Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Children (Basel) ; 11(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38397306

RESUMO

GJB2 mutations are the most common cause of autosomal-recessive non-syndromic sensorineural hearing loss (SNHL). The available evidence shows large phenotypic variability across different genotypes and allelic variants. The aim of this study was to investigate the clinical and audiological features of a cohort of subjects with different GJB2/GJB6 gene mutation profiles from a tertiary referral center in Northeastern Italy. We considered 57 patients with GJB2/GJB6 mutations presenting with congenital, non-syndromic SNHL, mainly coming from the Veneto region (Italy). The samples were screened for mutations in exons 1 and 2 of the GJB2 gene and for the GJB6 gene deletion del (GJB6-D13S1830). Free-field and air-conduction frequency-specific thresholds and the pure-tone average (PTA) were considered in the statistical analysis. Five patients (8.87%) had connexin gene mutations in simple heterozygosis, 15 (26.31%) in compound heterozygosis, 34 (59.64%) in homozygosis, and 3 (5.26%) with digenic patterns. The frequency-specific air-conduction thresholds showed significantly different mean values across the different genotypes (Roy's largest-root test, p = 0.0473). Despite the evidence already available on genetic SNHL, many new insights are to be expected. Further large-scale prospective studies including different populations are necessary to confirm these preliminary findings about the clinical and audiological features of patients with different GJB2/GJB6 gene mutation patterns.

2.
Indian J Otolaryngol Head Neck Surg ; 75(4): 3575-3580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37974894

RESUMO

Mutations in the genes, GJB2 and GJB6 play an important role in autosomal recessive, non-syndromic hearing loss. This study is aimed to detect the association of mutations in GJB2 and GJB6 genes in familial autosomal recessive non-syndromic hearing impairment cases. We included 26 families with at least two affected individuals having congenital bilateral, non-syndromic sensorineural hearing loss. Blood samples were drawn, DNA was extracted, and sent for multiplex PCR and Sanger sequencing. Of the 26 families analyzed, GJB2 mutations were detected in 9(34.6%) and GJB6 mutations were not detected in any of the families. GJB2 mutations are a major cause of congenital, non-syndromic hearing loss in this study population. This study also suggests that GJB6 mutations do not contribute to autosomal recessive non-syndromic hearing loss in the Indian population.

3.
World J Clin Cases ; 11(6): 1403-1409, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36926140

RESUMO

BACKGROUND: We report on a large family of Chinese Han individuals with hidrotic ectodermal dysplasia (HED) with a variation in GJB6 (c.31G>A). The patients in the family had a triad of clinical manifestations of varying degrees. Although the same variation locus have been reported, the clinical manifestations of this family were difficult to distinguish from those of congenital thick nail disorder, palmoplantar keratosis, and congenital hypotrichosis. CASE SUMMARY: This investigation involved a large Chinese family of 46 members across five generations and included 12 patients with HED. The proband (IV4) was a male patient with normal sweat gland function and dental development, no skeletal dysplasia, no cognitive disability, and no hearing impairments. His parents were not consanguineously married. Physical examination of the proband revealed thinning hair and thickened grayish-yellow nails and toenails with some longitudinal ridges, in addition to mild bilateral palmoplantar hyperkeratosis. GJB6, GJB2, and GJA1 have been reported to be the causative genes of HED; therefore, we subjected the patient's samples to Sanger sequencing of these three genes. In this family, the variation locus was at GJB6 (c.31G>A, p.Gly11Arg). Overexpression vectors of wild-type GJB6 and its variants were established and transfected into HaCaT cell models, and the related mRNA and protein expression changes were determined using real-time reverse transcriptase-polymerase chain reaction and Western blot, respectively. CONCLUSION: We report another HED phenotype associated with GJB6 variations, which can help clinicians to diagnose HED despite its varying presentations.

4.
Front Cell Neurosci ; 17: 1097512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794261

RESUMO

Astrocytes play diverse roles in the central nervous system (CNS) in both physiological and pathological conditions. Previous studies have identified many markers of astrocytes to analyze their complicated roles. Recently, closure of the critical period by mature astrocytes has been revealed, and the need for finding mature astrocyte-specific markers has been growing. We previously found that Ethanolamine phosphate phospholyase (Etnppl) was almost not expressed in the developing neonatal spinal cord, and its expression level slightly decreased after pyramidotomy in adult mice, which showed weak axonal sprouting, suggesting that its expression level negatively correlates with axonal elongation. Although the expression of Etnppl in astrocytes in adult is known, its utility as an astrocytic marker has not yet been investigated in detail. Here, we showed that Etnppl was selectively expressed in astrocytes in adult. Re-analyses using published RNA-sequencing datasets revealed changes in Etnppl expression in spinal cord injury, stroke, or systemic inflammation models. We produced high-quality monoclonal antibodies against ETNPPL and characterized ETNPPL localization in neonatal and adult mice. Expression of ETNPPL was very weak in neonatal mice, except in the ventricular and subventricular zones, and it was heterogeneously expressed in adult mice, with the highest expression in the cerebellum, olfactory bulb, and hypothalamus and the lowest in white matter. Subcellular localization of ETNPPL was dominant in the nuclei with weak expression in the cytosol in the minor population. Using the antibody, astrocytes in adult were selectively labeled in the cerebral cortex or spinal cord, and changes in astrocytes were detected in the spinal cord after pyramidotomy. ETNPPL is expressed in a subset of Gjb6 + astrocytes in the spinal cord. The monoclonal antibodies we created, as well as fundamental knowledge characterized in this study, will be valuable resources in the scientific community and will expand our understanding of astrocytes and their complicated responses in many pathological conditions in future analyses.

5.
Front Med ; 17(2): 330-338, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645631

RESUMO

Clouston syndrome (OMIM #129500), also known as hidrotic ectodermal dysplasia type 2, is a rare autosomal dominant skin disorder. To date, four mutations in the GJB6 gene, G11R, V37E, A88V, and D50N, have been confirmed to cause this condition. In previous studies, the focus has been mainly on gene sequencing, and there has been a lack of research on clinical manifestations and pathogenesis. To confirm the diagnosis of this pedigree at the molecular level and summarize and analyse the clinical phenotype of patients and to provide a basis for further study of the pathogenesis of the disease, we performed whole-exome and Sanger sequencing on a large Chinese Clouston syndrome pedigree. Detailed clinical examination included histopathology, hair microscopy, and scanning electron microscopy. We found a novel heterozygous missense variant (c.134G>C:p.G45A) for Clouston syndrome. We identified a new clinical phenotype involving all nail needling pain in all patients and found a special honeycomb hole structure in the patients' hair under scanning electron microscopy. Our data reveal that a novel variant (c.134G>C:p.G45A) plays a likely pathogenic role in this pedigree and highlight that genetic testing is necessary for the diagnosis of Clouston syndrome.


Assuntos
Conexinas , Displasia Ectodérmica , Humanos , Conexina 30/genética , Conexinas/genética , População do Leste Asiático , Displasia Ectodérmica/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/patologia , Fenótipo
6.
Dev Dyn ; 252(2): 239-246, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106826

RESUMO

In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.


Assuntos
Conexinas , Surdez , Humanos , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Cóclea/metabolismo , Conexina 30/genética , Conexina 30/metabolismo , Surdez/genética
7.
Frontiers of Medicine ; (4): 330-338, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982566

RESUMO

Clouston syndrome (OMIM #129500), also known as hidrotic ectodermal dysplasia type 2, is a rare autosomal dominant skin disorder. To date, four mutations in the GJB6 gene, G11R, V37E, A88V, and D50N, have been confirmed to cause this condition. In previous studies, the focus has been mainly on gene sequencing, and there has been a lack of research on clinical manifestations and pathogenesis. To confirm the diagnosis of this pedigree at the molecular level and summarize and analyse the clinical phenotype of patients and to provide a basis for further study of the pathogenesis of the disease, we performed whole-exome and Sanger sequencing on a large Chinese Clouston syndrome pedigree. Detailed clinical examination included histopathology, hair microscopy, and scanning electron microscopy. We found a novel heterozygous missense variant (c.134G>C:p.G45A) for Clouston syndrome. We identified a new clinical phenotype involving all nail needling pain in all patients and found a special honeycomb hole structure in the patients' hair under scanning electron microscopy. Our data reveal that a novel variant (c.134G>C:p.G45A) plays a likely pathogenic role in this pedigree and highlight that genetic testing is necessary for the diagnosis of Clouston syndrome.


Assuntos
Humanos , Conexina 30/genética , Conexinas/genética , População do Leste Asiático , Displasia Ectodérmica/patologia , Fenótipo
8.
Front Mol Neurosci ; 15: 973646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204137

RESUMO

Background: Gap junction (GJ) proteins, connexin26 and 30, are highly prevalent in the human cochlea (HC), where they are involved in transcellular signaling, metabolic supply, and fluid homeostasis. Their genes, GJB2 and GJB6, are both located at the DFNB1 locus on chromosome 13q12. Mutations in GJB2 may cause mild to profound non-syndromic deafness. Here, we analyzed for the first time the various expressions of GJB2 and GJB6 gene transcripts in the different cell networks in the HC using the RNAscope technique. Materials and methods: Archival paraformaldehyde-fixed sections of surgically obtained HC were used to label single mRNA oligonucleotides using the sensitive multiplex RNAscope® technique with fluorescent-tagged probes. Positive and negative controls also included the localization of ATP1A1, ATP1A2, and KCNJ10 gene transcripts in order to validate the specificity of labeling. Results: Confocal and super-resolution structured illumination microscopy (SR-SIM) detected single gene transcripts as brightly stained puncta. The GJB2 and GJB6 gene transcripts were distributed in the epithelial and connective tissue systems in all three cochlear turns. The largest number of GJB2 and GJB6 gene transcripts was in the outer sulcus, spiral ligament, and stria vascularis (SV). Oligonucleotides were present in the supporting cells of the organ of Corti (OC), spiral limbus fibrocytes, and the floor of the scala vestibuli. Multiplex gene data suggest that cells in the cochlear lateral wall contain either GJB2 or GJB6 gene transcripts or both. The GJB6, but not GJB2, gene transcripts were found in the intermediate cells but none were found in the marginal cells. There were no GJB2 or GJB6 gene transcripts found in the hair cells and only a few in the spiral ganglion cells. Conclusion: Both GJB2 and GJB6 mRNA gene transcripts were localized in cells in the adult HC using RNAscope® in situ hybridization (ISH) and high resolution microscopy. Generally, GJB6 dominated over GJB2, except in the basal cells. Results suggest that cells may contain either GJB2 or GJB6 gene transcripts or both. This may be consistent with specialized GJ plaques having separate channel permeability and gating properties. A reduction in the number of GJB2 gene transcripts was found in the basal turn. Such information may be useful for future gene therapy.

9.
Bol Med Hosp Infant Mex ; 79(4): 206-214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36100214

RESUMO

Hearing loss is the most frequent sensory disorder, with an incidence of 1:1500 live newborns. In more than 50% of patients, it is associated with a genetic cause, while in up to 30% of cases, it is related to syndromic entities. We performed a literature review of studies on congenital hearing loss of genetic origin in the Mexican population. We identified eight reports that showed that the pathogenic variants most frequently associated with hearing loss are related to the GJB2 gene, although in a low percentage (3%). Other mutations were identified in the GJB6, SLC26A4, or CHD23 genes. On this basis, a possible diagnostic strategy in Mexican patients with hearing loss is to consider an initial screening of these three genes. If these genes were negative for pathogenic variants, the following steps would be to consider second-generation sequencing analysis focused on panels of genes associated with hearing loss, isolated or syndromic, and if necessary, to perform exome or whole-genome analysis. Establishing an etiologic cause is critical in clinically evaluating patients with congenital hearing loss and their families. It can help determine rehabilitation strategies, such as hearing aids or cochlear implants and provide information on disease progression and genetic counseling in this population.


La pérdida auditiva es la alteración sensorial más frecuente, con una incidencia de 1:1500 recién nacidos vivos. En más del 50% de los pacientes se asocia con una causa genética, mientras que en más del 30% de los casos se asocia con entidades sindrómicas. Se llevó a cabo una revisión de la literatura de las investigaciones sobre la pérdida auditiva congénita de origen genético en la población mexicana. Se identificaron ocho reportes en los que se demostró que las variantes patogénicas más frecuentemente asociadas con pérdida auditiva se encuentran en el gen GJB2, aunque en un porcentaje bajo (3%). Se identificaron otras mutaciones en los genes GJB6, SLC26A4 o CHD23. Con base en esta información, una posible estrategia diagnóstica en pacientes mexicanos con pérdida auditiva es considerar un primer paso en el tamiz diagnóstico con los tres genes mencionados. Si estos genes fueran negativos para variantes patogénicas, el siguiente paso sería considerar el análisis por secuenciación de segunda generación enfocado en paneles de genes asociados con pérdida auditiva, tanto aislada como sindrómica, y en caso necesario, realizar el análisis del exoma o del genoma completo. Establecer una causa etiológica es un componente crítico en la evaluación clínica de los pacientes con pérdida auditiva congénita, ya que puede ayudar a determinar las estrategias de manejo y rehabilitación, como el uso de auxiliares auditivos o implantes cocleares, proporcionar información sobre la progresión de la enfermedad y dar asesoramiento genético en esta población.


Assuntos
Implante Coclear , Surdez , Perda Auditiva , Conexina 26/genética , Conexinas/genética , Surdez/epidemiologia , Surdez/genética , Perda Auditiva/etiologia , Perda Auditiva/genética , Humanos , Recém-Nascido
10.
Bol. méd. Hosp. Infant. Méx ; 79(4): 206-214, Jul.-Aug. 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403641

RESUMO

Abstract Hearing loss is the most frequent sensory disorder, with an incidence of 1:1500 live newborns. In more than 50% of patients, it is associated with a genetic cause, while in up to 30% of cases, it is related to syndromic entities. We performed a literature review of studies on congenital hearing loss of genetic origin in the Mexican population. We identified eight reports that showed that the pathogenic variants most frequently associated with hearing loss are related to the GJB2 gene, although in a low percentage (3%). Other mutations were identified in the GJB6, SLC26A4, or CHD23 genes. On this basis, a possible diagnostic strategy in Mexican patients with hearing loss is to consider an initial screening of these three genes. If these genes were negative for pathogenic variants, the following steps would be to consider second-generation sequencing analysis focused on panels of genes associated with hearing loss, isolated or syndromic, and if necessary, to perform exome or whole-genome analysis. Establishing an etiologic cause is critical in clinically evaluating patients with congenital hearing loss and their families. It can help determine rehabilitation strategies, such as hearing aids or cochlear implants and provide information on disease progression and genetic counseling in this population.


Resumen La pérdida auditiva es la alteración sensorial más frecuente, con una incidencia de 1:1500 recién nacidos vivos. En más del 50% de los pacientes se asocia con una causa genética, mientras que en más del 30% de los casos se asocia con entidades sindrómicas. Se llevó a cabo una revisión de la literatura de las investigaciones sobre la pérdida auditiva congénita de origen genético en la población mexicana. Se identificaron ocho reportes en los que se demostró que las variantes patogénicas más frecuentemente asociadas con pérdida auditiva se encuentran en el gen GJB2, aunque en un porcentaje bajo (3%). Se identificaron otras mutaciones en los genes GJB6, SLC26A4 o CHD23. Con base en esta información, una posible estrategia diagnóstica en pacientes mexicanos con pérdida auditiva es considerar un primer paso en el tamiz diagnóstico con los tres genes mencionados. Si estos genes fueran negativos para variantes patogénicas, el siguiente paso sería considerar el análisis por secuenciación de segunda generación enfocado en paneles de genes asociados con pérdida auditiva, tanto aislada como sindrómica, y en caso necesario, realizar el análisis del exoma o del genoma completo. Establecer una causa etiológica es un componente crítico en la evaluación clínica de los pacientes con pérdida auditiva congénita, ya que puede ayudar a determinar las estrategias de manejo y rehabilitación, como el uso de auxiliares auditivos o implantes cocleares, proporcionar información sobre la progresión de la enfermedad y dar asesoramiento genético en esta población.

11.
Ann Biol Clin (Paris) ; 79(6): 551-565, 2021 Dec 01.
Artigo em Francês | MEDLINE | ID: mdl-34961738

RESUMO

Palmoplantar keratodermas (PPK) comprise a heterogenous group of acquired and hereditary disorders marked by excessive thickening of the epidermis of palms and soles. Hereditary PPKs can be classified into 3 groups: 1) isolated non-syndromic PPKs; 2) complex non-syndromic PPKs associated with other ectodermal defects; and 3) syndromic PPKs associated with extracutaneous manifestations. All types of inheritance have been observed: autosomal dominant, autosomal recessive, X-linked recessive, and mitochondrial. Some of these disorders are restricted to geographic isolates. This review describes the different genetic causes of hereditary syndromic and complex PPKs for which the genes have been identified. The identification of pathogenic variants has consequences in terms of genetic counseling, appropriate medical care and follow-up, especially for PPKs predisposing to hearing loss, cardiomyopathies, benign tumors or carcinomas. In addition, the development of targeted therapies based on pathophysiology of disorders should allow a more effective treatment of these conditions in the near future.


Assuntos
Ceratodermia Palmar e Plantar , Humanos , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/genética , Linhagem
12.
Iran J Otorhinolaryngol ; 33(115): 79-86, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33912482

RESUMO

INTRODUCTION: Hearing loss (HL), with more than 100 gene loci, is the most common sensorineural defects in humans. The mutations in two GJB2 and GJB6 (Gap Junction Protein Beta 2, 6) genes are responsible for nearly 50% of autosomal recessive nonsyndromic hearing loss. The aim of the present study was to evaluate polymorphisms of 111C>T (rs7329857) and 337G>T (rs7333214) in GJB2 (encoding connexin 26) and GJB6 (encoding connexin 32) genes, respectively. MATERIALS AND METHODS: In this study, 32 blood samples were obtained from Iranian patients with HL defect and 32 normal blood samples were prepared. After genomic deoxyribonucleic acid extraction, genotyping in rs7333214 and rs7329857 polymorphisms was conducted using tetra-amplification refractory mutation system-polymerase chain reaction and the obtained data were analyzed. RESULTS: In this study, the prevalence rates of CC, CT, and TT genotypes in GJB2 gene were reported as 84.4%, 68.7%, and 0% in the affected subjects and 0%, 15.6%, and 31.3% in the control samples, respectively, which were statistically significant (P=0.004). In relation to GJB6 gene, the prevalence rates of GG, GT, and TT genotypes were 65.2%, 78.1%, and 25% in the control subjects and 21.9%, 9.4%, and 0% in the affected samples, respectively, which were not statistically significant (P>0.05). CONCLUSION: The results of this study revealed that 111C>T polymorphism in GJB2 gene was involved in the incidence of HL in the studied population and could be suggested as a prognostic factor in genetic counseling before marriage and pregnancy.

13.
Genes (Basel) ; 11(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096615

RESUMO

Genetic variants in GJB2 and GJB6 genes are the most frequent causes of hereditary hearing loss among several deaf populations worldwide. Molecular diagnosis enables proper genetic counseling and medical prognosis to patients. In this study, we present an update of testing results in a cohort of Argentinean non-syndromic hearing-impaired individuals. A total of 48 different sequence variants were detected in genomic DNA from patients referred to our laboratory. They were manually curated and classified based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology ACMG/AMP standards and hearing-loss-gene-specific criteria of the ClinGen Hearing Loss Expert Panel. More than 50% of sequence variants were reclassified from their previous categorization in ClinVar. These results provide an accurately interpreted set of variants to be taken into account by clinicians and the scientific community, and hence, aid the precise genetic counseling to patients.


Assuntos
Conexina 26/genética , Conexina 30/genética , Variação Genética , Genoma Humano , Genômica/métodos , Perda Auditiva/genética , Argentina/epidemiologia , Estudos de Coortes , Feminino , Testes Genéticos , Perda Auditiva/epidemiologia , Perda Auditiva/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
14.
Hereditas ; 157(1): 34, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843087

RESUMO

Hidrotic ectodermal dysplasia (HED) is a rare inherited syndrome characterised by nail dystrophy, palmoplantar hyperkeratosis and alopecia. Four mutations (p.G11R, p.A88V, p.V37E and p.D50N) in gap junction beta 6 (GJB6) gene, which codes connexin30 protein, have been found to cause HED in different populations. Here, we reported a big Chinese family in which 24 patients over five generations were suffered with HED. Sequence analysis identified all 24 patients carry a recurrent missense mutation c.263C > T (p.A88V) in GJB6. Our results reveal gene testing of GJB6 is important for diagnosis, prenatal diagnosis and future gene treatment of HED.


Assuntos
Conexina 30/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Adulto , Alelos , China , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA
15.
Braz. j. otorhinolaryngol. (Impr.) ; 86(3): 327-331, May-June 2020. tab
Artigo em Inglês | LILACS | ID: biblio-1132598

RESUMO

Abstract Introduction: Deafness is the most frequent sensory deficit in humans. Incidence is estimated at 4:1000 births in Brazil. Specific programs for clinical care of patients with hearing loss are still scarce in Brazil and the issue is an important public health problem. Objective: To determine the frequency of 35delG and D13S1830 mutations in GJB2 and GJB6 genes respectively in patients with non-syndromic sensorineural hearing loss from Minas Gerais, Brazil. Methods: This research involved 53 individuals, who were assessed by a questionnaire for predicting the possibility of non-syndromic deafness and for data collecting. Samples were tested for the presence of the 35delG mutation in GJB2 gene and D13S1830 in GJB6 gene by polymerase chain reaction and restriction enzyme digestion. Results: Epidemiological research has shown that the majority of the subjects are unaware of the etiology and the pathogenesis of hearing loss. In 9 patients (16.98%), 35delG mutation was found in heterozygosis and the allele frequency was estimate to be around 8.5%. Although 9.61% of the patients reported having some degree of consanguinity between the parents and 12.08% reported other cases of deafness in their families, this mutation was not found in homozygosis. The D13S1830 mutation was not found in this study. Conclusion: This research describes for the first time the frequency of the 35delG and D13S1830 mutation in hearing-impaired individuals from Minas Gerais, Brazil, and the collected data reinforce the need for further studies in this population due to heterogeneity of hearing loss.


Resumo Introdução: A surdez é o déficit sensorial mais frequente em humanos. Estima-se que a incidência seja de 4:1.000 nascimentos no Brasil. Programas específicos para atendimento clínico de pacientes com perda auditiva são escassos no Brasil e a questão é um importante problema de saúde pública. Objetivo: Determinar a frequência das mutações 35delG no gene GJB2 e D13S1830 no GJB6 em pacientes deficientes auditivos de origem neurossensorial e não sindrômica de Minas Gerais, Brasil. Método: A pesquisa envolveu 53 indivíduos selecionados por meio de questionário o qual avaliou a possibilidade de surdez não sindrômica entre outros dados. As amostras foram testadas quanto à presença da mutação 35delG no gene GJB2 e D13S1830 no gene GJB6 por reação em cadeia da polimerase e digestão com enzima de restrição. Resultados: A pesquisa epidemiológica mostrou que a maioria dos indivíduos desconhece a etiologia da perda auditiva. Em 9 pacientes (16,98%), a mutação 35delG foi encontrada em heterozigose e a frequência alélica foi estimada em 8,5%. Embora 9,61% das pessoas tenham relatado algum grau de consanguinidade entre os pais e 12,08% relatassem outros casos de surdez em suas famílias, essa mutação não foi encontrada em homozigose. A mutação D13S1830 não foi encontrada neste estudo. Conclusão: Este trabalho descreve pela primeira vez a frequência da mutação 35delG e D13S1830 em deficientes auditivos de Minas Gerais, Brasil, e os dados coletados reforçam a necessidade de mais estudos nessa população devido à heterogeneidade da perda auditiva.


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto , Adulto Jovem , Perda Auditiva Neurossensorial/genética , Mutação/genética , Reação em Cadeia da Polimerase , Genótipo
16.
Pathol Oncol Res ; 26(3): 1983-1987, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32170581

RESUMO

Tight junction and gap junction are major cell junctions that play important roles in cellular communication and structural integrity. Alterations of these junctions are known to be involved in cancer pathogenesis. Claudins and connexins are major tight and gap junction proteins, but genetic alterations of these genes have not been reported in gastric (GC) and colorectal cancers (CRC) with microsatellite instability (MSI). Claudin genes CLDN5 and CKDN6, and connexin genes GJB6 and GJB7 have mononucleotide repeats in the coding sequences that might be mutation targets in the cancers with MSI. We analyzed 79 GCs and 145 CRCs, and found CLDN5 frameshift mutations in 3 (3%) CRCs and 1 (2.9%) GC, CLDN6 frameshift mutations in 6 (6%) CRCs, GJB6 frameshift mutations in 5 (5%) CRCs and GJB7 frameshift mutation in one CRC (1%) with high MSI (MSI-H). We also analyzed intratumoral heterogeneity (ITH) of the frameshift mutations in 16 CRCs and found that CLDN6 and GJB6 frameshift mutations showed regional ITH in 2 (12.5%) and 2 (12.5%) cases, respectively. Our results show that CLDN5, CLDN6, GJB6 and GJB7 genes harbor not only frameshift mutations but also mutational ITH, which together may be features of GC and CRC with MSI-H. Based on the roles of cellular junctions in cancers, frameshift mutations of tight junction and gap junction genes might contribute to tumorigenesis by altering their functions in GC and CRC.


Assuntos
Claudina-5/genética , Claudinas/genética , Neoplasias Colorretais/genética , Conexina 30/genética , Conexinas/genética , Neoplasias Gástricas/genética , Mutação da Fase de Leitura , Humanos
17.
Mol Genet Genomic Med ; 8(4): e1171, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067424

RESUMO

BACKGROUND: Mutations involving the closely linked GJB2 and GJB6 at the DFNB1 locus are a common genetic cause of profound congenital hearing loss in many populations. In some deaf GJB2 heterozygotes, a 309 kb deletion involving the GJB6 has been found to be the cause for hearing loss when inherited in trans to a GJB2 mutation. METHODS: We screened 2,376 probands from a National DNA Repository of deaf individuals. RESULTS: Fifty-two of 318 heterozygous probands with pathogenic GJB2 sequence variants had a GJB6 deletion. Additionally, eight probands had an isolated heterozygous GJB6 deletion that did not explain their hearing loss. In two deaf subjects, including one proband, a homozygous GJB6 deletion was the cause for their hearing loss, a rare occurrence not reported to date. CONCLUSION: This study represents the largest US cohort of deaf individuals harboring GJB2 and GJB6 variants, including unique subsets of families with deaf parents. Testing additional members to clarify the phase of GJB2/GJB6 variants in multiplex families was crucial in interpreting clinical significance of the variants in the proband. It highlights the importance of determining the phase of GJB2/GJB6 variants when interpreting molecular test results especially in multiplex families with assortative mating.


Assuntos
Conexina 30/genética , Deleção de Genes , Testes Genéticos/métodos , Perda Auditiva/genética , Conexina 26/genética , Feminino , Frequência do Gene , Testes Genéticos/normas , Perda Auditiva/diagnóstico , Heterozigoto , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/normas , Linhagem , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
18.
Braz J Otorhinolaryngol ; 86(3): 327-331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30837189

RESUMO

INTRODUCTION: Deafness is the most frequent sensory deficit in humans. Incidence is estimated at 4:1000 births in Brazil. Specific programs for clinical care of patients with hearing loss are still scarce in Brazil and the issue is an important public health problem. OBJECTIVE: To determine the frequency of 35delG and D13S1830 mutations in GJB2 and GJB6 genes respectively in patients with non-syndromic sensorineural hearing loss from Minas Gerais, Brazil. METHODS: This research involved 53 individuals, who were assessed by a questionnaire for predicting the possibility of non-syndromic deafness and for data collecting. Samples were tested for the presence of the 35delG mutation in GJB2 gene and D13S1830 in GJB6 gene by polymerase chain reaction and restriction enzyme digestion. RESULTS: Epidemiological research has shown that the majority of the subjects are unaware of the etiology and the pathogenesis of hearing loss. In 9 patients (16.98%), 35delG mutation was found in heterozygosis and the allele frequency was estimate to be around 8.5%. Although 9.61% of the patients reported having some degree of consanguinity between the parents and 12.08% reported other cases of deafness in their families, this mutation was not found in homozygosis. The D13S1830 mutation was not found in this study. CONCLUSION: This research describes for the first time the frequency of the 35delG and D13S1830 mutation in hearing-impaired individuals from Minas Gerais, Brazil, and the collected data reinforce the need for further studies in this population due to heterogeneity of hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Mutação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase , Adulto Jovem
19.
Fetal Pediatr Pathol ; 39(1): 1-12, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31215297

RESUMO

Background: Hearing impairment (HI) is a heterogeneous disorder. GJB2 and GJB6 genes are typically the first line of genetic screening before proceeding to any massive parallel sequencing. We evaluated the clinical utility of GJB2 and GJB6 testing in the Iranian population. Methods: GJB2 and GJB6 were sequenced. PubMed and Google Scholar were searched for Iranian publications on deletions in the DFNB1 locus. Results: We detected mutations of GJB2 in 16.5%, and no mutations of GJB6. Literature review revealed no reports of mutations of GJB6 in the Iranian population. Conclusion: This data and literature reviews indicate that GJB6 is not commonly responsible for Iranian nonsyndromic HI. Hence, the clinical utility of GJB6 genetic analysis as a first line for HI evaluation does not have the same utility as GJB2. The study is consistent with recent studies emphasizing the role of ethnicity in the selection of HI genetic testing strategy.


Assuntos
Conexina 30/genética , Conexinas/genética , Perda Auditiva/genética , Mutação/genética , Conexina 26 , Surdez/genética , Frequência do Gene/fisiologia , Genes Recessivos , Testes Genéticos/métodos , Humanos , Deleção de Sequência/fisiologia
20.
Front Genet ; 10: 1151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819744

RESUMO

[This corrects the article DOI: 10.3389/fgene.2019.00841.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...