSK3-mediated block on cell cycling. Considering VSMC GRK2 expression increases early in the development of hypertension, this highlights the potential for GRK2 to promote VSMC growth and exacerbate hypertensive pathophysiological vascular remodelling.


Assuntos
Músculo Liso Vascular , Fosfatidilinositol 3-Quinases , Proliferação de Células , Quinase 3 da Glicogênio Sintase/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vasoconstritores/metabolismo , Vasoconstritores/farmacologia
20.
JACC Basic Transl Sci ; 6(8): 631-646, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466750

RESUMO

The bacterial C-type lectin domain family 4 member E (CLEC4E) has an important role in sterile inflammation, but its role in myocardial repair is unknown. Using complementary approaches in porcine, murine, and human samples, we show that CLEC4E expression levels in the myocardium and in blood correlate with the extent of myocardial injury and left ventricular (LV) functional impairment. CLEC4E expression is markedly increased in the vasculature, cardiac myocytes, and infiltrating leukocytes in the ischemic heart. Loss of Clec4e signaling is associated with reduced acute cardiac injury, neutrophil infiltration, and infarct size. Reduced myocardial injury in Clec4e -/- translates into significantly improved LV structural and functional remodeling at 4 weeks' follow-up. The early transcriptome of LV tissue from Clec4e -/- mice versus wild-type mice reveals significant upregulation of transcripts involved in myocardial metabolism, radical scavenging, angiogenesis, and extracellular matrix organization. Therefore, targeting CLEC4E in the early phase of ischemia-reperfusion injury is a promising therapeutic strategy to modulate myocardial inflammation and enhance repair after ischemia-reperfusion injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...