Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999049

RESUMO

Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.


Assuntos
Proteínas Hedgehog , Simulação de Acoplamento Molecular , Piridinas , Pirimidinas , Proteína GLI1 em Dedos de Zinco , Piridinas/farmacologia , Piridinas/química , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Pirimidinas/farmacologia , Pirimidinas/química , Proteínas Hedgehog/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células NIH 3T3 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Pharmacol Res ; 200: 107082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280440

RESUMO

Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Proteínas Hedgehog , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB , Proteína Gli2 com Dedos de Zinco , Proteínas Nucleares
3.
J Investig Med ; 72(2): 181-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724700

RESUMO

Constitutive activation of Hedgehog (Hh) signaling has been implicated in many cancers including hepatocellular carcinoma (HCC). Among them, the terminal glioma-associated oncogene homolog 1 (Gli1) regulates the expression of critical genes in the Hh pathway. The current study aims to evaluate the anti-HCC effect of the Gli1 inhibitor, GANT61. In vitro analysis including cell counting kit-8 (CCK-8) assay, flow cytometry, and migration and invasion assay were adopted to evaluate the effect of GANT61 on HCC cell lines. In vivo, xenograft studies were also performed to verify the effect of GANT61 on HCC. By CCK-8 assay, we found that GANT61 could significantly reduce the growth of HCC cell lines Huh7 and hemophagocytic lymphohistiocytosis (HLE), and their IC50 concentrations were 4.481 and 6.734 µM, respectively. Flow cytometry shows that GANT61 induced cell cycle arrest in the G2/M phase and accelerated apoptosis of both HLE and Huh7 cells. While migration and invasion assay shows that GANT61 weakens cells' migration and invasion ability. Besides that, GANT61 inhibits the expression of Gli1, FoxM1, CyclinD1, and Bcl-2, upregulates the level of Bax protein, and also reverses the epithelial-mesenchymal transition program by downregulating the expression of Vimentin and N-Cadherin and upregulating the expression of epithelial E-Cadherin expression. Furthermore, GANT61 inhibits the growth of subcutaneous xenografts of Huh7 cells in nude mice. Overall, this study suggests that Gli1 is a potential target for therapy and GANT61 shows promising therapeutic potential for future treatment in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Piridinas , Pirimidinas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células
4.
Biomedicines ; 11(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37239024

RESUMO

BACKGROUND: Melanoma represents the deadliest skin cancer due to its cell plasticity which results in high metastatic potential and chemoresistance. Melanomas frequently develop resistance to targeted therapy; therefore, new combination therapy strategies are required. Non-canonical signaling interactions between HH-GLI and RAS/RAF/ERK signaling were identified as one of the drivers of melanoma pathogenesis. Therefore, we decided to investigate the importance of these non-canonical interactions in chemoresistance, and examine the potential for HH-GLI and RAS/RAF/ERK combined therapy. METHODS: We established two melanoma cell lines resistant to the GLI inhibitor, GANT-61, and characterized their response to other HH-GLI and RAS/RAF/ERK inhibitors. RESULTS: We successfully established two melanoma cell lines resistant to GANT-61. Both cell lines showed HH-GLI signaling downregulation and increased invasive cell properties like migration potential, colony forming capacity, and EMT. However, they differed in MAPK signaling activity, cell cycle regulation, and primary cilia formation, suggesting different potential mechanisms responsible for resistance occurrence. CONCLUSIONS: Our study provides the first ever insights into cell lines resistant to GANT-61 and shows potential mechanisms connected to HH-GLI and MAPK signaling which may represent new hot spots for noncanonical signaling interactions.

5.
Acta Pharm Sin B ; 12(10): 3877-3890, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213531

RESUMO

Metastasis is crucial for the mortality of non-small cell lung carcinoma (NSCLC) patients. The epithelial-mesenchymal transition (EMT) plays a critical role in regulating tumor metastasis. Glioma-associated oncogene 1 (Gli1) is aberrantly active in a series of tumor tissues. However, the molecular regulatory relationships between Gli1 and NSCLC metastasis have not yet been identified. Herein, we reported Gli1 promoted NSCLC metastasis. High Gli1 expression was associated with poor survival of NSCLC patients. Ectopic expression of Gli1 in low metastatic A549 and NCI-H460 cells enhanced their migration, invasion abilities and facilitated EMT process, whereas knock-down of Gli1 in high metastatic NCI-H1299 and NCI-H1703 cells showed an opposite effect. Notably, Gli1 overexpression accelerated the lung and liver metastasis of NSCLC in the intravenously injected metastasis model. Further research showed that Gli1 positively regulated Snail expression by binding to its promoter and enhancing its protein stability, thereby facilitating the migration, invasion and EMT of NSCLC. In addition, administration of GANT-61, a Gli1 inhibitor, obviously suppressed the metastasis of NSCLC. Collectively, our study reveals that Gli1 is a critical regulator for NSCLC metastasis and suggests that targeting Gli1 is a prospective therapy strategy for metastatic NSCLC.

6.
Oncol Rep ; 48(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36263631

RESUMO

Subsequently to the publication of this paper, an interested reader drew to the authors' attention that the same control ß­actin bands had apparently been included in the western blots featured in Fig. 5E and F, even though different experiments were presented in these figure parts. The authors have re­examined their data and realized that Fig. 5G was assembled incorrectly. The results from all the originally performed experiments were presented to the Editorial Office for our perusal. The revised version of Fig. 5, containing the correct ß­actin data for the western blots in Fig. 5F, is shown on the next page. The authors regret the inadvertent error that was made during the preparation of Fig. 5, and confirm that this error did not seriously affect the conclusions reported in the paper. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish a Corrigendum, and all the authors agree to this Corrigendum. Furthermore, they apologise to the readership for any inconvenience caused.[Oncology Reports 41: 2689­2702, 2019; DOI: 10.3892/or.2019.7054].

7.
Oncol Rep ; 48(4)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36069229

RESUMO

The present study aimed to assess the anticancer cell and anticancer stem cell (CSC) effects of GANT61, and its regulatory influence on the Wnt/ß­catenin and Notch signalling pathways in colorectal cancer (CRC). HT­29 and HCT­116 cells were treated with 0, 2.5, 5, 10, 20 or 40 µM GANT61, after which relative cell viability and the expression of Gli1, ß­catenin and Notch1, as well as the percentage of CD133+ cells, were detected. Subsequently, HT­29/HCT­116 cells and CSCs were treated with 20 µM GANT61, 10 mM of the Wnt/ß­catenin pathway agonist HLY78, and 30 mM of the Notch pathway agonist JAG1 (alone or in combination), which was followed by the assessment of cell viability and apoptosis. In both cell lines, GANT61 reduced relative cell viability in a time­ and dose­dependent manner, inhibited Gli1, ß­catenin and Notch1 expression, and decreased the percentage of CD133+ cells in a dose­dependent manner. Furthermore, HLY78 and JAG1 were both found to improve the relative viability, while downregulating the apoptosis of untreated and GANT61­treated HT­29 and HCT­116 cells. Moreover, Wnt/ß­catenin and Notch signalling pathway activity were upregulated in CSCs isolated from HT­29 and HCT­116 cells, compared with the associated control groups. GANT61 also reduced the viability of HT­29 and HCT­116 cells and increased apoptosis, whereas HLY78 and JAG1 treatment resulted in the opposite effect. Moreover, both HLY78 and JAG1 attenuated the effects of GANT61 on cellular viability and apoptosis. In conclusion, GANT61 was found to effectively eliminate cancer cells and CSCs by blocking the Wnt/ß­catenin and Notch signalling pathways in CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Piridinas , Pirimidinas , Células-Tronco/metabolismo , Via de Sinalização Wnt , Proteína GLI1 em Dedos de Zinco/metabolismo , beta Catenina/genética
8.
Med Oncol ; 39(10): 144, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834029

RESUMO

Despite the huge efforts employed to implement novel chemotherapeutic paradigms for lung cancer, the disease still remains a major concern worldwide. Targeting molecular pathways as Hedgehog (Hh) and Mitogen-activated protein kinase (MAPK) represent a new hope in lung cancer treatment. This work was undertaken to evaluate the antitumor effects of GANT61 (5 µM), BI-847325(30 µM), and GANT61 (5 µM)/BI-847325(30 µM) combination on A549 adenocarcinoma lung cancer cell line. The growth inhibition 50 (GI50) for both drugs was performed using MTT. The protein levels of Caspase-3, Bcl-2-associated X protein (Bax), Myeloid cell leukemia sequence 1 (MCL-1), cyclin D1, vascular endothelial growth factor (VEGF), extracellular signal-regulated kinases (ERK), p-Akt, and phosphohistone H3 (pHH3) were measured using ELISA. Glioma-associated oncogene homolog 1(Gli1) gene expression was assessed by quantitative real-time PCR. The GI50 for GANT61 and BI-8473255 were 5 µM and 30 µM, respectively. Caspase-3 and Bax protein levels were significantly elevated while MCL-1, cyclin D1, VEGF, ERK 1/2, p-Akt, and pHH3 levels were significantly reduced by both drugs and their combination relative to the control group. Gli1 gene expression was down-regulated in all groups relative to the control group. GANT61, BI-847325 and their combination inhibited proliferation and angiogenesis but activated the apoptotic pathway. Both drugs conferred a profound negative impact on the crosstalk between each of Hh and MAPK pathways and Phosphoinositide 3 -kinases (PI3K)/Akt/Mammalian target of Rapamycin (mTOR). To the best of our knowledge, the antitumor effects of BI-847325/GANT61 combination have not been tested before. Further in-vitro and in-vivo studies are warranted to support the findings.


Assuntos
Proteínas Hedgehog , Neoplasias Pulmonares , Compostos de Anilina , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas , Pirimidinas , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia
9.
Med Oncol ; 39(10): 143, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834137

RESUMO

Aberrant activation of several signaling pathways has been implicated in prostate cancer (PCa) progression to castrate-resistant prostate cancer (CRPC). Phosphoinositide-3-kinase/Protein Kinase B/mechanistic Target of Rapamycin (PI3K/AKT/mTOR) and Hedgehog/GLI (Hh/GLI) pathways are major participants in progression to CRPC. In this sense, the current work aims to assess the potential antitumor effects resulting from co-targeting the aforementioned pathways in PC3 cells with Dactolisib as a dual PI3K/mTOR inhibitor and GANT61 as a GLI1 antagonist. Three replica of PC3 cells were assigned for four treatment groups; vehicle control, Dactolisib-treated, GANT61-treated, and combination-treated groups. GLI1 gene expression was determined by quantitative real-time PCR while active caspase-3 was determined colorimetrically. P-AKT, p70 ribosomal s6 protein kinase 1 (pS6K1), cyclin D1, vascular endothelial growth factor 1 (VEGF1), and Microtubule-associated proteins 1A/1B light chain 3 (LC3) protein levels were determined by ELISA technique. GLI1 gene expression was down-regulated as a result of Dactolisib, GANT61, and their combination. Additionally, both drugs significantly reduced p-AKT, pS6K1, cyclin D1, and VEGF1 protein levels. Dactolisib elevated LC3 protein levels and GANT61 augmented Dactolisib effect on LC3. Moreover, only Dactolisib/GANT61combination significantly increased active caspase-3 level. To sum up, Dactolisib/GANT61 combination was shown to be promising in PCa treatment. Further in-vitro and in-vivo studies are warranted to support our findings.


Assuntos
Proteínas Hedgehog , Neoplasias de Próstata Resistentes à Castração , Caspase 3 , Linhagem Celular Tumoral , Ciclina D1 , Humanos , Imidazóis , Masculino , Fosfatidilinositol 3-Quinases , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-akt , Piridinas , Pirimidinas , Quinolinas , Serina-Treonina Quinases TOR , Fator A de Crescimento do Endotélio Vascular , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
10.
J Transl Med ; 20(1): 286, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752861

RESUMO

Malignant mesothelioma (MM) is a rare orphan aggressive neoplasia with low survival rates. Among the other signaling pathways, ErbB receptors and Hh signaling are deregulated in MM. Thus, molecules involved in these signaling pathways could be used for targeted therapy approaches. The aim of this study was to evaluate the effects of inhibitors of Hh- (GANT-61) and ErbB receptors (Afatinib)-mediated signaling pathways, when used alone or in combination, on growth, cell cycle, cell death and autophagy, modulation of molecules involved in transduction pathways, in three human MM cell lines of different histotypes. The efficacy of the combined treatment was also evaluated in a murine epithelioid MM cell line both in vitro and in vivo. This study demonstrated that combined treatment with two inhibitors counteracting the activation of two different signaling pathways involved in neoplastic transformation and progression, such as those activated by ErbB and Hh signaling, is more effective than the single treatments in reducing MM growth in vitro and in vivo. This study may have clinical implications for the development of targeted therapy approaches for MM.


Assuntos
Receptores ErbB , Mesotelioma Maligno , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Proteínas Hedgehog , Humanos , Camundongos , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
11.
Biomed Pharmacother ; 151: 113109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594713

RESUMO

Diabetes is one of the risk factors for meibomian gland dysfunction (MGD); however, the underlying molecular mechanism remains unknown. The current study aims to examine the effects of glioma-associated oncogene homolog 1 (Gli1), a transcription factor of the sonic hedgehog (Shh) pathway, in the modulation of diabetic-related MGD. Here, using RNA sequencing and qRT-PCR, we examined the mRNA changes of Shh pathway involving genes. mRNA sequencing analysis showed that the Shh pathway involving genes Shh and Gli1 were markedly upregulated in diabetic MG, and qRT-PCR detection of Shh pathway-associated genes found that Gli1 expression increased most significantly. Contrary to the elevation of Gli1 level, the expression of pparγ was downregulated in diabetic MG and in high glucose treated organotypic cultured mouse MG. GANT61, an inhibitor of Gli1, effectively inhibited the reduction of pparγ expression and lipid accumulation induced by high glucose, which was suppressed by pparγ inhibitor T0070907. We further demonstrated that advanced glycation end products (AGEs) treatment also promoted the expression of Gli1 and pparγ in organotypic cultured mouse MG. AGEs inhibitor Aminoguanidine suppressed high glucose caused Gli1 upregulation in organotypic cultured mouse MG. These results suggest that suppression of Gli1 may be a potentially useful therapeutic option for diabetic-related MGD.


Assuntos
Hiperglicemia , Disfunção da Glândula Tarsal , PPAR gama , Proteína GLI1 em Dedos de Zinco , Animais , Glucose/efeitos adversos , Glucose/metabolismo , Proteínas Hedgehog/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Disfunção da Glândula Tarsal/genética , Disfunção da Glândula Tarsal/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
12.
Cancer Biol Ther ; 23(1): 369-377, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35491899

RESUMO

Glioma-associated oncogene (Gli) antagonist-61 (GANT61) not only suppresses the malignant behavior of several cancers but also presents synergistic effects with other anticancer agents on suppressing the progression of cancers, while relevant information is rare in anaplastic thyroid carcinoma (ATC). This study aimed to explore the therapeutic effect of GANT61 in ATC and its molecular mechanism. ATC cells (8505C and CAL-62) were treated with GANT61, followed by detection of cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) markers. Subsequently, RNA sequencing was performed to explore the potential downstream pathway. Following that, rescue experiments were conducted by SC79 (AKT activator) or colivelin (STAT3 activator) monotreatment or combined with GANT61 in ATC cells. GANT61 reduced Gli1 expression, suppressed proliferation at several time settings, promoted apoptosis, inhibited invasion and increased E-cadherin while decreased Vimentin and Snail expressions (EMT markers) in ATC cells. The subsequent RNA sequence identified 85 upregulated differentially expressed genes (DEGs) and 71 downregulated DEGs in GANT61-treated ATC cells, which were mainly enriched in PI3K/AKT, JAK/STAT, Hedgehog and mTOR pathways. Next, the inactivation of AKT/mTOR and JAK/STAT3 pathways by GANT61 treatment was verified by western blot. The following rescue experiments showed that SC79 or colivelin treatment promoted the malignant behaviors of ATC cells. More importantly, SC79 or colivelin treatment compensated the effect of GANT61 treatment on cell proliferation at several time settings and apoptosis, invasion, and part of that on EMT in ATC cells. GANT61 suppresses cell survival, invasion and EMT through inactivating AKT/mTOR or JAK/STAT3 pathways in ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Transição Epitelial-Mesenquimal/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas , Pirimidinas , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
13.
Future Med Chem ; 14(7): 479-500, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35322690

RESUMO

Background: This study aimed to explore the effect of GANT61 on ovarian cancer (OC) chemosensitivity. Materials & methods: OC cells (Caov-3 and SKOV-3) were treated by GANT61 alone or combined with cisplatin/taxol. The mRNA sequencing was conducted, followed by rescue experiments. Results: GANT61 reduced OC cell viability in a dose-dependent manner and enhanced chemosensitivity to cisplatin but not to taxol. In total, 545 dysregulated genes were identified after the addition of GANT61 to cisplatin-treated OC cells, which were enriched in the AMPK, Hedgehog and cAMP pathways, then further validated by western blot. Furthermore, rescue experiments observed that AMPK pathway inhibitor and cAMP pathway inhibitor attenuated GANT61's chemosensitivity to cisplatin. Conclusion: GANT61 enforces OC chemosensitivity to cisplatin by regulating the Hedgehog, AMPK and cAMP pathways.


Assuntos
Cisplatino , Neoplasias Ovarianas , Piridinas , Pirimidinas , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , AMP Cíclico/metabolismo , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais
14.
Int J Mol Med ; 49(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35266008

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive subtype of kidney cancer, with high mortality rates worldwide. The sonic hedgehog (SHH) molecular cascade is altered in various malignancies in tumorigenesis, and several SHH pathway inhibitors have been considered as potential anticancer drugs. The aim of the present study was to determine the expression profile of SHH signaling components and their target genes in ccRCC. Additionally, the present study examined the effects of SHH pathway inhibitory drugs (RU­SKI43, cyclopamine and GLI­antagonist 61) on cell viability, cell cycle progression, expression levels of SHH target genes and migration ability in 786­O, ACHN and HK2 cells. The study also included paired tumor and normal samples from 62 patients with ccRCC. The mRNA levels in clinical samples and cell lines were measured via reverse transcription­quantitative PCR. Cell viability was examined using a sulforhodamine B assay. Flow cytometry was used to investigate cell cycle progression and the migratory rate of cells was assessed using a wound healing assay. High mRNA levels of SHH, smoothened (SMO), glioma­associated zinc finger protein (GLI)1­3, BCL2 apoptosis regulator (BCL2), MYC proto­oncogene (MYC), vascular endothelial growth factor A (VEGFA) and cyclin D1 (CCND1) were observed in the tumor tissues, especially in early ccRCC, according to the TNM stage or World Health Organization/International Society of Urological Pathology (ISUP) grade. High expression levels of VEGFA, as well as low CCND1 mRNA expression, were associated with short overall survival, and increased VEGFA expression was an independent prognostic factor of a poor outcome in patients with advanced ISUP grade (Cox hazard ratio test). Cyclopamine treatment was found to arrest 786­O cells in the G2/M phase and decreased the expression levels of GLI1, BCL2, VEGFA and CCND1. RU­SKI43 inhibited cell migration and decreased the expression levels of BCL2, MYC and CCND1 in ACHN cells. Overall, the results of the present study suggested that SHH signaling may be involved in the early development of ccRCC, and the expression levels of CCND1 and VEGFA may serve as prognostic factors of this disease. Cyclopamine and RU­SKI43 appear to be potential anti­renal cell carcinoma drugs; however, this hypothesis requires verification by further in vivo studies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Renais/genética , Fator A de Crescimento do Endotélio Vascular , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco/genética
15.
Biochim Biophys Acta Mol Basis Dis ; 1868(2): 166300, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748904

RESUMO

Triple negative breast cancer (TNBC), an aggressive and highly metastatic subtype of breast cancer. Glioma-associated oncogene 1 (GLI1) is a transcription factor and effector of the Hedgehog (Hh) signaling pathway, and is predictive of poor survival for TNBC patients. A nanostring DNA Damage Response (DDR) mRNA panel was used to identify GLI1-induced regulation of DDR genes. Western blots, immunohistochemistry and immunofluorescence were used to evaluate protein expression. Colony assays and mammosphere formation assays were utilized to assess survival of cancer cells. Flow cytometry analyses were employed to evaluate changes in the cell cycle profile, and DNA fiber assays were used to analyze alterations in replication dynamics in TNBC cells. The UALCAN portal and Ensemble programs were used for computational analysis of TCGA data. CompuSyn software was used to calculate combination index (CI) values to assess synergism in drug combination experiments. Inhibition of GLI1 in TNBC cells transcriptionally downregulate expression of FANCD2 and its foci formation, and causes a homologous recombination repair (HR) deficiency. As HR-deficient cancer cells are sensitive to PARP-targeted therapies, we evaluated a combination of the GLI1 inhibitor, GANT61, and a PARP inhibitor (olaparib) in TNBC cells. Combination of GANT61 and olaparib elevated DNA damage levels and these drug combinations caused synergistic lethality to TNBC cells. Aberrantly activated GLI1 regulates HR-mediated DNA repair by transcriptionally regulating FANCD2 to overcome chemotherapy-induced replication stress and DNA damage, and it contributes to resistance of TNBC cells to therapeutics.


Assuntos
Replicação do DNA , Sinergismo Farmacológico , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Quimioterapia Combinada , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Estresse Oxidativo , Prognóstico , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
16.
Front Cell Dev Biol ; 9: 758400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722544

RESUMO

The underlying mechanism of fibroblast growth factor receptor 1 (FGFR1) mediated carcinogenesis is still not fully understood. For instance, FGFR1 upregulation leads to endocrine therapy resistance in breast cancer patients. The current study aimed to identify FGFR1-linked genes to devise improved therapeutic strategies. RNA-seq and microarray expression data of 1,425 breast cancer patients from two independent cohorts were downloaded for the analysis. Gene Set Enrichment Analysis (GSEA) was performed to identify differentially expressed pathways associated with FGFR1 expression. Validation was done using 150 fresh tumor biopsy samples of breast cancer patients. The clinical relevance of mRNA and protein expression of FGFR1 and its associated genes were also evaluated in mouse embryonic fibroblasts (MEFs) and breast cancer cell line (MDA-MB-231). Furthermore, MDA-MB-231 cell line was treated with AZD4547 and GANT61 to identify the probable role of FGFR1 and its associated genes on cells motility and invasion. According to GSEA results, SHH pathway genes were significantly upregulated in FGFR1 patients in both discovery cohorts of breast cancer. Statistical analyses using both discovery cohorts and 150 fresh biopsy samples revealed strong association of FGFR1 and GLI1, a member of SHH pathway. The increase in the expression of these molecules was associated with poor prognosis, lymph node involvement, late stage, and metastasis. Combined exposures to AZD4547 (FGFR1 inhibitor) and GANT61 (GLI1 inhibitor) significantly reduced cell proliferation, cell motility, and invasion, suggesting molecular crosstalk in breast cancer progression and metastasis. A strong positive feedback mechanism between FGFR1-GLI1 axis was observed, which significantly increased cell proliferation and metastasis. Targeting FGFR1-GLI1 simultaneously will significantly improve the prognosis of breast cancer in patients.

17.
Ann Hematol ; 100(12): 2933-2941, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34333666

RESUMO

Modern cancer therapies increased the survival rates of acute myeloid leukemia (AML) patients tremendously. However, the complexity of the disease and the identification of new targets require the adaptation of treatment protocols to reduce side effects and increase benefit for the patients. One key regulator of leukemogenesis and chemotherapy resistance in AML is the Hedgehog (HH) signaling pathway. It is deregulated in numerous cancer entities and inhibition of its downstream transcription factors GLI translates into anti-leukemic effects. One major regulator of GLI is BRD4, a BET family member with epigenetic functions. We investigated the effect of ZEN-3365, a novel BRD4 inhibitor, on AML cells in regard to the HH pathway. We show that ZEN-3365 alone or in combination with GANT-61 reduced GLI promoter activity, cell proliferation and colony formation in AML cell lines and primary cells. Our findings strongly support the evaluation of the BRD4 inhibitor ZEN-3365 as a new therapeutic option in AML.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
18.
Neoplasia ; 23(9): 1002-1015, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34380074

RESUMO

Ovarian cancer (OC) is one of the most lethal type of cancer in women due to a lack of effective targeted therapies and high rates of treatment resistance and disease recurrence. Recently Poly (ADP-ribose) polymerase inhibitors (PARPi) have shown promise as chemotherapeutic agents; however, their efficacy is limited to a small fraction of patients with BRCA mutations. Here we show a novel function for the Hedgehog (Hh) transcription factor Glioma associated protein 1 (GLI1) in regulation of key Fanconi anemia (FA) gene, FANCD2 in OC cells. GLI1 inhibition in HR-proficient OC cells induces HR deficiency (BRCAness), replication stress and synergistic lethality when combined with PARP inhibition. Treatment of OC cells with combination of GLI1 and PARP inhibitors shows enhanced DNA damage, synergy in cytotoxicity, and strong in vivo anticancer responses.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas Hedgehog/metabolismo , Recombinação Homóloga/fisiologia , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/genética
19.
Med Oncol ; 38(4): 41, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33730237

RESUMO

Lenvatinib has been approved as a first-line treatment for advanced hepatocellular carcinoma (HCC) in recent years. However, Lenvatinib resistance hinders its therapeutic effect, and the underlying mechanism of action of Lenvatinib needs to be better understood. Increasing studies have suggested that cancer stem cells (CSCs) are an important driving force. Hedgehog signalling is important for the maintenance of hepatocellular carcinoma stemness. In the present study, we investigated the therapeutic role of the Hedgehog signalling inhibitor in reversing Lenvatinib resistance in CD133-positive HCC cells. First, we examined the inhibitory impact of Lenvatinib against CD133 expression in HCC cell lines through Western blot. The CCK8 assay showed that GANT61, a Hedgehog signalling inhibitor, has a suppression advantage over other CSCs-related signalling inhibitors regarding cell viability. Moreover, Lenvatinib and GANT61 combined had better inhibitory effects on cell viability and malignant properties, both in vivo and in vitro. In addition, GANT61 reversed the upregulation of CD133 and Hedgehog signalling caused by Lenvatinib in SK-Hep-1 and MHCC97H. Thus, our results suggested that GANT61 reversed Lenvatinib resistance by suppressing Hedgehog signalling in HCC cells, especially in CD133-positive cells and combining Lenvatinib with Hedgehog signalling inhibitors could improve its therapeutic efficacy in HCC patients with high CD133 expression levels.


Assuntos
Antígeno AC133/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas Hedgehog/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Quinolinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Ther Oncolytics ; 20: 265-276, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33614910

RESUMO

The glioma-associated family of transcription factors (GLI) have emerged as a promising therapeutic target for a variety of human cancers. In particular, GLI1 plays a central role as a transcriptional regulator for multiple oncogenic signaling pathways, including the hedgehog (Hh) signaling pathway. We undertook a computational screening approach to identify small molecules that directly bind GLI1 for potential development as inhibitors of GLI-mediated transcription. Through these studies, we identified compound 1, which is an 8-hydroxyquinoline, as a high-affinity binder of GLI1. Compound 1 inhibits GLI1-mediated transcriptional activity in several Hh-dependent cellular models, including a primary model of murine medulloblastoma. We also performed a series of computational analyses to define more clearly the mechanism(s) through which 1 inhibits GLI1 function after binding. Our results strongly suggest that binding of 1 to GLI1 does not prevent GLI1/DNA binding nor disrupt the GLI1/DNA complex, but rather, it induces specific conformational changes in the overall complex that prevent proper GLI function. These results highlight the potential of this compound for further development as an anti-cancer agent that targets GLI1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA