Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
BMC Pharmacol Toxicol ; 25(1): 36, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943212

RESUMO

Chalcones and dihydrochalcones (DHCs) are important bioactive natural products (BNPs) isolated from traditional Chinese medicine. In this study, 13 chalcones were designed with the inspiration of Loureirin, a DHC extracted from Resina Draconis, and synthesized by classical Claisen-Schmidt reactions. Afterwards the reduction reactions were carried out to obtain the corresponding DHCs. Cytotoxicity assay indicated chalcones and DHCs possessed selective cytotoxicity against colorectal cancer (CRC) cells. The preliminary structure-activity relationships (SAR) of these compounds suggested the α, ß-unsaturated ketone of the chalcones were crucial for the anticancer activity. Interestingly, compounds 3d and 4c exhibited selective anticancer activity against CRC cell line HCT116 with IC50s of 8.4 and 17.9 µM but not normal cell. Moreover, 4c could also inhibit the migration and invasion of CRC cells. Mechanism investigations showed 4c could induce cell cycle G2/M arrest by regulating cell cycle-associated proteins and could also up-regulate Fas cell surface death receptor. The virtual docking further pointed out that compounds 3d and 4c could nicely bind to the Fas/FADD death domain complex (ID: 3EZQ). Furthermore, silencing of Fas significantly enhanced the proliferation of CRC cells and attenuated the cytotoxicity induced by 4c. These results suggested 4c exerted its anticancer activity possibly regulating cell cycle and Fas death receptor. In summary, this study investigated the anticancer activity and mechanism of Loureirin analogues in CRC, suggesting these compounds may warrant further investigation as promising anticancer drug candidates for the treatment of CRC.


Assuntos
Antineoplásicos , Chalconas , Neoplasias Colorretais , Receptor fas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Chalconas/farmacologia , Chalconas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Receptor fas/metabolismo , Relação Estrutura-Atividade , Células HCT116 , Simulação de Acoplamento Molecular , Movimento Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral
2.
Heliyon ; 10(5): e27345, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495161

RESUMO

Background: Compound Taxus capsule, as an antineoplastic Chinese patent drug, has been increasingly applied as an adjunctive treatment for the management of non-small-cell lung cancer (NSCLC) and some other malignancies, but research about its antitumor activity and radiosensitization effect on hepatocellular carcinoma (HCC) cells is very rare. Purpose: To investigate the antitumor activity and radiosensitization effect of Compound Taxus on HCC cells and to preliminarily explore the possible molecule mechanisms involved. Methods: Cell viability, cell cycle distribution, apoptosis, DNA damage repair and protein expression levels were detected by CCK-8 assay, flow cytometry, immunofluorescence staining, western blotting analysis and immunohistochemical staining, respectively. The migration and invasion activities and vasculogenic mimicry (VM) formation and angiogenesis were evaluated by tube formation and VM formation assay. Radiation survival curves were obtained from the colony formation assay in human HCC cell lines, Smmc7721 and Bel7402 cells, pretreated with or without Compound Taxus before receiving X-ray irradiation. A Bel7402 tumor-bearing mouse model was established and the radiosensitization effect of Compound Taxus in vivo was evaluated by analyzing tumor volume and tumor weight in different groups receiving different treatments. Results: Compound Taxus decreased viability, induced G2/M arrest, promoted apoptosis, suppressed migration and invasion, and inhibited VM formation and angiogenesis in Smmc7721 and Bel7402 cells. Furthermore, Compound Taxus inhibited irradiation-induced DNA damage repair, enhanced the radiosensitivity of Smmc7721 and Bel7402 cells and improved the anti-tumor therapeutic efficacy of irradiation in Bel7402 tumor-bearing mice. Radiotherapy in combination with Compound Taxus showed the best tumor inhibition compared to that of Compound Taxus alone or irradiation alone. In addition, Compound Taxus significantly down-regulated NF-κB p65, p-NF-κB p65 and Bcl-2, and up-regulated Bax in vitro and in vivo, yet NF-κB p65 overexpression reversed the proapoptotic effect of Taxus on HCC cells, indicating that the NF-κB signaling pathway might be an important signal mediator in the Compound-Taxus-modulated biological responses. Conclusion: Our findings suggest that Compound Taxus shows marked antitumor activity and significant radiosensitization effect on HCC cells, making it possible for Compound Taxus to become a promising auxiliary modality for HCC management and a potential radiosensitizer of HCC in the future.

3.
Int J Nanomedicine ; 19: 1487-1508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380147

RESUMO

Background: Radiation stimulates the secretion of tumor stroma and induces resistance, recurrence, and metastasis of stromal-vascular tumors during radiotherapy. The proliferation and activation of tumor-associated fibroblasts (TAFs) are important reasons for the production of tumor stroma. Telmisartan (Tel) can inhibit the proliferation and activation of TAFs (resting TAFs), which may promote radiosensitization. However, Tel has a poor water solubility. Methods: In this study, self-assembled telmisartan nanoparticles (Tel NPs) were prepared by aqueous solvent diffusion method to solve the insoluble problem of Tel and achieve high drug loading of Tel. Then, erythrocyte membrane (ECM) obtained by hypotonic lysis was coated on the surface of Tel NPs (ECM/Tel) for the achievement of in vivo long circulation and tumor targeting. Immunofluorescence staining, western blot and other biological techniques were used to investigate the effect of ECM/Tel on TAFs activation inhibition (resting effect) and mechanisms involved. The multicellular spheroids (MCSs) model and mouse breast cancer cells (4T1) were constructed to investigate the effect of ECM/Tel on reducing stroma secretion, alleviating hypoxia, and the corresponding promoting radiosensitization effect in vitro. A mouse orthotopic 4T1 breast cancer model was constructed to investigate the radiosensitizing effect of ECM/Tel on inhibiting breast cancer growth and lung metastasis of breast cancer. Results: ECM/Tel showed good physiological stability and tumor-targeting ability. ECM/Tel could rest TAFs and reduce stroma secretion, alleviate hypoxia, and enhance penetration in tumor microenvironment. In addition, ECM/Tel arrested the cell cycle of 4T1 cells to the radiosensitive G2/M phase. In mouse orthotopic 4T1 breast cancer model, ECM/Tel played a superior role in radiosensitization and significantly inhibited lung metastasis of breast cancer. Conclusion: ECM/Tel showed synergistical radiosensitization effect on both the tumor microenvironment and tumor cells, which is a promising radiosensitizer in the radiotherapy of stroma-vascular tumors.


Assuntos
Neoplasias Pulmonares , Neoplasias Vasculares , Camundongos , Animais , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Membrana Eritrocítica , Neoplasias Pulmonares/tratamento farmacológico , Tolerância a Radiação , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Trends Cancer ; 10(1): 52-64, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793965

RESUMO

Human cancers share requirements for phosphorylation-dependent signaling, mitotic hyperactivity, and survival after DNA damage. The oncoprotein CIP2A (cancerous inhibitor of PP2A) can coordinate all these cancer cell characteristics. In addition to controlling cancer cell phosphoproteomes via inhibition of protein phosphatase PP2A, CIP2A directly interacts with the DNA damage protein TopBP1 (topoisomerase II-binding protein 1). Consequently, CIP2A allows DNA-damaged cells to enter mitosis and is essential for mitotic cells that are defective in homologous recombination (HR)-mediated DNA repair (e.g., BRCA mutants). The CIP2A-TopBP1 complex is also important for clustering fragmented chromosomes at mitosis. Clinically, CIP2A is a disease driver for basal-like triple-negative breast cancer (BL-TNBC) and a promising cancer therapy target across many cancer types.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais , Mitose/genética , Neoplasias/genética , Reparo do DNA
5.
Heliyon ; 9(12): e22079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094052

RESUMO

Ovarian toxicity is most common gynecologically related malignancy, arising for most cases owing to the advanced stage of diagnosis. The aim of the current study was to explore the anticancer potential of baicalin against cyclophosphamide (CP) induced ovarian toxicity in mice and explore the possible mechanism. ovarian cancer cells (Hey, SKOv3ip and HO891PM) were treated with different doses of baicalin and examined via flow cytometry and cell proliferation assay. Subcutaneous administration of CP (200 mg/kg) was used to induce the ovary toxicity and mice were received the oral administration of baicalin. Oxidative, pro-inflammatory, inflammatory, apoptosis parameters, progesterone, estrogen hormones and histopathological were also estimated at end of the study. Baicalin increased the apoptosis and caused the cell cycle arrest at the G2/M stage in ovarian cancer cells. Baicalin significantly (P < 0.001) reduced the level of TGF-ß in the HO8910PM, SKOv3ip and Hey cell lines. Baicalin significantly (P < 0.001) increased the body weight and reduced the tumor volume in mice. Baicalin significantly (P < 0.001) increased the level of estrogen and progesterone. Baicalin significantly (P < 0.001) reduced the level of malonaldehyde (MDA) and increased the level of superoxide dismutase (SOD) and catalase (CAT). Baicalin significantly (P < 0.001) decreased the level of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and inflammatory parameter such as nuclear kappa B factor (NF-κB), respectively. Baicalin significantly (P < 0.001) reduced the level of the caspase-3. Baicalin, act as the potential agent against the ovarian toxicity by alteration of TGF-ß and inflammatory pathways.

6.
Front Pharmacol ; 14: 1326346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152688

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignant tumors with high incidence and mortality rates in the world. Isothiocyanates (ITCs), bioactive substances present primarily in the plant order Brassicales, have been proved to be promising candidates for novel anti-HCC drugs with chemopreventive and anticancer activities. Iberverin, a predominant ITC isolated from the seeds of oxheart cabbage, has been discovered with anticancer property in lung cancer cells. However, the roles of iberverin in HCC remain elusive. In the present study, the effect and potential mechanisms of iberverin against human HCC were dissected. We demonstrated that low concentrations of iberverin inhibited cell proliferation, suppressed migration and induced mitochondrial-related apoptosis in vitro, and hampered tumorigenicity in vivo, with no obvious toxicity. Furthermore, we found that iberverin treatment induced DNA damage and G2/M phase arrest. Iberverin treatment also caused increased intracellular reactive oxygen species formation and glutathione depletion. Taken together, these results suggest that iberverin promotes mitochondrial-mediated apoptosis and induces DNA damage and G2/M cell cycle arrest in HCC by enhancing oxidative stress. Our findings provide better understanding of the anti-HCC mechanisms of ITCs and the potential for the natural product iberverin as a promising new anti-HCC biotherapeutic.

7.
Yeast ; 40(12): 640-650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37997429

RESUMO

Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.


Assuntos
Hanseniaspora , Hanseniaspora/metabolismo , Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Nitrogênio/metabolismo
8.
Biochem Biophys Res Commun ; 681: 249-270, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793311

RESUMO

Chalcones have a long history of being used for many medical purposes. These are the most prestigious scaffolds in medicine. The potential of Millepachine and its derivatives to treat various malignancies has been demonstrated in this review. The anticancer effects of Millepachine and its derivatives on ovarian cancer, hepatocellular carcinoma, breast, liver, colon, cervical, prostate, stomach, and gliomas are highlighted in the current review. Several genes that are crucial in reducing the severity of the disease have been altered by these substances. They mainly work by preventing tubulin polymerizing. They also exhibit apoptosis and cell cycle arrest at the G2/M phase. Additionally, these compounds inhibit invasion and migration and have antiproliferative effects. Preclinical studies have shown that Millepachine and its derivatives offer exceptional potential for treating a number of cancers. These results need to be confirmed in clinical research in order to develop viable cancer therapies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Chalconas , Neoplasias Hepáticas , Masculino , Humanos , Chalconas/farmacologia , Chalconas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Tubulina (Proteína)/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
9.
Bioorg Med Chem ; 95: 117489, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816266

RESUMO

In this study of creating new molecules from clinical trial agents, an approach of Combretastatin structural modulation with the installation of NP-privileged motifs was considered, and a series of trimethoxyphenyl-2-aminoimidazole with functionalized quinolines and isoquinolines was investigated. An exciting method of quinoline C3-H iodination coupled with imidazopyridine-C3-H arylation and hydrazine-mediated fused-ring cleavage enabled synthesizing a class of compounds with two specific unsymmetric aryl substitutions. Interestingly, three compounds (6, 11, and 13) strongly inhibited HeLa cell proliferation with a half-maximal inhibitory concentration (10-46 nM). Among the compounds, compound 6 (QTMP) showed stronger antiproliferative ability than CA-4 (a clinical trial agent) in various cancer cell lines, including cervical, lung, breast, highly metastatic breast, and melanoma cells. QTMP inhibited the assembly of purified tubulin, depolymerized microtubules of A549 lung carcinoma cells, produced defective spindles, and arrested the cells in the G2/M phase. Further, QTMP binds to the colchicine site in tubulin with a dissociation constant of 5.0 ± 0.6 µM. QTMP displayed higher aqueous stability than CA-4 at 37 °C. Further, in silico analysis of QTMP indicated excellent drug-like properties, including good aqueous solubility, balanced hydrophilicity-lipophilicity, and high GI-absorption ability. The results together suggest that QTMP has anticancer potential.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Células HeLa , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
10.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762548

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies worldwide. Isolinderalactone (ILL), a sesquiterpene isolated from the root extract of Lindera aggregata, has been reported to exhibit anti-proliferative and anti-metastatic activities in various cancer cell lines. However, the mechanisms associated with its antitumor effects on CRC cells remain unclear. ILL treatment significantly suppressed proliferation and induced cell cycle G2/M arrest in CRC cells by inhibiting the expression of cyclin B, p-cdc2, and p-cdc25c and up-regulating the expression of p21. In addition, ILL induced mitochondria-associated apoptosis through the up-regulation of cleaved -caspase-9 and -3 expression. ILL induced autophagy by increasing the levels of LC3B in CRC cells, which was partially rescued by treatment with an autophagy inhibitor (chloroquine). Furthermore, ILL increases the accumulation of reactive oxygen species (ROS) and activates the MAPK pathway. Application of the ROS scavenger, N-acetyl cysteine (NAC), effectively inhibited ILL toxicity and reversed ILL-induced apoptosis, cell cycle arrest, autophagy, and ERK activation. Taken together, these results suggest that ILL induces G2/M phase arrest, apoptosis, and autophagy and activates the MAPK pathway via ROS-mediated signaling in human CRC cells.


Assuntos
Neoplasias Colorretais , Sesquiterpenos , Humanos , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Pontos de Checagem do Ciclo Celular , Sesquiterpenos/farmacologia , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Proliferação de Células
11.
Exp Dermatol ; 32(10): 1823-1833, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578092

RESUMO

T-LAK cell-oriented protein kinase (TOPK) potently promotes malignant proliferation of tumour cells and is considered as a maker of tumour progression. Psoriasis is a common inflammatory skin disease characterized by abnormal proliferation of keratinocytes. However, the role of TOPK in psoriasis has not been well elucidated. This study aims to investigate the expression and role of TOPK in psoriasis, and the role of TOPK inhibitor in psoriasis attenuation. Gene Expression Omnibus datasets derived from psoriasis patients and psoriatic model mice were screened for analysis. Skin specimens from psoriasis patients were collected for TOPK immunohistochemical staining to investigate the expression and localization of TOPK. Next, psoriatic mice model was established to further confirm TOPK expression pattern. Then, TOPK inhibitor was applied to investigate the role of TOPK in psoriasis progression. Finally, cell proliferation assay, apoptosis assay and cell cycle analysis were performed to investigate the potential mechanism involved. Our study showed that TOPK was upregulated in the lesions of both psoriasis patients and psoriatic model mice, and TOPK levels were positively associated with psoriasis progression. TOPK was upregulated in psoriatic lesions and expressed predominantly by epidermal keratinocytes. In addition, TOPK levels in epidermal keratinocytes were positively correlated with epidermal hyperplasia. Furthermore, topical application of TOPK inhibitor OTS514 obviously alleviated disease severity and epidermal hyperplasia. Mechanismly, inhibiting TOPK induces G2/M phase arrest and apoptosis of keratinocytes, thereby attenuating epidermal hyperplasia and disease progression. Collectively, this study identifies that upregulation of TOPK in keratinocytes promotes psoriatic progression, and inhibiting TOPK attenuates epidermal hyperplasia and psoriatic progression.


Assuntos
Neoplasias , Psoríase , Humanos , Animais , Camundongos , Inibidores de Proteínas Quinases , Hiperplasia/patologia , Células Matadoras Ativadas por Linfocina/metabolismo , Células Matadoras Ativadas por Linfocina/patologia , Linfócitos T/metabolismo , Queratinócitos/metabolismo , Psoríase/metabolismo , Pontos de Checagem do Ciclo Celular , Apoptose/genética , Neoplasias/metabolismo , Proliferação de Células/genética
12.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445759

RESUMO

The present study aimed to characterize the antiproliferative and antimetastatic properties of two recently synthesized monoterpene-aminopyrimidine hybrids (1 and 2) on A2780 ovary cancer cells. Both agents exerted a more pronounced cell growth inhibitory action than the reference agent cisplatin, as determined by the MTT assay. Tumor selectivity was assessed using non-cancerous fibroblast cells. Hybrids 1 and 2 induced changes in cell morphology and membrane integrity in A2780 cells, as evidenced by Hoechst 33258-propidium iodide fluorescent staining. Cell cycle analysis by flow cytometry revealed substantial changes in the distribution of A2780 ovarian cancer cells, with an increased rate in the subG1 and G2/M phases, at the expense of the G1 cell population. Moreover, the tested molecules accelerated tubulin polymerization in a cell-free in vitro system. The antimetastatic properties of both tested compounds were investigated by wound healing and Boyden chamber assays after 24 and 48 h of incubation. Treatment with 1 and 2 resulted in time- and concentration-dependent inhibition of migration and invasion of A2780 cancer cells. These results support that the tested agents may be worth of further investigation as promising anticancer drug candidates.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células
13.
Bioimpacts ; 13(2): 145-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193079

RESUMO

Introduction: The approach for drug delivery has impressively developed with the emergence of nanosuspension, particularly the targeted nanoemulsions (NEs). It can potentially improve the bioavailability of drugs, enhancing their therapeutic efficiency. This study aims to examine the potential role of NE as a delivery system for the combination of docetaxel (DTX), a microtubule-targeting agent, and thymoquinone (TQ) in the treatment of human ductal carcinoma cells T47D. Methods: NEs were synthesized by ultra-sonication and characterized physically by dynamic light scattering (DLS). A sulforhodamine B assay was performed to evaluate cytotoxicity, and a flow cytometry analysis for cell cycle, apoptosis, autophagy, and cancer stem cell evaluations. A quantitative polymerase chain reaction further assessed the epithelial-mesenchymal transition gene expirations of SNAIL-1, ZEB-1, and TWIST-1. Results: The optimal sizes of blank-NEs and NE-DTX+TQ were found at 117.3 ± 8 nm and 373 ± 6.8 nm, respectively. The synergistic effect of the NE-DTX+TQ formulation significantly inhibited the in vitro proliferation of T47D cells. It caused a significant increase in apoptosis, accompanied by the stimulation of autophagy. Moreover, this formulation arrested T47D cells at the G2/M phase, promoted the reduction of the breast cancer stem cell (BCSC) population, and repressed the expression of TWIST-1 and ZEB-1. Conclusion: Co-delivery of NE-DTX+TQ may probably inhibit the proliferation of T47D via the induction of apoptosis and autophagy pathways and impede the migration by reducing the BCSC population and downregulating TWIST-1 expression to decrease the epithelial-to-mesenchymal transition (EMT) of breast cancer cells. Therefore, the study suggests the NE-DTX+TQ formula as a potential approach to inhibit breast cancer growth and metastasis.

14.
Chin Med ; 18(1): 61, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37246229

RESUMO

BACKGROUND: Pancreatic cancer (PAC), a malignancy that is fatal and commonly diagnosed at a late stage. Despite considerable advancements in cancer treatment, the survival rate of PAC remains largely consistent for the past 60 years. The traditional Chinese medicine formula Pulsatilla Decoction (PD) has been clinically used to treat inflammatory diseases for millennia and recently as a supplementary anti-cancer treatment in China. However, the bioactive ingredients and mechanisms underlying its anti-cancer effect remains unclear. METHODS: The composition and quality control of PD were verified through analysis by high performance liquid chromatography. Cell viability was determined using Cell Counting Kit-8 assay. The cell cycle distribution was analyzed through PI staining and flow cytometry analysis, while apoptotic cells were measured by double staining with Annexin V-FITC and PI. We used immunoblotting to examine protein expressions. The in vivo effects of ß-peltatin and podophyllotoxin were evaluated on a subcutaneously-xenografted BxPC-3 cell nude mice model. RESULTS: The current study demonstrated that PD markedly inhibited PAC cell proliferation and triggered their apoptosis. Four herbal PD formula was then disassembled into 15 combinations of herbal ingredients and a cytotoxicity assay showed that the Pulsatillae chinensis exerted the predominant anti-PAC effect. Further investigation indicated that ß-peltatin was potently cytotoxic with IC50 of ~ 2 nM. ß-peltatin initially arrested PAC cells at G2/M phase, followed by apoptosis induction. Animal study confirmed that ß-peltatin significantly suppressed the growth of subcutaneously-implanted BxPC-3 cell xenografts. Importantly, compared to podophyllotoxin that is the parental isomer of ß-peltatin but clinically obsoleted due to its severe toxicity, ß-peltatin exhibited stronger anti-PAC effect and lower toxicity in mice. CONCLUSIONS: Our results demonstrate that Pulsatillae chinensis and particularly its bioactive ingredient ß-peltatin suppress PAC by triggering cell cycle arrest at G2/M phase and apoptosis.

15.
Cancers (Basel) ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37046682

RESUMO

Introduction: Neuroblastoma (NB) is one of the most common extracranial solid malignant tumors in children. The 5-year survival rate of high-risk or refractory NB is less than 50%. Therefore, developing new effective therapeutics for NB remains an urgent challenge. Materials and Methods: Based on the NB dataset TARGET-NBL in the TCGA database, the prognosis-related genes were analyzed using univariate cox regression (p < 0.01). The protein network interaction of prognostic genes was analyzed using STRING to obtain 150 hub genes with HR > 1 and 150 hub genes with HR < 1. The Connectivity Map database was used to predict a therapeutic drug: BI-D1870, a ribosomal S6 kinase inhibitor. The inhibitory effect of BI-D1870 on NB was investigated through in vivo and in vitro experiments, and its inhibitory mechanism was explored. Results: Both the in vivo and in vitro experiments showed that BI-D1870 could inhibit tumor proliferation and induce tumor apoptosis. Furthermore, we proved that BI-D1870 caused G2/M phase arrest and mitosis damage in cells. RNA-seq of cells showed that BI-D1870 may inhibit the growth of NB by inhibiting the PI3K-Akt-mTOR axis. Western blot and immunofluorescence testing showed that BI-D1870 inhibited the PI3K-Akt-mTORC1 signal pathway to regulate the phosphorylation of RPS6 and 4E BP1 proteins, inhibit protein translation, and inhibit microtubule formation, thus preventing mitotic proliferation and inducing apoptosis. Conclusions: This study provides strong support that BI-D1870 may be a potential adjuvant therapy for NB.

16.
Biochem Pharmacol ; 211: 115518, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966937

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is extremely malignant in nature. It is an important way to discover anti-cancer drugs from natural products at present. (R)-7,3'-dihydroxy-4'-methoxy-8-methylflavane (DHMMF), a natural flavonoid, was isolated from Resina Draconis which is the red resin from Dracaena cochinchinensis (Lour.) S. C. Chen. However, the anti-hepatoma effect and underlying mechanisms of DHMMF remain unclear. Herein, we demonstrated that DHMMF treatment significantly inhibited the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. The IC50 value of DHMMF for HepG2 and SK-HEP-1 cells were 0.67 µM and 0.66 µM, respectively, while the IC50 value of DHMMF for human normal liver LO2 cells was 120.60 µM. DHMMF induced DNA damage, apoptosis, and G2/M phase arrest in HepG2 and SK-HEP-1 cells. Furthermore, the anti-proliferative and pro-apoptotic effects of DHMMF in human hepatoma cells were mediated by the upregulation of p21. Importantly, DHMMF exhibited potent anti-HCC efficacy in a xenograft mice model and an orthotopic mice model of liver cancer. Additionally, the combined administration of DHMMF and polo-like kinase 1 (PLK1) inhibitor BI 6727 showed a synergistic anti-HCC efficacy. Collectively, we demonstrated that DHMMF treatment induced apoptosis and G2/M phase arrest via DNA damage-driven upregulation of p21 expression in human hepatoma cells. DHMMF may serve as a promising drug candidate for HCC treatment, especially for patients of HCC with low p21 expression. Our results also suggested that DHMMF treatment in combination with PLK1 inhibitor may serve as a potential treatment strategy for patients with HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Regulação para Cima , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proliferação de Células , Células Hep G2 , Antineoplásicos/farmacologia , Apoptose , Dano ao DNA , Divisão Celular
17.
Bioorg Chem ; 131: 106334, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592487

RESUMO

Microtubule dynamic is exceptionally sensitive to modulation by small-molecule ligands. Our previous work presented the preparation of microtubule-targeting estradiol dimer (ED) with anticancer activity. In the present study, we explore the effect of selected linkers on the biological activity of the dimer. The linkers were designed as five-atom chains with carbon, nitrogen or oxygen in their centre. In addition, the central nitrogen was modified by a benzyl group with hydroxy or methoxy substituents and one derivative possessed an extended linker length. Thirteen new dimers were subjected to cytotoxicity assay and cell cycle profiling. Dimers containing linker with benzyl moiety substituted with one or more methoxy groups and longer branched ones were found inactive, whereas other structures had comparable efficacy as the original ED (e.g. D1 with IC50 = 1.53 µM). Cell cycle analysis and immunofluorescence proved the interference of dimers with microtubule assembly and mitosis. The proposed in silico model and calculated binding free energy by the MM-PBSA method were closely correlated with in vitro tubulin assembly assay.


Assuntos
Antineoplásicos , Etinilestradiol , Triazóis , Moduladores de Tubulina , Tubulina (Proteína) , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Etinilestradiol/química , Etinilestradiol/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Microtúbulos , Triazóis/química , Triazóis/farmacologia , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
18.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657260

RESUMO

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Reparo do DNA , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Neoplasias/genética , Proteômica , Proteína Supressora de Tumor p53/metabolismo
19.
Cancer Lett ; 554: 216012, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470544

RESUMO

For patients with esophageal squamous cell carcinoma (ESCC), standard therapeutic methods (cisplatin and radiotherapy) have been found to be ineffective and severely toxic. Targeted therapy emerges as a promising solution for this dilemma. It has been reported that targeted therapies are applied alone or in combination with standard conventional therapies for the treatment of a variety of cancers. To the best of our knowledge, in patients with ESCC, the combinational methods containing standard therapy and ERK-targeted therapy have yet to be explored. To analyze the prognostic role of p-ERK in ESCC patients, the Kaplan-Meier analysis and Cox regression model were used. To assess the effects of ERK-targeted therapy (GDC0994) on ESCC cells, in vitro studies including CCK-8 assay, colony formation assay, and scratch wound healing assay were conducted. In addition, the changes in cell cycle distribution and apoptosis were analyzed by flow cytometry. Besides, to assess the efficacy of different therapies in vivo, the xenograft tumor models were established by subcutaneously inoculating tumor cells into the flank/leg of mice. In patients with ESCC, a strong correlation between the high expression level of p-ERK and the poor prognosis (p < 0.01, Log-Rank test) has been identified. By analyzing the results from CCK-8 and scratch wound healing assays, we demonstrated that the ERK inhibitor repressed the viability and migration of ESCC cells. In addition, following the treatment of GDC0994, the volumes of xenograft tumors significantly decreased (p < 0.001, one-way ANOVA). Furthermore, blocking the mitogen-activated protein kinase (MAPK/ERK) pathway enhanced the therapeutic efficacy of both cisplatin and radiotherapy (p < 0.05). These findings imply the role of p-ERK in the prognosis of ESCC patients and the therapeutic value of ERK inhibitors in ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células , Quimiorradioterapia/métodos , Cisplatino , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/radioterapia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia
20.
Kidney Int ; 103(3): 544-564, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581018

RESUMO

The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-ß1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.


Assuntos
Transição Epitelial-Mesenquimal , Insuficiência Renal Crônica , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Receptores ErbB , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Rim/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteases Específicas de Ubiquitina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...