Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.538
Filtrar
1.
Chemosphere ; 364: 143004, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097112

RESUMO

Cadmium (Cd) is an important environmental toxicant that could cause serious damage to various organs including severe hepatotoxicity in intoxicated animals. Selenium has been reported to possess the protective effects against Cd toxicity, but the specific mechanism is still unclear. The purpose of this study was to explore the effects and mechanism of chitosan coated selenium nanoparticles (CS-SeNPs) against Cd-induced hepatotoxicity in animal and cellular models. ICR mice and rat hepatocyte BRL-3A cells were exposed to cadmium chloride (CdCl2) to evaluate the therapeutic efficiency of CS-SeNPs. Analysis of histopathological images, mitochondrial membrane potential (MMP) and ultramicrostructure, serum liver enzyme activities, ferroptosis-related indicators contents, and further molecular biology experiments were performed to investigate the underlying mechanisms. In vivo experiment results showed that CdCl2 caused significant pathological damage involving significant increase of liver index, contents of tissue MDA and serum ALT and AST, and significant decrease of serum GSH-Px activity. Moreover, CdCl2 exposure upregulated ACSL4 and HO-1 protein levels, downregulated GPX4, TfR1, ferritin protein levels in the liver. Notably, CS-SeNPs increased the expression level of GPX4 and ameliorated CdCl2-induced changes in above-mentioned indicators. In vitro experimental results showed that treatment with CS-SeNPs significantly elevated GSH-Px activity and GPX4 protein level, reversed CdCl2-induced expression of several ferroptosis-related proteins TfR1, FTH1 and HO-1, and repressed ROS production and increased MMP of the cells exposed to CdCl2. Our research indicated that CdCl2 induced hepatocyte injury by inducing ferroptosis, while CS-SeNPs can inhibit ferroptosis and reduce the degree of hepatocyte injury. This study is of great significance for further revealing the mechanism of Cd hepatotoxicity and expanding the clinical application of SeNPs.

2.
Chin J Integr Med ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167283

RESUMO

OBJECTIVE: To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS: Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS: BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION: Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.

3.
Biomed Pharmacother ; 178: 117232, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098181

RESUMO

Alkaloids have remarkable biological and pharmacological properties and have recently garnered extensive attention. Various alkaloids, including commercially available drugs such as berberine, substantially affect ferroptosis. In addition to the three main pathways of ferroptosis, iron metabolism, phospholipid metabolism, and the glutathione peroxidase 4-regulated pathway, novel mechanisms of ferroptosis are continuously being identified. Alkaloids can modulate the progression of various diseases through ferroptosis and exhibit the ability to exert varied effects depending on dosage and tissue type underscores their versatility. Therefore, this review comprehensively summarizes primary targets and the latest advancements of alkaloids in ferroptosis, as well as the dual roles of alkaloids in inhibiting and promoting ferroptosis.


Assuntos
Alcaloides , Ferroptose , Ferroptose/efeitos dos fármacos , Humanos , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Ferro/metabolismo
4.
Biochem Pharmacol ; 229: 116479, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134283

RESUMO

Ferroptosis is a newly defined mode of cellular demise. The increasing investigation supports that ferroptosis is a crucial factor in the complex mechanisms of myocardial ischemia-reperfusion (I/R) injury. Hence, targeting ferroptosis is a novel strategy for treating myocardial injury. Although evidence suggests that trimetazidine (TMZ) is potentially efficacious against myocardial injury, the exact mechanism of this efficacy is yet to be fully elucidated. This study aimed to determine whether TMZ can act as a ferroptosis resistor and affect I/R-mediated myocardial injury. To this end, researchers have constructed in vitro and in vivo models of I/R using H9C2 cardiomyocytes, primary cardiomyocytes, and SD rats. Here, I/R mediated the onset of ferroptosis in vitro and in vivo, as reflected by excessive iron aggregation, GSH depletion, and the increase in lipid peroxidation. TMZ largely reversed this alteration and attenuated cardiomyocyte injury. Mechanistically, we found that TMZ upregulated the expression of Sirt3. Therefore, we used si-Sirt3 and 3-TYP to interfere with Sirt3 action in vitro and in vivo, respectively. Both si-Sirt3 and 3-TYP partly mitigated the inhibitory effect of TMZ on I/R-mediated ferroptosis and upregulated the expression of Nrf2 and its downstream target, GPX4-SLC7A11. These results indicate that TMZ attenuates I/R-mediated ferroptosis by activating the Sirt3-Nrf2/GPX4/SLC7A11 signaling pathway. Our study offers insights into the mechanism underlying the cardioprotective benefits of TMZ and establishes a groundwork for expanding its potential applications.

5.
Zhonghua Xue Ye Xue Za Zhi ; 45(6): 577-585, 2024 Jun 14.
Artigo em Chinês | MEDLINE | ID: mdl-39134490

RESUMO

Objective: To investigate the effect and molecular mechanism of hesperadin in inducing ferroptosis in chronic myeloid leukemia cell line K562 cells. Methods: The effects of hesperadin on the viability, proliferation, and migration of K562 cells were detected though CCK8, EDU-594, and Transwell assays, and the apoptotic rate of K562 cells was detected by flow cytometry. In addition, C11-BODIPY and FerroOrange were utilized to detect intracellular lipid peroxidation and Fe(2+) levels. Meanwhile, the expression levels of ferroptosis-associated protein solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in cells were detected through Western blot. Lipid peroxidation and Fe(2+) levels were also detected after transfection of cells with SLC7A11 overexpression plasmid. Results: Hesperadin decreased cell viability in a dose-dependent manner with IC(50) of 0.544 µmol/L. Hesperadin concentrations of 0.4 and 0.8 µmol/L were selected for follow-up experiments. EDU-594, Transwell, and flow cytometry showed significantly decreased proliferation and migration rate of K562 cells after 0.4 and 0.8 µmol/L hesperadin treatment for 24 h, and the apoptosis rate was significantly increased compared with the control group (P<0.05). Western blot indicated a downregulated expression of the antiapoptotic protein Bcl-2 and an elevated expression of proapoptotic proteins Bax and Caspase-3. Moreover, hesperadin increased intracellular lipid peroxidation and Fe(2+) levels compared with the control treatment (P<0.05). The combination of ferroptosis inhibitor (Fer-1) and hesperadin could reverse the effect of hesperadin on K562 cells. The mRNA and protein levels of ferroptosis-related genes SLC7A11 and GPX4 were significantly decreased in the 0.8 µmol/L hesperadin-treated group (P<0.05). SLC7A11 overexpression can inhibit hesperadin effect and alleviate ferroptosis. Conclusion: Hesperadin can promote ferroptosis in K562 cells by regulating the SLC7A11/GPX4 axis.


Assuntos
Proliferação de Células , Ferroptose , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Ferroptose/efeitos dos fármacos , Células K562 , Proliferação de Células/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Apoptose/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Movimento Celular/efeitos dos fármacos
6.
J Biochem Mol Toxicol ; 38(9): e23794, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39163615

RESUMO

Isoliensinine (ISO), a natural compound, is a bibenzyl isoquinoline alkaloid monomer in lotus seed, which has strong antioxidant and free radical scavenging activities. The oxidative toxicity caused by glutamic acid overdose is one of the important mechanisms of nerve cell injury, and the oxidative toxicity caused by glutamic acid is related to ferroptosis. This study aims to establish a glutamate-induced injury model of mouse hippocampal neurons HT-22 cells, and investigate the protective effect of ISO on the neurotoxicity of glutamate-induced HT-22 cells. The results showed that ISO inhibited glutamate-induced ferroptosis of neuronal cells through nuclear factor E2-related factor 2/glutathione peroxidase 4 (Nrf2/GPX4) signaling pathway. Pretreatment of HT-22 cells with ISO significantly reduced glutamate-induced cell death. Ferroptosis inhibitors have the same effect. ISO inhibited the decrease of mitochondrial membrane potential detection and the increase of iron content induced by glutamate, the increase of malondialdehyde and reactive oxygen species in cytoplasm and lipid, and protected the activities of GPx and superoxide dismutase enzymes. In addition, WB showed that glutamic acid could induce the upregulated expression of long-chain esteryl coA synthase 4 (ACSL4) protein and the downregulated expression of SLC7A11 and GPX4 protein in HT-22 cells, while ISO could prevent the abnormal expression of these proteins induced by glutamic acid. The nuclear translocation of Nrf2 in HT-22 cells was increased, and the expression of downstream heme oxygenase-1 protein was upregulated. In summary, ISO protects HT-22 cells from glutamate-induced ferroptosis through a novel mechanism of the Nrf2/GPX4 signaling pathway.


Assuntos
Ferroptose , Ácido Glutâmico , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Isoquinolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
7.
Biomed Pharmacother ; 179: 117309, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151312

RESUMO

Esophageal cancer ranks among the most prevalent malignant tumors globally. The prognosis for esophageal squamous cell carcinoma remains poor, with a 5-year survival rate below 20 % due to limited advances in therapy. Ferroptosis, a novel form of iron-dependent lipid peroxidation-driven regulated cell death (RCD), shows significant promise in cancer treatment. Berbamine (BBM), a natural bisbenzylisoquinoline alkaloid derived from Berberis amurensis, exhibits anti-tumor effects against various cancers, yet its impact on esophageal cancer remains to be elucidated. This study aimed to explore the role of BBM in inducing ferroptosis in the treatment of esophageal cancer, focusing on its molecular mechanisms. Gene set enrichment analysis(GSEA) analysis highlighted the potential of BBM as an anti-cancer agent through ferroptosis induction. We found that BBM inhibited growth and epithelial-mesenchymal transition (EMT) in esophageal cancer cell lines, promoting Fe accumulation, ROS, and malondialdehyde (MDA) production, thereby triggering cell death. These suppressive effects were successfully reversed by Ferrostatin-1 (Fer-1). Mechanistically, BBM decreased deubiquitination enzyme USP51 levels, leading to ubiquitin degradation and glutathione peroxidase 4(GPX4) instability, and it stimulated ferroptosis. The Overexpression of USP51 mitigated the downregulation of GPX4 induced by BBM.BBM significantly inhibited tumor xenograft growth in nude mice. This discovery positions BBM as a promising therapeutic candidate for the treatment of esophageal cancer.

8.
Inflamm Res ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152299

RESUMO

Acute lung injury (ALI) is caused by a variety of intrapulmonary and extrapulmonary factors and is associated with high morbidity and mortality. Oxidative stress is an important part of the pathological mechanism of ALI. Ferroptosis is a mode of programmed cell death distinguished from others and characterized by iron-dependent lipid peroxidation. This article reviews the metabolic regulation of ferroptosis, its role in the pathogenesis of ALI, and the use of ferroptosis as a therapeutic target regarding the pharmacological treatment of ALI.

9.
Drug Dev Res ; 85(6): e22245, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154227

RESUMO

Intracerebral hemorrhage (ICH) is a severe hemorrhagic stroke and induces severe secondary neurological injury. However, its pathogenesis remains to be explored. The present work investigates the role of glutathione S-transferase omega 2 (GSTO2) in ICH and the underlying mechanism. Human neuroblastoma cells (SK-N-SH) were stimulated using hemin to mimic ICH-like injury. Protein expression levels of GSTO2 and glutathione peroxidase 4 (GPX4) were detected by western blot analysis assay. Cell viability was assessed by cell counting kit-8 assay. Cell proliferation was investigated by 5-ethynyl-2'-deoxyuridine assay. Cell apoptosis was analyzed by flow cytometry. Interleukin-6 and tumor necrosis factor-α levels were quantified by enzyme-linked immunosorbent assays. Fe2+ colorimetric assay kit was used to detect Fe2+ level. A cellular reactive oxygen species (ROS) assay kit was used to detect ROS levels. Malondialdehyde (MDA) level was assessed using the MDA content assay kit. GSH level was quantified using the GSH assay kit. Co-immunoprecipitation assay was performed to identify the association between GSTO2 and GPX4. Hemin stimulation suppressed SK-N-SH cell proliferation and promoted cell apoptosis, cell inflammation, ferroptosis, and oxidative stress. GSTO2 expression was downregulated in hemin-treated SK-N-SH cells in comparison with the control group. In addition, ectopic GSTO2 expression counteracted hemin-induced inhibitory effect on cell proliferation and promoting effects on cell apoptosis, inflammation, ferroptosis, and oxidative stress. Moreover, GSTO2 was associated with GPX4 in SK-N-SH cells. GPX4 silencing attenuated GSTO2 overexpression-induced effects on hemin-stimulated SK-N-SH cell injury. GSTO2 ameliorated SK-N-SH cell apoptosis, inflammation, ferroptosis, and oxidative stress by upregulating GPX4 expression in ICH, providing a therapeutic strategy for ICH.


Assuntos
Apoptose , Hemorragia Cerebral , Ferroptose , Inflamação , Neuroblastoma , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Regulação para Cima , Humanos , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Hemorragia Cerebral/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Inflamação/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Glutationa Transferase/metabolismo , Proliferação de Células/efeitos dos fármacos , Hemina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
Cell Rep ; 43(8): 114636, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154340

RESUMO

Inflammatory bowel disease (IBD) has high prevalence in Western counties. The high fat content in Western diets is one of the leading causes for this prevalence; however, the underlying mechanisms have not been fully defined. Here, we find that high-fat diet (HFD) induces ferroptosis of intestinal regulatory T (Treg) cells, which might be the key initiating step for the disruption of immunotolerance and the development of colitis. Compared with effector T cells, Treg cells favor lipid metabolism and prefer polyunsaturated fatty acids (PUFAs) for the synthesis of membrane phospholipids. Therefore, consumption of HFD, which has high content of PUFAs such as arachidonic acid, cultivates vulnerable Tregs that are fragile to lipid peroxidation and ferroptosis. Treg-cell-specific deficiency of GPX4, the key enzyme in maintaining cellular redox homeostasis and preventing ferroptosis, dramatically aggravates the pathogenesis of HFD-induced IBD. Taken together, these studies expand our understanding of IBD etiology.

11.
Int J Oncol ; 65(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39155877

RESUMO

Ferroptosis, characterized by iron­mediated non­apoptotic cell death and alterations in lipid redox metabolism, has emerged as a critical process implicated in various cellular functions, including cancer. Aurantio­obtusin (AO), a bioactive compound derived from Cassiae semen (the dried mature seeds of Cassie obtusifolia L. or Cassia toral L.), has anti­hyperlipidemic and antioxidant properties; however, to the best of our knowledge, the effect of AO on liver cancer cells remains unclear. The Cell Counting Kit­8, EdU staining and migration assays were employed to assess the anti­liver cancer activity of AO. Intracellular levels of glutathione peroxidase 4 protein and lipid peroxidation were measured as indicators of ferroptotic status. Immunohistochemical analyses, bioinformatics analyses and western blotting were conducted to evaluate the potential of stearoyl­CoA desaturase 1 (SCD1) in combination with ferroptosis inducers for the personalized treatment of liver cancer. The present study revealed that AO significantly inhibited the proliferation of liver cancer cells in vitro and in vivo. Mechanistically, AO inhibited AKT/mammalian target of rapamycin (mTOR) signaling, suppressed sterol regulatory element­binding protein 1 (SREBP1) expression, and downregulated fatty acid synthase expression, thereby inhibiting de novo fatty acid synthesis. Further investigations demonstrated that AO suppressed glutathione peroxidase 4 protein expression through the nuclear factor erythroid 2­related factor 2/heme oxygenase­1 pathway, induced ferroptosis in liver cancer cells, and simultaneously inhibited lipogenesis by suppressing SCD1 expression through the AKT/mTOR/SREBP1 pathway. Consequently, this increased the sensitivity of liver cancer cells to the ferroptosis inducer RSL3. Additionally, the enhanced effects of AO and RSL3, which resulted in significant tumor suppression, were confirmed in a xenograft mouse model. In conclusion, the present study demonstrated that AO induced ferroptosis, downregulated the expression of SCD1 and enhanced the sensitivity of liver cancer cells to the ferroptosis inducer RSL3. The synergistic use of AO and a ferroptosis inducer may have promising therapeutic effects in liver cancer cells.


Assuntos
Ferroptose , Lipogênese , Neoplasias Hepáticas , Estearoil-CoA Dessaturase , Ensaios Antitumorais Modelo de Xenoenxerto , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Animais , Lipogênese/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Masculino , Sinergismo Farmacológico , Células Hep G2 , Carbolinas
12.
J Ethnopharmacol ; 335: 118670, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117020

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Solanum torvum Sw. (ST) is used to clear heat toxins, promote blood circulation, and alleviate blood stasis. Therefore, this plant has traditionally been used as an ethnomedicine for common cold, chronic gastritis, and tumors. AIM OF THE STUDY: This study aimed to elucidate the mechanism by which ST induces ferroptosis in hepatocellular carcinoma (HCC), the combination effect with lenvatinib, and the impact on lenvatinib-resistant cells. MATERIALS AND METHODS: Cell viability assays were performed using different hepatoma cell lines treated with ST. Lipid peroxidation and iron assays were performed using flow cytometry. Molecules involved in the ferroptosis pathway were detected by Western blotting. Finally, a lenvatinib-resistant cell line was established to evaluate the antiproliferative effects of ST. RESULTS: ST ethanol extract inhibited the growth of various hepatoma cell lines. A significant reduction in glutathione peroxidase 4 (GPX4) expression was observed following ST treatment, which was accompanied by increased lipid peroxidation and Fe2+ accumulation. ST induced ferroptosis mainly through heme oxygenase-1 (HO-1) expression. HO-1 knockdown reduced ST-induced lipid peroxidation and reversed GPX4 suppression. Acyl-CoA synthetase long-chain family member 4 (ACSL4) also participated in ST-induced ferroptosis. ST and lenvatinib combination showed an additive effect, and ST retained its potential anti-HCC efficacy in a lenvatinib-resistant cell line. CONCLUSION: This study demonstrated that the ethanol extract of ST inhibits hepatoma cell growth by inducing ferroptosis. ST displayed an additive effect with lenvatinib in Hep 3B cells and showed remarkable anti-HCC activity in lenvatinib-resistant Hep 3B cells. Collectively, the study shows that ST might have the potential to reduce lenvatinib use in clinical practice and salvage cases of lenvatinib resistance.

13.
Eur J Pharmacol ; 982: 176894, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147013

RESUMO

Sepsis is a systemic inflammatory response syndrome triggered by infection, presenting with symptoms such as fever, increased heart rate, and low blood pressure. In severe cases, it can lead to multiple organ dysfunction, posing a life-threatening risk. Sepsis-induced cardiomyopathy (SIC) is a critical factor in the poor prognosis of septic patients, leading to myocardial dysfunction characterized by cell death, inflammation, and diminished cardiac function. Ferroptosis, an iron-dependent form of programmed cell death, is a key mechanism causing cardiomyocyte damage in SIC. Growth differentiation factor 15 (GDF15), a member of the TGF-ß superfamily, is associated with various cardiovascular diseases and can inhibit oxidative stress, reduce reactive oxygen species (ROS), and suppress ferroptosis. Elevated serum GDF15 levels in sepsis are correlated with organ injuries, suggesting its potential as a therapeutic target. However, its role and mechanisms in SIC remain unclear. Glutathione peroxidase 4 (GPX4), the only enzyme capable of reducing lipid peroxides within cells, protects cells by reducing lipid peroxidation levels and inhibiting ferroptosis. Investigating the regulatory factors of GPX4 may provide a theoretical basis for SIC treatment. In this study, a mouse SIC model revealed that elevated GDF15 exerts a protective effect. Antagonizing GDF15 exacerbates myocardial damage. Through transcriptomic analysis and other methods, we confirmed that GDF15 inhibits the expression of SOCS1 by activating the ALK5-SMAD2/3 pathway, thereby activates the JAK2/STAT3 pathway, promotes the transcription of GPX4, inhibits ferroptosis in cardiomyocytes, and plays a myocardial protective role in SIC.

14.
Bioorg Chem ; 152: 107733, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39180865

RESUMO

A series of organoselenium compounds based on the hybridization of artesunate (ART) scaffolds and Se functionalities (-SeCN and -SeCF3) were synthesized. The redox properties of artesunate-SeCN and artesunate-SeCF3 derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), and the results showed that compounds 2c, 2f and 3e have a good free radical scavenging activity. Their cytotoxicity was evaluated against four types of cancer cell lines, SW480 (human colon adenocarcinoma cells), HCT116 (human colorectal adenocarcinoma cells), HepG2 (human hepatocellular carcinoma cells), MCF-7 (human breast cancer cells). The MTT results showed that compared with ART and 5-FU, compound 2c exhibited potent in vitro antiproliferative activity in SW480, HCT116, and MCF-7 cancer cell lines, and was thus chose for further antitumor mechanism investigation. The antitumor mechanism study revealed that compound 2c induced ferroptosis in HCT116 cells by inhibiting the expression of GPX4 protein, accompanying by the up-regulation of intracellular ROS levels. Mitochondria in HCT116 cells exhibit depolarization of mitochondrial membrane potential (MMP) and ultrastructural changes in morphology, which indicated that 2c resulted in mitochondrial dysfunction and ferroptosis. Moreover, 2c could increase the levels of lipid peroxidation and ferrous ion, which further confirm that compound 2c may exert its antitumor effect through ferroptosis. Overall, these results suggest that the artesunate-Se candidates could provide promising new lead derivatives for further potential anticancer drug development.

15.
Mol Cell ; 84(16): 3098-3114.e6, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39142278

RESUMO

Ferroptosis, an iron-dependent form of nonapoptotic cell death mediated by lipid peroxidation, has been implicated in the pathogenesis of multiple diseases. Subcellular organelles play pivotal roles in the regulation of ferroptosis, but the mechanisms underlying the contributions of the mitochondria remain poorly defined. Optic atrophy 1 (OPA1) is a mitochondrial dynamin-like GTPase that controls mitochondrial morphogenesis, fusion, and energetics. Here, we report that human and mouse cells lacking OPA1 are markedly resistant to ferroptosis. Reconstitution with OPA1 mutants demonstrates that ferroptosis sensitization requires the GTPase activity but is independent of OPA1-mediated mitochondrial fusion. Mechanistically, OPA1 confers susceptibility to ferroptosis by maintaining mitochondrial homeostasis and function, which contributes both to the generation of mitochondrial lipid reactive oxygen species (ROS) and suppression of an ATF4-mediated integrated stress response. Together, these results identify an OPA1-controlled mitochondrial axis of ferroptosis regulation and provide mechanistic insights for therapeutically manipulating this form of cell death in diseases.


Assuntos
Fator 4 Ativador da Transcrição , Ferroptose , GTP Fosfo-Hidrolases , Mitocôndrias , Espécies Reativas de Oxigênio , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Ferroptose/genética , Animais , Espécies Reativas de Oxigênio/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Dinâmica Mitocondrial , Camundongos , Camundongos Knockout , Estresse Oxidativo , Transdução de Sinais , Peroxidação de Lipídeos , Mutação
16.
Cell Rep Med ; 5(8): 101663, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39094577

RESUMO

The current targeted therapy for BRAFV600E-mutant lung cancer consists of a dual blockade of RAF/MEK kinases often combining dabrafenib/trametinib (D/T). This regimen extends survival when compared to single-agent treatments, but disease progression is unavoidable. By using whole-genome CRISPR screening and RNA sequencing, we characterize the vulnerabilities of both persister and D/T-resistant cellular models. Oxidative stress together with concomitant induction of antioxidant responses is boosted by D/T treatment. However, the nature of the oxidative damage, the choice of redox detoxification systems, and the resulting therapeutic vulnerabilities display stage-specific differences. Persister cells suffer from lipid peroxidation and are sensitive to ferroptosis upon GPX4 inhibition in vivo. Biomarkers of lipid peroxidation are detected in clinical samples following D/T treatment. Acquired alterations leading to mitogen-activated protein kinase (MAPK) reactivation enhance cystine transport to boost GPX4-independent antioxidant responses. Similarly to BRAFV600E-mutant melanoma, histone deacetylase (HDAC) inhibitors decrease D/T-resistant cell viability and extend therapeutic response in vivo.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Inibidores de Histona Desacetilases , Neoplasias Pulmonares , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Proto-Oncogênicas B-raf , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Animais , Inibidores de Histona Desacetilases/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Oximas/farmacologia , Imidazóis/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Mutação/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Redox Biol ; 75: 103303, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137584

RESUMO

BACKGROUND: The notable decline in the number of Tregs within Necrotizing enterocolitis (NEC) intestinal tissues,contribute to excessive inflammation and necrosis, yet the precise underlying factors remain enigmatic. Ferroptosis, a novel cell death stemming from a disrupted lipid redox metabolism, is the focus of this investigation. Specifically, this study delves into the ferroptosis of Treg cells in the context of NEC and observes the protective effects exerted by vitamin E intervention, which aims to mitigate ferroptosis of Treg cells. METHODS: To investigate the reduction of Treg cells in NEC intestine, we analyzed its association with ferroptosis from multiple angles. We constructed a mouse with a specific knockout of Gpx4 in Treg cells, aiming to examine the impact of Treg cell ferroptosis on NEC intestinal injury and localized inflammation. Ultimately, we employed vitamin E treatment to mitigate ferroptosis in NEC intestine's Treg cells, monitoring the subsequent amelioration in intestinal inflammatory damage. RESULTS: The diminution of Treg cells in NEC is attributed to ferroptosis stemming from diminished GPX4 expression. Gpx4-deficient Treg cells exhibit impaired immunosuppressive function and are susceptible to ferroptosis. This ferroptosis of Treg cells exacerbates intestinal damage and inflammatory response in NEC. Notably, Vitamin E can inhibit the ferroptosis of Treg cells, subsequently alleviating intestinal damage and inflammation in NEC. Additionally, Vitamin E bolsters the anti-lipid peroxidation capability of Treg cells by upregulating the expression of GPX4. CONCLUSION: In the context of NEC, the ferroptosis of Treg cells represents a significant factor contributing to intestinal tissue damage and an exaggerated inflammatory response. GPX4 is pivotal for the viability and functionality of Treg cells. Vitamin E exhibits the capability to mitigate the ferroptosis of Treg cells, thereby enhancing their number and function, which plays a crucial role in mitigating intestinal tissue damage and inflammatory response in NEC.


Assuntos
Enterocolite Necrosante , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Linfócitos T Reguladores , Vitamina E , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Vitamina E/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Camundongos , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/patologia , Enterocolite Necrosante/tratamento farmacológico , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/patologia , Humanos , Camundongos Knockout , Intestinos/patologia
18.
Zhonghua Nan Ke Xue ; 30(2): 174-179, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-39177353

RESUMO

Ferroptosis is an iron-dependent form of programmed cell death triggered by the excessive accumulation of lipid peroxides on the cell membrane. Recent studies have found that ferroptosis can be induced by exposure of the testis tissue and germ cells to some high-risk factors, accompanied by various characteristic reproductive system injuries, including changes in cell morphology, ferroptosis-related physicochemical indicators and gene expressions. This review focuses on the association of ferroptosis with male reproductive system diseases from three key aspects: iron metabolism abnormalities, Cystine/GSH/GPX4 axis imbalance, and lipid peroxidation.


Assuntos
Ferroptose , Masculino , Humanos , Peroxidação de Lipídeos , Ferro/metabolismo , Doenças dos Genitais Masculinos/etiologia , Testículo/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Glutationa/metabolismo
19.
Int J Rheum Dis ; 27(8): e15297, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39175261

RESUMO

BACKGROUND: Ferroptosis is caused by iron-dependent peroxidation of membrane phospholipids and chondrocyte ferroptosis contributes to osteoarthritis (OA) progression. Glutathione peroxidase 4 (GPX4) plays a master role in blocking ferroptosis. N6-methyladenosine (m6A) is an epigenetic modification among mRNA post-transcriptional modifications. This study investigated the effect of methyltransferase-like 14 (METTL14), the key component of the m6A methyltransferase, on chondrocyte ferroptosis via m6A modification. METHODS: An OA rat model was established through an intra-articular injection of monosodium iodoacetate in the right knee. OA cartilages in rat models were used for gene expression analysis. Primary mouse chondrocytes or ADTC5 cells were stimulated with IL-1ß or erastin. The m6A RNA methylation quantification kit was used to measure m6A level. The effect of METTL14 and GPX4 on ECM degradation and ferroptosis was investigated through western blotting, fluorescence immunostaining, propidium iodide staining, and commercially available kits. The mechanism of METTL14 action was explored through MeRIP-qPCR assays. RESULTS: METTL14 and m6A expression was upregulated in osteoarthritic cartilages and IL-1ß-induced chondrocytes. METTL14 depletion repressed the IL-1ß or erastin-stimulated ECM degradation and ferroptosis in mouse chondrocytes. METTL14 inhibited GPX4 gene through m6A methylation modification. GPX4 knockdown reversed the si-METTL14-mediated protection in IL-1ß-induced chondrocytes. CONCLUSION: METTL14 depletion inhibits ferroptosis and ECM degradation by suppressing GPX4 mRNA m6A modification in injured chondrocytes.


Assuntos
Condrócitos , Ferroptose , Metiltransferases , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Condrócitos/metabolismo , Condrócitos/enzimologia , Ferroptose/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/enzimologia , Osteoartrite/genética , Osteoartrite/induzido quimicamente , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Ratos , Humanos , Ratos Sprague-Dawley
20.
Am J Reprod Immunol ; 92(2): e13864, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141012

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play crucial roles in cellular processes, with dysregulation implicated in various diseases, including cancers. The lncRNA TPT1-AS1 (TPT1 Antisense RNA 1) promotes tumor progression in several cancers, including ovarian cancer (OC), but its influence on ferroptosis and interaction with other proteins remains underexplored. METHODS: In this study, we employed a multi-faceted approach to investigate the functional significance of TPT1-AS1 in OC. We assessed TPT1-AS1 expression in OC specimens and cell lines using RT-qPCR, in situ hybridization (ISH), and fluorescence in situ hybridization (FISH) assays. Functional assays included evaluating the impact of TPT1-AS1 knockdown on OC cell proliferation, migration, invasiveness, and cell cycle progression. Further, we explored and validated the interaction of TPT1-AS1 with other proteins using bioinformatics. Finally, we investigated TPT1-AS1 involvement in erastin-induced ferroptosis using Iron Assay, Malondialdehyde (MDA) assay, and reactive oxygen species (ROS) detection. RESULTS: Our findings revealed that TPT1-AS1 overexpression in OC correlated with an unfavorable prognosis. TPT1-AS1 knockdown suppressed cell proliferation, migration, and invasiveness. Additionally, TPT1-AS1 inhibited erastin-induced ferroptosis, and in vivo experiments confirmed its oncogenic impact on tumor development. Mechanistically, TPT1-AS1 was found to regulate Glutathione Peroxidase 4 (GPX4) transcription via CREB1 (cAMP response element-binding protein 1) and interact with RNA-binding protein (RBP) KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) to regulate CREB1. CONCLUSION: TPT1-AS1 promotes OC progression by inhibiting ferroptosis and upregulating CREB1, forming a regulatory axis with KHDRBS3. These findings highlight the regulatory network involving lncRNAs, RBPs, and transcription factors in cancer progression.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , RNA Longo não Codificante , Humanos , Feminino , Ferroptose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Animais , Camundongos , Proliferação de Células/genética , Camundongos Nus , Movimento Celular/genética , Proteína Tumoral 1 Controlada por Tradução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...