Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.764
Filtrar
1.
Mol Genet Metab ; 142(4): 108530, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968673

RESUMO

Phosphoglucomutase-1-congenital disorder of glycosylation (PGM1-CDG) is a rare genetic disorder caused by biallelic variants in the PGM1 gene, leading to the deficiency of the PGM1 enzyme. The most common clinical presentations include muscle involvement, failure to thrive, cleft palate, and cardiac involvement. Abnormal serum N-glycosylation, hypoglycemia, and liver function abnormalities including coagulation abnormalities are the most common laboratory abnormalities. While PGM1-CDG has been extensively studied, little is known about the extent of the coagulation abnormalities in individuals with PGM1-CDG. Unlike most CDG, some symptoms of PGM1-CDG are treatable with D-galactose (D-gal) supplementation, though reliable clinical endpoints are necessary to appropriately evaluate the potential improvement with D-gal in PGM1-CDG. Here, we aimed to describe the incidence of coagulation abnormalities in PGM1-CDG and their evolution, their relation to clinical events, and the ability of D-gal treatment to improve them. A retrospective analysis was conducted on 73 reported individuals. All individuals had a molecularly confirmed PGM1-CDG diagnosis. All incidences of antithrombin (AT), aPTT, PT, factor (F) XI, FX, FIX, FVII, protein C and protein S data and major clinical events related to coagulation abnormalities, were collected. Coagulation information was available for only 58.9 % of the reported individuals, out of which 67.4 % of PGM1-CDG individuals were reported to have abnormalities. The most frequently observed abnormality was AT (mean: 30.8% R:80-120 %) deficiency. Four individuals had major thrombotic events. Coagulation status on D-gal treatment, were reported in 19 individuals. Several factors showed improvement including AT (mean: 64.5 %), indicating galactose is beneficial in treating coagulation abnormalities in PGM1-CDG. Due to the scarcity of the reported data on coagulation parameters, we also evaluated data collected in sixteen PGM1-CDG individuals enrolled in the FCDGC Natural History Study. Longitudinal data showed improvements in several coagulant parameters and disease severity improved for almost all patients of whom we had multiple datapoints on D-gal. AT showed significant improvement on D-gal. We conclude that coagulation abnormalities are frequently present in PGM1-CDG and show improvement on D-gal. We recommend coagulation parameters should be routinely checked in individuals with PGM1-CDG or suspected of having PGM1-CDG. Finally, AT may be used as a primary or secondary clinical endpoint for upcoming clinical trials in PGM1-CDG individuals.

2.
Appl Environ Microbiol ; : e0101424, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953370

RESUMO

Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.

3.
JIMD Rep ; 65(4): 280-294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974607

RESUMO

Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.

4.
Expert Opin Ther Targets ; : 1-12, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38946482

RESUMO

INTRODUCTION: CLEC10A is a C-type lectin receptor that specifically marks the conventional dendritic cell subsets two and three (cDC2 and DC3). It has a unique recognition profile of glycan antigens, with terminal N-Acetylgalactosamine residues that are frequently present in the tumor microenvironment. Even though CLEC10A expression allows for precise targeting of cDC2 and DC3 for the treatment of cancer, CLEC10A signaling has also been associated with anti-inflammatory responses that would promote tumor growth. AREAS COVERED: Here, we review the potential benefits and drawbacks of CLEC10A engagement in the tumor microenvironment. We discuss the CLEC10A-mediated effects in different cell types and incorporate the pleiotropic effects of IL-10, the main anti-inflammatory response upon CLEC10A binding. EXPERT OPINION: To translate this to a successful CLEC10A-mediated immunotherapy with limited tumor-promoting capacities, finding the right ligand presentation and adjuvant combination will be key.

5.
Biochim Biophys Acta Mol Basis Dis ; : 167340, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986816

RESUMO

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.

6.
Neurochem Res ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987448

RESUMO

Luteolin is an essential natural polyphenol found in a variety of plants. Numerous studies have supported its protective role in neurodegenerative diseases, yet the research for its therapeutic utility in D-galactose (D-gal)-induced brain ageing is still lacking. In this study, the potential neuroprotective impact of luteolin against D-gal-induced brain ageing was explored. Forty rats were randomly divided into four groups: control, luteolin, D-gal, and luteolin-administered D-gal groups. All groups were subjected to behavioural, cholinergic function, and hippocampal mitochondrial respiration assessments. Hippocampal oxidative, neuro-inflammatory, senescence and apoptotic indicators were detected. Gene expressions of SIRT1, BDNF, and RAGE were assessed. Hippocampal histopathological studies, along with GFAP and Ki67 immunoreactivity, were performed. Our results demonstrated that luteolin effectively alleviated D-gal-induced cognitive impairment and reversed cholinergic abnormalities. Furthermore, luteolin administration substantially mitigated hippocampus oxidative stress, mitochondrial dysfunction, neuro-inflammation, and senescence triggered by D-gal. Additionally, luteolin treatment considerably attenuated neuronal apoptosis and upregulated hippocampal SIRT1 mRNA expression. In conclusion, our findings revealed that luteolin administration attenuated D-gal-evoked brain senescence, improving mitochondrial function and enhancing hippocampal neuroregeneration in an ageing rat model through its antioxidant, senolytic, anti-inflammatory, and anti-apoptotic impacts, possibly due to upregulation of SIRT1. Luteolin could be a promising therapeutic modality for brain aging-associated abnormalities.

7.
J Clin Pharmacol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988185

RESUMO

In classic galactosemia (CG) patients, aldose reductase (AR) converts galactose to galactitol. In a phase 1/2, placebo-controlled study (NCT04117711), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of govorestat were evaluated after single and multiple ascending doses (0.5-40 mg/kg) in healthy adults (n = 81) and CG patients (n = 14). Levels of govorestat in plasma and cerebrospinal fluid (CSF) and blood levels of galactitol, galactose, and galactose-1-phosphate (Gal-1p) were measured for population PK and PK/PD analyses. Govorestat was well tolerated. Adverse event frequency was comparable between placebo and govorestat. Govorestat PK displayed a 2-compartment model with sequential zero- and first-order absorption, and no effect of demographic factors. Multiple-dose PK of govorestat was linear in the 0.5-40 mg/kg range, and CSF levels increased dose dependently. Elimination half-life was ∼10 h. PK/PD modeling supported once-daily dosing. Change from baseline in galactitol was -15% ± 9% with placebo and -19% ± 10%, -46% ± 4%, and -51% ± 5% with govorestat 5, 20, and 40 mg/kg, respectively, thus was similar for 20 and 40 mg/kg. Govorestat did not affect galactose or Gal-1p levels. In conclusion, govorestat displayed a favorable safety, PK, and PD profile in humans, and reduced galactitol levels in the same magnitude (∼50%) as in a rat model of CG that demonstrated an efficacy benefit on neurological, behavioral, and ocular outcomes.

8.
Mitochondrion ; 78: 101923, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925493

RESUMO

Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.

9.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930541

RESUMO

This study demonstrates that Lactobacillus can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 (L. casei) was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.mol-1, consisting of 39.4% carbohydrates and 18% proteins. The EPS obtained using molasses as the carbon source was characterized as a heteropolysaccharide composed of glucose, galactose, and arabinose, containing 1182 g.mol-1, consisting of 52.9% carbohydrates and 11.69% proteins. This molecule was characterized using Size Exclusion Chromatography (HPLC), Gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). The existence of polysaccharides was confirmed via FT-IR and NMR analyses. The results obtained suggest that Lacticaseibacillus casei can grow in media that use alternative carbon sources such as glycerol and molasses. These agro-industry residues are inexpensive, and their use contributes to sustainability. The lack of studies regarding the use of Lacticaseibacillus casei for the production of EPS using renewable carbon sources from agroindustry should be noted.

10.
Tissue Eng Regen Med ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913224

RESUMO

BACKGROUND: Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS: In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS: Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS: These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.

11.
J Control Release ; 371: 324-337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823584

RESUMO

There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs). In addition, following prodrug transport across PNBs, the inactive prodrug is converted to active capsaicin through linker hydrolysis, leading to sustained drug release. A single injection of GalA-CAP prodrug at the sciatic nerves of rats led to nociceptive-selective nerve blockade lasting for 234 ± 37 h, which is a sufficient duration to address the most intense period of postsurgical pain. Furthermore, the prodrug markedly mitigated capsaicin-associated side effects, leading to a notable decrease in systemic toxicity, benign local tissue reactions, and diminished burning and irritant effects.


Assuntos
Capsaicina , Bloqueio Nervoso , Pró-Fármacos , Ratos Sprague-Dawley , Nervo Isquiático , Pró-Fármacos/administração & dosagem , Animais , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Masculino , Nervo Isquiático/efeitos dos fármacos , Bloqueio Nervoso/métodos , Ratos , Analgésicos/administração & dosagem , Analgésicos/farmacologia
12.
J Pharm Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901529

RESUMO

Honokiol (HNK) is one of the bioactive ingredients from the well-known Chinese herbal medicine Magnolia officinalis, and its research interests is rising for its extensive pharmacological activities, including novel therapeutic effect on ulcerative colitis (UC). However, further application of HNK is largely limited by its unique physicochemical properties, such as poor water solubility, low bioavailability, as well as unsatisfied targeting efficacy for inflammatory lesions. In this study, we constructed galactosylation modified PLGA nanoparticles delivery system for efficient target delivery of HNK to the colitic lesions, which could lay a research foundation for the deep development of HNK for the treatment of UC. D-galactose was grafted by chemical coupling reactions with PLGA to prepare Gal-PLGA, which was used as a carrier for HNK (Gal-PLGA@HNK nanoparticles (NPs)). To improve the colon targeting efficiency by oral administration of the NPs, Eudragit S100 was used for wrapping on the surface of Gal-PLGA@HNK NPs (E/Gal-PLGA@HNK NPs). Our results showed that the encapsulation efficiency and drug loading capacity of E/Gal-PLGA@HNK NPs were 90.72 ± 0.54% and 8.41 ± 0.02%, respectively. Its average particle size was 242.24 ± 8.42 nm, with a PDI value of 0.135 ± 0.06 and zeta-potential of -16.83 ± 1.89 mV. The release rate of HNK from E/Gal-PLGA@HNK NPs was significantly decreased when compared with that of free HNK in simulated gastric and intestinal fluids, which displayed a slow-releasing property. It was also found that the cellular uptake of E/Gal-PLGA@HNK NPs was significantly increased when compared with that of free HNK in RAW264.7 cells, which was facilitated by D-galactose grafting on the PLGA carrier. Additionally, our results showed that E/Gal-PLGA@HNK NPs significantly improved colonic atrophy, body weight loss, as well as reducing disease activity index (DAI) score and pro-inflammatory cytokine levels in UC mice induced by DSS. Besides, the retention time of E/Gal-PLGA@HNK NPs in the colon was significantly increased when compared with that of other preparations, suggesting that these NPs could prolong the interaction between HNK and the injured colon. Taken together, the efficiency for target delivery of HNK to the inflammatory lesions was significantly improved by galactosylation modification on the PLGA carrier, which provided great benefits for the alleviation of colonic inflammation and injury in mice.

13.
Food Chem ; 455: 139961, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850983

RESUMO

Apple flesh tends to turn mealy and textural deterioration commonly occurs during storage. The comparative investigation of three sub-fractions separated from sodium carbonate-soluble pectin (SSP) of 'Hongjiangjun' apples between crisp and mealy stages was performed to unveil the textural alterations related to mealiness. In situ immunofluorescence labelling showed that galactans declined in parenchyma cell walls during the fruit mealiness. FTIR analysis, monosaccharide compositions and structural polymers configurated that loss of rhammogalacturonan-I (RG-I) from SSP sub-fragments (SC0.0-P and S-M0.0-P) might be closely involved in the mealiness. The NMR spectroscopy revealed that loss of the substituted galactans from α-Rhap residues repeat unit in SC0.0-P constituting RG-I in crisp stage that subsequently converted to S-M0.0-P in mealy stage might be closely associated with the modifications of pectin in cell walls during mealiness. These findings provided novel evidence for understanding the underlying modifications of SSP polymers during the mealiness of 'Hongjiangjun' apples.


Assuntos
Parede Celular , Frutas , Malus , Pectinas , Malus/química , Pectinas/química , Frutas/química , Parede Celular/química , Carbonatos/química , Polissacarídeos/química
14.
Vet Res ; 55(1): 80, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886823

RESUMO

Bacteria utilize intercellular communication to orchestrate essential cellular processes, adapt to environmental changes, develop antibiotic tolerance, and enhance virulence. This communication, known as quorum sensing (QS), is mediated by the exchange of small signalling molecules called autoinducers. AI-2 QS, regulated by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase), acts as a universal intercellular communication mechanism across gram-positive and gram-negative bacteria and is crucial for diverse bacterial processes. In this study, we demonstrated that in Streptococcus suis (S. suis), a notable zoonotic pathogen, AI-2 QS enhances galactose utilization, upregulates the Leloir pathway for capsular polysaccharide (CPS) precursor production, and boosts CPS synthesis, leading to increased resistance to macrophage phagocytosis. Additionally, our molecular docking and dynamics simulations suggest that, similar to S. pneumoniae, FruA, a fructose-specific phosphoenolpyruvate phosphotransferase system prevalent in gram-positive pathogens, may also function as an AI-2 membrane surface receptor in S. suis. In conclusion, our study demonstrated the significance of AI-2 in the synthesis of galactose metabolism-dependent CPS in S. suis. Additionally, we conducted a preliminary analysis of the potential role of FruA as a membrane surface receptor for S. suis AI-2.


Assuntos
Galactose , Percepção de Quorum , Streptococcus suis , Streptococcus suis/fisiologia , Galactose/metabolismo , Percepção de Quorum/fisiologia , Virulência , Animais , Cápsulas Bacterianas/metabolismo , Lactonas/metabolismo , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Homosserina/análogos & derivados , Homosserina/metabolismo , Polissacarídeos Bacterianos/metabolismo
15.
Polymers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891429

RESUMO

The widening of possible areas of practical uses for zero-valent tellurium nanoparticles (Te0NPs) from biomedicine to optoelectronic and thermoelectric applications determines the actuality of the development of simple and affordable methods for their preparation. Among the existing variety of approaches to the synthesis of Te0NPs, special attention should be paid to chemical methods, and especially to "green" approaches, which are based on the use of precursors of tellurium in their powder bulk form and natural galactose-containing polysaccharides-arabinogalactan (Ar-Gal), galactomannan-(GM-dP) and κ-carrageenan (κ-CG) acting as ligands stabilizing the surface of the Te0NPs. The use of basic-reduction system "N2H4 H2O-NaOH" for preliminary activation of bulk-Te and Ar-Gal, GM-dP and κ-CG allowed us to obtain in aqueous medium a number of stable nanocomposites consisting of Te0NPs stabilized by the polysaccharides' macromolecules. By varying the precursor ratio, different morphologies of nanoparticles were obtained, ranging from spheres at a polysaccharide/Te ratio of 100:1 to rice-like at a 10:1 ratio. The type (branched, combed, or linear sulfated) of polysaccharide and its molecular weight value determined the size of the nanoparticles. Thus, the galactose-containing polysaccharides that were selected for this study may be promising renewable materials for the production of water-soluble Te0NPs with different morphology on this basis.

16.
J Allergy Clin Immunol Glob ; 3(3): 100280, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881738

RESUMO

Alpha-gal IgE level can change rapidly. Reassessment of a patient's alpha-gal IgE level may be helpful in the patient's clinical follow-up. Pruritus related to the site of a previous tick bite strengthens the diagnosis of alpha-gal syndrome.

17.
Neurosci Lett ; 836: 137873, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871020

RESUMO

CONTEXT: Aging is a major risk factor for various neurodegenerative diseases, and ferroptosis has been identified as an important mode of cell death during accelerated aging. As the main component of the edible plant YuZhu in China, Polygonatum polysaccharide (POP) is an important natural compound with anti-aging properties. OBJECTIVE: To evaluate the anti-aging effects of POP and the underlying molecular mechanisms involved and to evaluate the overall anti-aging effects of POP on cognitive impairment due to accelerated aging. MATERIALS AND METHODS: A D-galactose (D-gal)-induced accelerated aging rat model was established to evaluate the anti-aging effects of POP and the underlying molecular mechanisms involved. In turn, Morris water maze and open field experiments were used to evaluate the anti-aging effects of POP on cognitive impairment due to accelerated aging. RESULTS: The mechanism by which POP affects nuclear factor E2-related factor 2 (Nrf2), an essential transcription factor, was confirmed. POP significantly improved d-gal-induced cognitive dysfunction in treated model rats, which exhibited reduced pathological changes in the hippocampus, reduced latency of the water maze platform, and increased exploration time in the central area in the open field experiment compared to those of untreated model rats. Furthermore, POP intervention downregulated ferroptosis-related proteins and upregulated Nrf2 expression, and selective inhibition of Nrf2 eliminated the ability of POP to reduce ferroptosis. CONCLUSIONS: POP is a natural ingredient with therapeutic potential due to its ability to alleviate aging by activating Nrf2, inhibiting ferroptosis, and alleviating cognitive dysfunction.

18.
Comput Struct Biotechnol J ; 23: 2230-2239, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38827230

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Transgenic and pharmacological AD models are extensively studied to understand AD mechanisms and drug discovery. However, they are time-consuming and relatively costly, which hinders the discovery of potential anti-AD therapeutics. Here, we established a new model of AD in larval zebrafish by co-treatment with aluminum chloride (AlCl3) and D-galactose (D-gal) for 72 h. In particular, exposure to 150 µM AlCl3 + 40 mg/mL D-gal, 200 µM AlCl3 + 30 mg/mL D-gal, or 200 µM AlCl3 + 40 mg/mL D-gal successfully induced AD-like symptoms and aging features. Co-treatment with AlCl3 and D-gal caused significant learning and memory deficits, as well as impaired response ability and locomotor capacity in the plus-maze and light/dark test. Moreover, increased acetylcholinesterase and ß-galactosidase activities, ß-amyloid 1-42 deposition, reduced telomerase activity, elevated interleukin 1 beta mRNA expression, and enhanced reactive oxygen species production were also observed. In conclusion, our zebrafish model is simple, rapid, effective and affordable, incorporating key features of AD and aging, thus may become a unique and powerful tool for high-throughput screening of anti-AD compounds in vivo.

19.
Food Chem Toxicol ; 190: 114795, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851521

RESUMO

Porcine thyroglobulin was important in the discovery of alpha-Gal allergy. Here, the linkage of porcine thyroglobulin-specific IgE with IgE positivity to routinely assessed allergens and to the incoming diagnosis within a population of suspected atopic individuals is explored. IgE, IgA, total IgG and IgG subclasses to porcine thyroglobulin, IgE to bovine, human thyroglobulin and meat extract were measured with ELISA. The following correlations were observed in IgE binding to porcine and bovine thyroglobulin (r = 0.910, p = 1x10-17), porcine and human thyroglobulin (r = 0.635, p = 4x10-6), human and bovine thyroglobulin (r = 0.746, p = 6x10-9) and porcine thyroglobulin and meat extract (r = 0.482, p = 0.0009). Only one out of ten samples which showed binding to porcine thyroglobulin in ELISA tested positive with ImmunoCAP alpha-Gal, implying different epitope/s. Increased IgE binding was detected towards a more electronegative fraction of porcine thyroglobulin separated according to charge and the binding could be partially inhibited by galactose. Anti-thyroglobulin IgE was found in 29.7% of the population, in subjects who were significantly younger, p < 0.0001 and it occurred more frequently in patients referred for testing penicillin specific IgE (OR 2.48, p = 0.0059) and were negative. IgE specific to porcine, bovine and possibly human thyroglobulin may be implicated in post-infectious skin manifestation misinterpreted as penicillin allergy.

20.
Protein Pept Lett ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715329

RESUMO

Metabolic dysfunction-associated Fatty Liver Disease (MAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver and hepatic steatosis, which can progress to critical conditions, including Metabolic dysfunction-associated Steatohepatitis (MASH), liver fibrosis, hepatic cirrhosis, and hepatocellular carcinoma. Galectin-3, a member of the galectin family of proteins, has been involved in cascades that are responsible for the pathogenesis and progression of liver fibrosis in MAFLD. This review summarizes the present understanding of the role of galectin-3 in the severity of MAFLD and its associated liver fibrosis. The article assesses the underlying role of galectin-3-mediated fibrogenesis, including the triggering of hepatic stellate cells, the regulation of extracellular degradation, and the modulation of immune reactions and responses. It also highlights the assessments of the potential diagnostic and therapeutic implications of galectin-3 in liver fibrosis during MAFLD. Overall, this review provides insights into the multifaceted interaction between galectin-3 and liver fibrosis in MAFLD, which could lead to the development of novel strategies for diagnosis and treatment of this prevalent liver disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...