Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Plants (Basel) ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891268

RESUMO

Symplocos paniculata are reported to exhibit seed dormancy, which impedes its cultivation and widespread adoption. In this study, a comprehensive method was established to overcome seed dormancy by subjecting seeds to scarification in 98% H2SO4 for 10 min, followed by 1000 mg·L-1 GA3 soaking for 48 h and stratification at 4 °C for 100 days. The seed germination percentage has increased significantly, to a peak of 42.67%, though the seeds could not germinate timely by NaOH scarification. Additionally, the dynamic changes of key stored substances (proteins, soluble sugars, starches, and fats), associated enzyme activities (amylases, peroxidase, and catalase), and endogenous hormones (abscisic acid, gibberellic acid, and indole-3-acetic acid) in seeds were investigated. The results demonstrated a continuous degradation of starch and fat in S. paniculata seeds, while the levels of protein and soluble sugar exhibited fluctuations, which probably facilitated seed dormancy breaking through energy supply and transformation. The enzymatic activities underwent rapid changes, accompanied by a gradual decrease in ABA content within the seeds with increasing stratification time. Notably, GA3, GA3/ABA, and (GA3 + IAA)/ABA showed significant increases, indicating their positive regulatory roles in seed germination. This study clarified the dormancy mechanism and established an effective method for the release dormancy of S. paniculata seeds.

2.
Plants (Basel) ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732399

RESUMO

The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it is of great significance to identify genes related to regulating the leaf size of E. ulmoides. Plant growth-regulating factors (GRFs) play important roles in regulating leaf size, and their functions are highly conserved across different plant species. However, there have been very limited reports on EuGRFs until now. In this study, eight canonical EuGRFs with both QLQ and WRC domains and two putative eul-miR396s were identified in the chromosome-level genome of E. ulmoides. It is found that, unlike AtGRFs, all EuGRFs contain the miR396s binding site in the terminal of WRC domains. These EuGRFs were distributed on six chromosomes in the genome of E. ulmoides. Collinearity analysis of the E. ulmoides genome revealed that EuGRF1 and EuGRF3 exhibit collinear relationships with EuGRF2, suggesting that those three genes may have emerged via gene replication events. The collinear relationship between EuGRFs, AtGRFs, and OsGRFs showed that EuGRF5 and EuGRF8 had no collinear members in Arabidopsis and rice. Almost all EuGRFs show a higher expression level in growing and developing tissues, and most EuGRF promoters process phytohormone-response and stress-induced cis-elements. Moreover, we found the expression of EuGRFs was significantly induced by gibberellins (GA3) in three hours, and the height of E. ulmoides seedlings was significantly increased one week after GA3 treatment. The findings in this study provide potential candidate genes for further research and lay the foundation for further exploring the molecular mechanism underlying E. ulmoides development in response to GA3.

3.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672503

RESUMO

The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.


Assuntos
Antibacterianos , Gálio , Ferro , Compostos Organometálicos , Fenóis , Pseudomonas aeruginosa , Sideróforos , Gálio/química , Gálio/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Ferro/metabolismo , Ferro/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Simulação por Computador , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Pironas/química , Pironas/metabolismo , Pironas/farmacologia
4.
Mol Biol Rep ; 51(1): 581, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668759

RESUMO

BACKGROUND: Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited. METHODS: Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR. RESULTS: In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought. CONCLUSIONS: The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Nicotiana , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Giberelinas/metabolismo , Zíper de Leucina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica/métodos
5.
PeerJ ; 12: e17236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618572

RESUMO

Purpose: Juniper (Juniperus procera) is a common forest tree species in Saudi Arabia. The decline in many populations of J. procera in Saudi Arabia is mainly due to seed dormancy and loss of natural regeneration. This study assessed the effects of chemical and hormonal treatments on seed germination and seedling growth in juniper plants. Methods: The seeds were subjected to either chemical scarification with 90% sulfuric acid and 20% acetic acid for 6 min or hormonal treatment by seed soaking in two concentrations (50 and 100 ppm) of three growth regulators, namely, indole acetic acid (IAA), gibberellins (GA3), and kinetin, for 72 h. A control group without any seed treatment was also prepared. The experiments were performed in an incubator maintained at room temperature and under a light and dark period of 12 h for 6 w. The germinated seeds for each treatment were counted and removed from the dishes. The selected germinated seeds from different treatments were planted in a greenhouse and irrigated with tap water for another 6 weeks. The hormone-treated seedlings were sprayed with their corresponding hormone concentrations 1 w after planting. Results: The highest percentage of seed germination was significantly recorded after seed soaking in 50 ppm GA3, whereas treatment with IAA (100 ppm) resulted in the best seedling growth. Seedlings treated with the three phytohormones showed a significant increase in photosynthetic pigments, total soluble sugars, proteins, percentage of oil, IAA, GA3, and kinetin contents of juniper seedlings compared with the control value, whereas abscisic acid content was decreased compared with chemical treatments. Conclusion: The investigated different treatments had an effective role in breaking seed dormancy and improving seedling growth of J. procera, which is facing a notable decline in its population worldwide. Moreover, such an effect was more pronounced in the three phytohormones that succeeded in breaking dormancy and growth of the Juniperus plant than in the other treatments.


Assuntos
Porcelana Dentária , Juniperus , Ligas Metalo-Cerâmicas , Plântula , Titânio , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Cinetina/farmacologia , Sementes , Hormônios
6.
J Agric Food Chem ; 72(8): 4433-4447, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354220

RESUMO

Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.


Assuntos
Polietilenoglicóis , Poliuretanos , Proantocianidinas , Vitis , Proantocianidinas/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Adstringentes/metabolismo , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes Reguladores , Regulação da Expressão Gênica de Plantas
7.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397102

RESUMO

The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.


Assuntos
Cytisus , Lamiales , Magnoliopsida , Phytoplasma , Magnoliopsida/genética , Doenças das Plantas/genética , Phytoplasma/genética , Melhoramento Vegetal , Lamiales/genética
8.
Appl Biochem Biotechnol ; 196(3): 1493-1508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37428388

RESUMO

Gibberellic acid (GA3) is a natural hormone present in some plants used in agricultural formulations as a growth regulator. Currently, its production on an industrial scale is performed by submerged fermentation using the fungus Gibberella fujikuroi, which is associated with low yields, leaving the purification stages with high costs. An alternative is solid-state fermentation (SSF), which makes it possible to obtain higher concentrations of product using low-cost substrates, such as agroindustrial by-products. This research investigated the use of raw rice bran (RRB) and barley malt residue (BMR) as substrates for GA3 production by the fungus Gibberella fujikuroi. Through two statistical designs, the effect of moisture (50 to 70 wt.%) and medium composition (RRB content between 30 and 70 wt.% to a mass ratio between RRB and BMR) was first evaluated. Using the best conditions previously obtained, the effect of adding glucose (carbon source, between 0 and 80 g·L-1) and ammonium nitrate-NH4NO3-(nitrogen source, between 0 and 5 g·L-1) on GA3 productivity was analyzed. The best yield was obtained using 30 wt.% RRB and 70 wt.% BMR for a medium with 70 wt.% of moisture after 7 days of process. It was also found that higher concentrations of NH4NO3 favor the GA3 formation for intermediate values of glucose content (40 g·L-1). Finally, a kinetic investigation showed an increasing behavior in the GA3 production (10.1 g·kg of substrate-1 was obtained), with a peak on the seventh day and subsequent tendency to stabilization.


Assuntos
Fusarium , Gibberella , Giberelinas , Oryza , Fermentação , Glucose
9.
Plant Physiol Biochem ; 206: 108254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056037

RESUMO

Gibberellins (GAs) play a crucial role in regulating secondary growth in angiosperms, but their effects on the secondary growth of gymnosperms are rarely reported. In this study, we administered exogenous GA3 to two-year-old P. massoniana seedlings, and examined its effects on anatomical structure, physiological and biochemical changes, and gene expression in stems. The results showed that exogenous GA3 could enhance xylem development in P. massoniana by promoting cell division. The content of endogenous hormone (including auxins, brassinosteroids, and gibberellins) were changed and the genes related to phytohormone biosynthesis and signaling pathway, such as GID1, DELLA, TIR1, ARF, SAUR, CPD, BR6ox1, and CYCD3, were differentially expressed under GA3 treatment. Furthermore, GA3 and BR (brassinosteroid) might act synergistically in promoting secondary growth in P. massoniana. Additionally, lignin content was significantly increased after GA3 treatment accompanied by the express of lignin biosynthesis related genes. PmCAD (TRINITY_DN142116_c0_g1), a crucial gene involved in the lignin biosynthesis, was cloned and overexpressed in Nicotiana benthamiana, significantly promoting the xylem development and enhancing stem lignification. It was regarded as a key candidate gene for improving stem growth of P. massoniana. The findings of this study have demonstrated the impact of GA3 treatment on secondary growth of stems in P. massoniana, providing a foundation for understanding the molecular regulatory mechanism of stem secondary growth in Pinaceae seedlings and offering theoretical guidance for cultivating new germplasm with enhanced growth and yield.


Assuntos
Giberelinas , Pinus , Giberelinas/farmacologia , Giberelinas/metabolismo , Plântula/metabolismo , Lignina/metabolismo , Pinus/genética , Pinus/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Plant Biol (Stuttg) ; 26(1): 117-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014496

RESUMO

Both NO and GAs are essential for regulating various physiological processes and stress responses in plants. However, the interaction between these two molecules remains unclear. We investigated the distinct response patterns of Arabidopsis thaliana Col-0 and GA synthesis functional deficiency mutants to NO by measuring root length. To investigate underlying mechanisms, we detected bioactive GA content using UHPLC-ESI-MS/MS, assessed the accumulation of ROS by chemical staining Arabidopsis roots. We also conducted RNA-seq analysis and compared results between Col-0 and ga3ox1, with and without SNP (as NO donor) treatment. Phenotypic results revealed that the inhibitory effect of NO on primary roots of Arabidopsis was primarily mediated by GA3-oxidase, rather than GA20-oxidase or GA2-oxidase. The content of GA3 decreased in Col-0 treated with SNP, whereas this decrease was not observed in ga3ox1. The deficiency of GA3-oxidase alleviated the buildup of H2 O2 in roots when treated with SNP. We identified 222 DEGs. GO annotation of these DEGs revealed that all top 20 GO terms were related to stress responses. Moreover, three DEGs were annotated to GA-related processes (DDF1, DDF2, EXPA1), and seven DEGs were associated with root development (RAV1, RGF2, ERF71, ZAT6, MYB77, XT1, and DTX50). In summary, NO inhibits primary root growth partially by repressing GA3-oxidase catalysed GA3 synthesis in Arabidopsis. ROS, Ca2+ , DDF1, DDF2, EXPA1 and seven root development-related genes may be involved in crosstalk between NO and GAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Óxido Nítrico , Oxirredutases/genética , Espectrometria de Massas em Tandem , Espécies Reativas de Oxigênio , Giberelinas/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas
11.
Front Plant Sci ; 14: 1240028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078087

RESUMO

Introduction: Tilia miqueliana is an endemic species whose population is declining. The permeability barrier and mechanical constraint of the pericarp (seed coat) are important causes of its seed dormancy. Although there has been considerable research on this subject, questions remain regarding how the permeability barrier and mechanical constraint of the seed coat are eliminated during dormancy release and how water enters the seed. Therefore, protecting the species by improving its germination/dormancy breaking in the laboratory is urgent. Methods: In this study, the changes in the cellular structure, mechanical properties, and components of the Tilia miqueliana seed coat after an H2SO4-gibberellic acid (GA3) treatment were analyzed during dormancy release. Various analyses (e.g., magnetic resonance imaging, scanning electron microscopy, and paraffin section detection) revealed the water gap and water channel. Results: The H2SO4 treatment eliminated the blockage at the micropyle and hilum of the seeds. Water entered the seeds through the water gap (micropyle) rather than through the hilum or seed coat, after which it dispersed along the radicle, hypocotyl, and cotyledon to the endosperm. During the cold stratification period, the cellular structure was damaged and an increasing number of holes appeared on the inner and outer surfaces of the seed coat. Vickers hardness tests showed that GA3 decreased the seed coat hardness. Additionally, the seed coat lignin and total phenol contents continuously decreased during the cold stratification period. Notably, the Liquid chromatography-mass spectrometry (LC-MS) analysis of the seed coat detected polyethylene glycol (osmoregulator), which may have destabilized the water potential balance inside and outside the seed and increased the water content to levels required for germination, ultimately accelerating seed dormancy release. Discussion: This sophisticated and multi-level study reveals how H2SO4 and GA3 eliminate the permeability barrier and mechanical constraints of the seed coat during dormancy release of Tilia miqueliana seeds. This will be beneficial to artificially assist the natural regeneration and population expansion of Tilia miqueliana.

12.
Funct Integr Genomics ; 24(1): 2, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066213

RESUMO

Camellia perpetua has the excellent characteristic of flowering multiple times throughout the year, which is of great importance to solve the problem of "short flowering period" and "low fresh flower yield" in the yellow Camellia industry at present. Observations of flowering phenology have demonstrated that most floral buds of C. perpetua were formed by the differentiation of axillary buds in the scales at the base of the terminal buds of annual branches. However, the molecular mechanism of flowering in C. perpetua is still unclear. In this study, we conducted a comparative transcriptomic study of the terminal buds and their basal flower buds in March (spring) and September (autumn) using RNA-seq and found that a total of 11,067 genes were significantly differentially expressed in these two periods. We identified 27 genes related to gibberellin acid (GA) synthesis, catabolism, and signal transduction during floral bud differentiation. However, treatment of the terminal buds and axillary buds of C. perpetua on annual branch with GA3 did not induce floral buds at the reproductive growth season (in August) but promoted shoot sprouting. Moreover, 203 flowering genes were identified from the C. perpetua transcriptome library through homology alignment, including flowering integrators LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO), as well as MADS-box, SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box), and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) genes, which were specifically upregulated in floral buds and were likely involved in flowering in C. perpetua. The floral inhibitor CperTFL1b was identified and cloned from C. perpetua, and its expression level was specifically regulated in terminal buds in autumn. Ectopic overexpression of CperTFL1b delayed flowering time and produced abnormal inflorescence and floral organs in Arabidopsis, suggesting that CperTFL1b inhibits flowering. In conclusion, this study deepens our understanding of the molecular mechanism of blooms throughout the year in C. perpetua and provides a helpful reference for cultivating new varieties of yellow Camellia with improved flowering traits.


Assuntos
Camellia , Transcriptoma , Camellia/genética , Perfilação da Expressão Gênica , RNA-Seq , Flores , Regulação da Expressão Gênica de Plantas
13.
ACS Appl Bio Mater ; 6(12): 5582-5595, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37971315

RESUMO

The present investigation highlights a rhodamine-B- and coumarin-based efficient probe that selectively detects Ga3+ over other metal ions. The active pocket of the ligand for trapping the metal ions and the binding stoichiometry of its Ga3+ complex were discovered by single-crystal X-ray diffraction (SC-XRD) analysis. This binding stoichiometry was further confirmed in the solution state by mass spectrometry and Job's plot. The detection limit was found to be at the nanomolar level. Pyrophosphate being a well-known quencher could easily quench the fluorescence intensity of the RC in the presence of Ga3+ and reversibly recognize Ga3+ in the solution. The spiro ring opening of the ligand after Ga3+ insertion is proposed to be the principal mechanism for the turn-on fluorescence response. This ring opening was confirmed by SC-XRD data and nuclear magnetic resonance (NMR) titration experiments. Both ground- and excited-state calculations of the ligand and complex have been carried out to obtain information about their energy levels and to obtain the theoretical electronic spectra. Furthermore, the live-cell imaging of the probe only and the probe after the addition of Ga3+ have been carried out in HaCaT cells and satisfactory responses were observed. Interestingly, with the help of this probe, Ga3+ can be tracked inside the intracellular organelle such as lysosomes along with other regions of the cell. The article highlights a rhodamine-coumarin-based probe for the detection of Ga3+ over other metal ions with a nanomolar level detection limit. Structural characterization of the ligand and its Ga3+ complex was investigated by SC-XRD. Density functional theory (DFT) and time-dependent DFT (TD-DFT) studies were carried out to explore the excited-state energies and electronic spectra. The application of the probe for the detection of Ga3+ in live cells has been explored, and positive responses were observed.


Assuntos
Cumarínicos , Corantes Fluorescentes , Corantes Fluorescentes/química , Ligantes , Rodaminas/química , Íons/análise
14.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834318

RESUMO

Exogenous gibberellin treatment can promote early growth of grape fruit, but the underlying regulatory mechanisms are not well understood. Here, we show that VvDELLA2 directly regulates the activity of the VvCEB1 transcription factor, a key regulator in the control of cell expansion in grape fruit. Our results show that VvCEB1 binds directly to the promoters of cell expansion-related genes in grape fruit and acts as a transcriptional activator, while VvDELLA2 blocks VvCEB1 function by binding to its activating structural domain. The exogenous gibberellin treatment relieved this inhibition by promoting the degradation of VvDELLA2 protein, thus, allowing VvCEB1 to transcriptionally activate the expression of cell expansion-related genes. In conclusion, we conclude that exogenous GA3 treatment regulates early fruit expansion by affecting the VvDELLA-VvCEB1 interaction in grape fruit development.


Assuntos
Frutas , Vitis , Frutas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Vitis/metabolismo , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
15.
Materials (Basel) ; 16(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37763523

RESUMO

This paper describes an investigation of the effects of silicone-containing additives on the tribological and rheological properties of various lubricant blends. Aerosil® and layered silicate were used to modify lubricants containing rapeseed, linseed and soy oil that were thickened with soap thickener. Tribological tests were carried out using a four-ball concentric contact tester. On the basis of the data obtained from the tribological studies of the selected lubricant blends, it was concluded that the addition of amorphous silica increased the anti-seizure and anti-wear properties of the tested lubricants. The addition of montmorillonite caused a significant increase in the values of the individual parameters determining the level of lubricating properties of the tested lubricants in comparison with the lubricants modified with the silica additive. Based on the results of the rheological tests of the studied lubricants, it was found that the applied additives caused a change in the dynamic viscosity and chemical structure of the tested lubricants, expressed by a change in the values of the G' and G″ indices. The main finding of this manuscript was to demonstrate that the use of montmorillonite and aerosil additives improves the functional properties of vegetable-based plastic lubricants. The performance of tribological and rheological tests is of great scientific importance, as it provides an insight into the interaction of siliceous additives with the results of tribological tests on vegetable-oil-based greases. These findings make it possible to determine the behaviour of the lubricant under load and add to the knowledge of vegetable greases.

16.
Plant Physiol Biochem ; 203: 108053, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37769452

RESUMO

Plant architecture, an important agronomic trait closely associated with yield, is governed by a highly intricate molecular network. Despite extensive research, many mysteries surrounding this regulation remain unresolved. Trihelix transcription factor family plays a crucial role in the development of plant morphology and abiotic stresses. Here, we identified a novel trihelix transcription factor named SlGT-26, and its down-regulation led to significant alterations in plant architecture, including dwarfing, reduced internode length, smaller leaves, and shorter petioles. The dwarf phenotype of SlGT-26 silenced transgenic plants could be recovered after spraying exogenous GA3, and the GA3 content were decreased in the RNAi plants. Additionally, the expression levels of gibberellin-related genes were affected in the RNAi lines. These results indicate that the dwarf of SlGT-26-RNAi plants may be a kind of GA3-sensitive dwarf. SlGT-26 was response to drought and salt stress treatments. SlGT-26-RNAi transgenic plants demonstrated significantly enhanced drought resistance and salt tolerance in comparison to their wild-type tomato counterparts. SlGT-26-RNAi transgenic plants grew better, had higher relative water content and lower MDA and H2O2 contents. The expression of multiple stress-related genes was also up-regulated. In summary, we have discovered a novel gene, SlGT-26, which plays a crucial role in regulating plant architecture and in respond to drought and salt stress.

17.
J Plant Physiol ; 287: 154046, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390779

RESUMO

Tilia henryana is a rare tree of the Tilia family, found exclusively in China. Its seeds have severe dormancy features that limit its normal conditions of reproduction and renewal. Its seeds have severe dormant characteristics that limit its normal conditions of reproduction and renewal. The Dormancy in T. henryana seeds is a comprehensive dormancy (PY + PD) caused by mechanical and permeability barriers of seed coat and the presence of germination inhibitor in endosperm. L9 (34) orthogonal test was used to determine the best procedure for releasing the dormancy of T. henryana seeds, that is, first treating the seeds with H2SO4 for 15 min, followed by the application of 1 g L-1 GA3, stratification at 5 °C for 45 days, and finally germination at 20 °C, which can achieve a 98% seed germination rate. Large amounts of fat are consumed throughout the dormancy release process. As quantities of protein and starch marginally increase, soluble sugars are continuously decreased. Acid phosphatase and amylase activities increased rapidly, and the combined enzyme activities of G-6-PDH and 6-PGDH related to the PPP were also significantly increased. The levels of GA and ZR continued to increase, while the levels of ABA and IAA gradually decreased, among which GA and ABA changed most rapidly. The total amino acids content continued to decrease. Asp, Cys, Leu, Phe, His, Lys and Arg decreased with dormancy release, while Ser, Glu, Ala, Ile, Pro and Gaba showed an upward trend. The physical dormancy of T. henryana seeds is broken with H2SO4 in order to make the seed coat more permeable, which is a prerequisite for germination. As a result, the seeds can absorb water and engage in physiological metabolic activities, particularly the hydrolysis and metabolism of fat, which supply a significant amount of energy for dormancy release. In addition, rapid variations in the levels of different endogenous hormones and free amino acids, induced by cold stratification and GA3 application, are another important factor promoting the quick physiological activation of seeds and breaking the endosperm barrier.


Assuntos
Dormência de Plantas , Tilia , Dormência de Plantas/fisiologia , Germinação/fisiologia , Sementes/metabolismo , Endosperma
18.
Plants (Basel) ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299091

RESUMO

Pimelea trichostachya Lindl is a little-understood Australian native plant, with irregular field emergence, causing significant poisoning to grazing livestock. The study aims to examine the form of dormancy exhibited by P. trichostachya and determine how key environmental conditions, such as alternating temperature and light conditions, moisture availability, substrate pH and burial depth, affect its germination and emergence. The study concludes that P. trichostachya has a complex dormancy mechanism. This comprises a physical component that can be partly removed by fruit scarification, a metabolic dormancy that can be overcome by gibberellic acid (GA3), and a suspected third mechanism based on a water-soluble germination inhibitor. The results showed that scarified single seeded fruit (hereafter seed) with GA3 treatment gave the highest germination percentage (86 ± 3%) at 25/15 °C, with good germination rates at other temperature regimes. Light exposure stimulated germination, but a significant proportion of seeds still germinated in the dark. The study also found that seeds could germinate under water-limited conditions and a wide range of pH levels (4 to 8). Seedling emergence was inhibited when seeds were buried below 3 cm in soil. Pimelea trichostachya emergence in the field commonly occurs from Autumn to Spring. Understanding its dormancy mechanism and recognizing its triggers for germination will enable better prediction of outbreaks. This can help landholders prepare for emergence and help manage seedbank build-up in pastures and crops.

19.
Foods ; 12(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238852

RESUMO

Gibberellic acids had been proven to improve the fruit quality and storability by delaying deterioration and maintaining the antioxidant system. In this study, the effect of GA3 spraying at different concentrations (10, 20, and 50 mg L-1) on the quality of on-tree preserved 'Shixia' longan was examined. Only 50 mg L-1 GA3 significantly delayed the decline of soluble solids (22.0% higher than the control) and resulted in higher total phenolics content (TPC), total flavonoid content (TFC), and phenylalanine ammonia-lyase activity in pulp at the later stages. The widely targeted metabolome analysis showed that the treatment reprogrammed secondary metabolites and up-regulated many tannins, phenolic acids, and lignans during the on-tree preservation. More importantly, the preharvest 50 mg L-1 GA3 spraying (at 85 and 95 days after flowering) led to significantly delayed pericarp browning and aril breakdown, as well as lower pericarp relative conductivity and mass loss at the later stages of room-temperature storage. The treatment also resulted in higher antioxidants in pulp (vitamin C, phenolics, and reduced glutathione) and pericarp (vitamin C, flavonoids, and phenolics). Therefore, preharvest 50 mg L-1 GA3 spraying is an effective method for maintaining the quality and up-regulating antioxidants of longan fruit during both on-tree preservation and room-temperature storage.

20.
PeerJ ; 11: e15234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138822

RESUMO

Timing of seed germination is directly related to the survival probability of seedlings. For alpine plants, autumn-dispersal seeds should not germinate immediately because the cold temperature is not conducive to the survival of seedlings. Seed dormancy is a characteristic of the seed that prevents it from germinating after dispersal. Primula florindae is an alpine perennial forb endemic to eastern Tibet, SW China. We hypothesized that primary dormancy and environmental factors prevent seeds of P. florindae to germinate in autumn and allow them to germinate at the first opportunity in spring. We determined how GA3, light, temperature, dry after-ripening (DAR) and cold-wet stratification (CS) treatments affect seed germination by conducting a series of laboratory experiments. Firstly, the effects of gibberellic acid (GA3; 0, 20, and 200 mg L-1) on germination of freshly shed seeds at alternating temperatures (15/5 and 25/15 °C) were immediately investigated to characterize seed with a physiological dormancy component. Then, the fresh seeds treated with 0, 3, and 6 months of after-ripening (DAR) and cold-wet stratification (CS) were incubated at seven constant (1, 5, 10, 15, 20, 25, and 30 °C) and two alternating temperatures (5/1, 15/5, and 25/15 °C) at light and dark conditions. Fresh seeds were dormant, which only germinated well (>60%) at 20, 25, and 25/15 °C in light but not at ≤15 °C and to higher percentages in light than in dark. GA3 increased germination percentage of fresh seeds, and DAR or CS treatments increased final germination percentage, germination rate (speed), and widened the temperature range for germination from high to low. Moreover, CS treatments reduced the light requirement for germination. Thus, after dormancy release, seeds germinated over a wide range of constant and alternating temperatures, regardless of light conditions. Our results demonstrated that P. florindae seeds have type 2 non-deep physiological dormancy. Timing of germination should be restricted to early spring, ensuring a sufficient length of the growing season for seedling recruitment. These dormancy/germination characteristics prevent seeds from germinating in autumn when temperatures are low but allow them to germinate after snowmelt in spring.


Assuntos
Primula , Primulaceae , Germinação/fisiologia , Dormência de Plantas/fisiologia , Plantas , Plântula , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...