Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 474, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367435

RESUMO

BACKGROUND: Our previous study has demonstrated a decreased colonic CD8+CD39+ T cells, enrichment of granzyme A (GZMA), was found in pediatric-onset colitis and inflammatory bowel disease (IBD) characterized by impaired intestinal barrier function. However, the influence of GZMA on intestinal barrier function remains unknown. METHODS: Western blotting(WB), real-time PCR (qPCR), immunofluorescence (IF) and in vitro permeability assay combined with intestinal organoid culture were used to detect the effect of GZMA on intestinal epithelial barrier function in vivo and in vitro. Luciferase, immunoprecipitation (IP) and subcellular fractionation isolation were performed to identify the mechanism through which GZMA modulated intestinal epithelial barrier function. RESULTS: Herein, we, for the first time, demonstrated that CD8+CD39+ T cells promoted intestinal epithelial barrier function through GZMA, leading to induce Occludin(OCLN) and Zonula Occludens-1(ZO-1) expression, which was attributed to enhanced CDX2-mediated cell differentiation caused by increased glutathione peroxidase 4(GPX4)-induced ferroptosis inhibition in vivo and in vitro. Mechanically, GZMA inhibited intestinal epithelial cellular PDE4B activation to trigger cAMP/PKA/CREB cascade signaling to increase CREB nuclear translocation, initiating GPX4 transactivity. In addition, endogenous PKA interacted with CREB, and this interaction was enhanced in response to GZMA. Most importantly, administration of GZMA could alleviate DSS-induced colitis in vivo. CONCLUSION: These findings extended the novel insight of GZMA contributed to intestinal epithelial cell differentiation to improve barrier function, and enhacement of GZMA could be a promising strategy to patients with IBD.


Assuntos
Ferroptose , Doenças Inflamatórias Intestinais , Mucosa Intestinal , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/genética , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Função da Barreira Intestinal
2.
Cell Mol Biol Lett ; 28(1): 70, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626297

RESUMO

Chronic apical periodontitis is a prevalent oral disease characterized by bone loss, and its underlying mechanisms remain unclear. This study aimed to investigate the role and mechanism of the serine protease GZMA in osteoclasts during chronic apical periodontitis. To address this, we employed crRNA/Cas13d to inhibit GZMA expression and examined its impact on osteoclast behavior. Our findings revealed that GZMA plays a significant role in promoting osteoclast cell proliferation while inhibiting cell apoptosis. Additionally, the inhibition of GZMA led to a notable increase in miR-25-3p expression, which, in turn, downregulated the expression of TGF-ß. Consequently, the reduction in TGF-ß expression led to a decrease in PAR1 expression within the PARs pathway. These results suggest that GZMA might serve as a promising therapeutic target for the treatment of chronic apical periodontitis. Furthermore, our study highlights the potential of targeting GZMA using crRNA/Cas13d as a valuable approach for future therapeutic interventions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Periodontite Periapical , Humanos , Osteoclastos , Apoptose/genética , RNA Guia de Sistemas CRISPR-Cas , Fator de Crescimento Transformador beta , Periodontite Periapical/genética , Granzimas
3.
Front Endocrinol (Lausanne) ; 14: 1191768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492198

RESUMO

Background: Diabetic nephropathy (DN), which is the main cause of renal failure in end-stage renal disease, is becoming a common chronic renal disease worldwide. Mendelian randomization (MR) is a genetic tool that is widely used to minimize confounding and reverse causation when identifying the causal effects of complex traits. In this study, we conducted an integrated multiple microarray analysis and large-scale plasma proteome MR analysis to identify candidate biomarkers and evaluate the causal effects of prospective therapeutic targets in DN. Methods: Five DN gene expression datasets were selected from the Gene Expression Omnibus. The robust rank aggregation (RRA) method was used to integrate differentially expressed genes (DEGs) of glomerular samples between patients with DN and controls, followed by functional enrichment analysis. Protein quantitative trait loci were incorporated from seven different proteomic genome-wide association studies, and genetic association data on DN were obtained from FinnGen (3676 cases and 283,456 controls) for two-sample MR analysis. External validation and clinical correlation were also conducted. Results: A total of 82 DEGs (53 upregulated and 29 downregulated) were identified through RRA integrated analysis. The enriched Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes pathways of the DEGs were significantly enriched in neutrophil degranulation, neutrophil activation, proteoglycan binding, collagen binding, secretory granule lumen, gluconeogenesis, tricarboxylic acid cycle, and pentose phosphate pathways. MR analysis revealed that the genetically predicted levels of MHC class I polypeptide-related sequence B (MICB), granzyme A (GZMA), cathepsin S (CTSS), chloride intracellular channel protein 5, and ficolin-1 (FCN1) were causally associated with DN risk. Expression validation and clinical correlation analysis showed that MICB, GZMA, FCN1, and insulin-like growth factor 1 may participate in the development of DN, and carbonic anhydrase 2 and lipoprotein lipase may play protective roles in patients with DN. Conclusion: Our integrated analysis identified novel biomarkers, including MICB and GZMA, which may help further understand the complicated mechanisms of DN and identify new target pathways for intervention.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla , Proteômica , Análise da Randomização Mendeliana , Análise em Microsséries , Biomarcadores , Locos de Características Quantitativas , Diabetes Mellitus/genética
4.
Methods Mol Biol ; 2641: 147-161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074648

RESUMO

Gasdermin B (GSDMB) and gasdermin E (GSDME) are two members of the gasdermin family, which shares a conservative gasdermin-N domain capable of executing pyroptotic cell death, through perforating the plasma membrane from inside of the cell. Both GSDMB and GSDME are autoinhibited in the resting stage and require proteolytic cleavage to unleash the pore-forming activity that otherwise is masked by their C-terminal gasdermin-C domain. GSDMB is cleaved and activated by granzyme A (GZMA) from cytotoxic T lymphocytes or natural killer cells, while GSDME is activated by caspase-3 cleavage downstream of various well-known "apoptotic" stimuli. Here, we describe the methods for inducing pyroptosis through GSDMB and GSDME cleavage.


Assuntos
Gasderminas , Piroptose , Piroptose/fisiologia , Proteólise , Células Matadoras Naturais/metabolismo , Caspase 3/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36926265

RESUMO

Purpose: Granzyme A (GZMA) is a potential prognostic target for various cancer types. However, its therapeutic significance in breast cancer with immune infiltration remains controversial. We analyzed GZMA expression and its prognostic value in breast cancer with immune cell infiltration. Patients and methods: Data was obtained from patients with breast cancer registered at The Cancer Genome Atlas. A correlation was performed between GZMA expression and patient's clinicopathological features such as age, pathologic stage, metastasis stage, overall survival (OS), disease-specific survival (DSS), and progress free interval (PFI). Kaplan-Meier analyses and Cox proportional hazard regression model were used to examine the predictive significance of GZMA expression for breast cancer. The co-expression pattern of GZMA was assessed by the LinkedOmics web portal. The relationship between GZMA expression and immune cells was analyzed using the TIMER database. The correlation between GZMA and lymphocytes and immunomodulators was established with the TISIDB database. Results: There was a lower GZMA expression in breast cancer tissue than in normal tissue. Interestingly, GZMA expression was associated with age, pathologic stage, and the Tumour, Node, and Metastasis stage. Overexpression of GZMA was also associated with better OS, DSS, and PFI. Based on the Cox regression analysis, GZMA was identified as an independent favorable prognostic factor for breast cancer. Our findings demonstrated a strong association between GZMA and T-cell checkpoints (PD-1, PD-L1, and cytotoxic T lymphocyte-associated antigen (CTLA-4)) in breast cancer. Moreover, we evaluated the interactions between GZMA expression and markers of dendritic and CD8+ T cells using quantitative immunofluorescence. We discovered that increased infiltration of dendritic and CD8+ T cells was associated with GZMA expression in breast cancer. Conclusion: GZMA expression is associated with a favorable prognosis in breast cancer and is significantly correlated with immune cell infiltration. GZMA may be considered a promising therapeutic target for patients with breast cancer.

6.
Eur Arch Otorhinolaryngol ; 280(7): 3353-3364, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36920557

RESUMO

PURPOSE: Classical prognostic indicators of head and neck squamous cell carcinoma (HNSCC) can no longer meet the clinical needs of precision medicine. This study aimed to establish a radiomics model to predict Granzyme A (GZMA) expression in patients with HNSCC. METHODS: We downloaded transcriptomic data of HNSCC patients from The Cancer Genome Atlas for prognosis analysis and then used corresponding enhanced computed tomography (CT) images from The Cancer Imaging Archive for feature extraction and model construction. We explored the influence of differences in GZMA expression on signaling pathways and analyzed the potential molecular mechanism and its relationship with immune cell infiltration. Subsequently, non-invasive CT radiomics models were established to predict the expression of GZMA mRNA and evaluate the correlation with the radiomics-score (Rad-score), related genes, and prognosis. RESULTS: We found that GZMA was highly expressed in tumor tissues, and high GZMA expression was a protective factor for overall survival. The degree of B and T lymphocyte and natural killer cell infiltration was significantly correlated with GZMA expression. The receiver operating characteristic curve showed that the Relief GBM and RFE_GBM radiomics models had good predictive ability, and there were significant differences in the Rad-score distribution between the high- and low-GZMA-expression groups. CONCLUSIONS: GZMA expression can significantly affect the prognosis of patients with HNSCC. Enhanced CT radiomics models can effectively predict the expression of GZMA mRNA.


Assuntos
Neoplasias de Cabeça e Pescoço , Aprendizado de Máquina , Humanos , Granzimas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , RNA Mensageiro , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/genética , Tomografia , Prognóstico
7.
Theranostics ; 12(1): 290-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987646

RESUMO

Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe cases requiring hospitalization and critical care. The most severe presentations seem to be related with a delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close similarities to sepsis. Methods: In order to improve the understanding on the relation between host immune response and disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections (NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients according to disease severity. Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell clustering analyses revealed a more complex scenario with single NK cells expressing more than one immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in COVID19 compared to NON-COV-RTI and correlated with disease severity. Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including clinical, demographical and immunological experimental variables have allowed us to reveal specific immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and the risk of death.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Linfócitos T CD8-Positivos/virologia , COVID-19/mortalidade , Estudos de Casos e Controles , Quimiocinas/sangue , Citocinas/sangue , Feminino , Hospitalização , Humanos , Células Matadoras Naturais/virologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Monócitos/virologia , Estudos Prospectivos , Infecções Respiratórias/sangue , Infecções Respiratórias/imunologia , Índice de Gravidade de Doença
8.
Front Immunol ; 12: 712678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413857

RESUMO

Mycobacterium tuberculosis (Mtb), the pathological agent that causes tuberculosis (TB) is the number one infectious killer worldwide with one fourth of the world's population currently infected. Data indicate that γ9δ2 T cells secrete Granzyme A (GzmA) in the extracellular space triggering the infected monocyte to inhibit growth of intracellular mycobacteria. Accordingly, deletion of GZMA from γ9δ2 T cells reverses their inhibitory capacity. Through mechanistic studies, GzmA's action was investigated in monocytes from human PBMCs. The use of recombinant human GzmA expressed in a mammalian system induced inhibition of intracellular mycobacteria to the same degree as previous human native protein findings. Our data indicate that: 1) GzmA is internalized within mycobacteria-infected cells, suggesting that GzmA uptake could prevent infection and 2) that the active site is not required to inhibit intracellular replication. Global proteomic analysis demonstrated that the ER stress response and ATP producing proteins were upregulated after GzmA treatment, and these proteins abundancies were confirmed by examining their expression in an independent set of patient samples. Our data suggest that immunotherapeutic host interventions of these pathways may contribute to better control of the current TB epidemic.


Assuntos
Trifosfato de Adenosina/biossíntese , Estresse do Retículo Endoplasmático/imunologia , Granzimas/fisiologia , Monócitos/microbiologia , Mycobacterium bovis/fisiologia , Subpopulações de Linfócitos T/imunologia , Western Blotting , Divisão Celular , Granzimas/biossíntese , Granzimas/genética , Granzimas/farmacologia , Células HEK293 , Humanos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Proteoma , Receptores de Antígenos de Linfócitos T gama-delta/análise , Proteínas Recombinantes/farmacologia , Subpopulações de Linfócitos T/metabolismo , Eletroforese em Gel Diferencial Bidimensional
9.
Cell ; 184(12): 3178-3191.e18, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34022140

RESUMO

Gasdermin B (GSDMB) belongs to a large family of pore-forming cytolysins that execute inflammatory cell death programs. While genetic studies have linked GSDMB polymorphisms to human disease, its function in the immunological response to pathogens remains poorly understood. Here, we report a dynamic host-pathogen conflict between GSDMB and the IpaH7.8 effector protein secreted by enteroinvasive Shigella flexneri. We show that IpaH7.8 ubiquitinates and targets GSDMB for 26S proteasome destruction. This virulence strategy protects Shigella from the bacteriocidic activity of natural killer cells by suppressing granzyme-A-mediated activation of GSDMB. In contrast to the canonical function of most gasdermin family members, GSDMB does not inhibit Shigella by lysing host cells. Rather, it exhibits direct microbiocidal activity through recognition of phospholipids found on Gram-negative bacterial membranes. These findings place GSDMB as a central executioner of intracellular bacterial killing and reveal a mechanism employed by pathogens to counteract this host defense system.


Assuntos
Biomarcadores Tumorais/metabolismo , Interações Hospedeiro-Patógeno , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Shigella flexneri/fisiologia , Ubiquitinação , Animais , Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Granzimas/metabolismo , Humanos , Lipídeo A/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Viabilidade Microbiana , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Especificidade por Substrato
10.
Cell Microbiol ; 22(12): e13255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32830401

RESUMO

Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumours that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced leukocyte transformation. Dataset comparisons highlighted a small set of genes associated with Theileria-transformed leukocyte dissemination. The roles of Granzyme A (GZMA) and RAS guanyl-releasing protein 1 (RASGRP1) were verified by CRISPR/Cas9-mediated knockdown. Knocking down expression of GZMA and RASGRP1 in attenuated macrophages led to a regain in their dissemination in Rag2/γC mice confirming their role as dissemination suppressors in vivo. We further evaluated the roles of GZMA and RASGRP1 in human B lymphomas by comparing the transcriptome of 934 human cancer cell lines to that of Theileria-transformed bovine host cells. We confirmed dampened dissemination potential of human B lymphomas that overexpress GZMA and RASGRP1. Our results provide evidence that GZMA and RASGRP1 have a novel tumour suppressor function in both T. annulata-infected bovine host leukocytes and in human B lymphomas.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor/fisiologia , Granzimas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Leucócitos/parasitologia , Linfoma de Células B/genética , Macrófagos/parasitologia , Theileria annulata/genética , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Linfoma de Células B/parasitologia , Camundongos , Theileria annulata/patogenicidade
11.
Anticancer Res ; 38(12): 6631-6638, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30504371

RESUMO

BACKGROUND/AIM: The cytolytic activity (CYT) score is a new index of cancer immunity calculated from the mRNA expression levels of GZMA and PRF1. We assessed the clinical significance of the CYT score in HCC. MATERIALS AND METHODS: The calculated CYT scores of peripheral blood cells (GSE24759), cell lines (CCLE) and HCC tissues (TCGA, GSE14520 and Kyushu cohorts) were assessed. Then, immunohistochemical analysis (IHC) of GZMA and PRF1 was performed. RESULTS: The CYT scores of HCC tissues were lower than those of non-cancerous tissues. The 5-year recurrence-free survival of patients with low CYT scores was significantly shorter than that of patients with high CYT scores. Multivariate analysis indicated that the CYT score was an independent prognostic factor for RFS in TCGA and GSE14520 cohorts. CONCLUSION: CYT score could be a useful prognostic biomarker in HCC, possibly through reflecting the host immune status.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/imunologia , Citotoxicidade Imunológica/fisiologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/imunologia , Carcinoma Hepatocelular/patologia , Estudos de Coortes , Feminino , Humanos , Imunidade Ativa , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Projetos de Pesquisa , Células Tumorais Cultivadas
12.
Oncol Lett ; 16(2): 2757-2763, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30013671

RESUMO

Overstimulation of pro-proliferative pathways and high level expression of pro-proliferative transcription factors (TFs) can lead to apoptosis. This is likely due to TF binding sites for pro-proliferative TFs common to pro-proliferative and pro-apoptosis-effector genes. Certain clinical datasets have indicated that molecular markers associated with higher proliferation rates lead to improved outcomes for patients with cancer. These observations have been extensively assessed on a general basis, however there has been little work dissecting feed-forward apoptosis signaling pathways that may represent specific distinctions between a pro-proliferative mechanism and a pro-apoptotic mechanism in samples from patients with cancer. Using The Cancer Genome Atlas datasets and bioinformatic approaches, the present study reports that higher FOS expression levels, along with higher FOS target apoptosis-effector gene expression, is associated with an increased survival, while higher POU2F1 expression is associated with a reduced survival (average difference of 25.9 months survival). In summary, in the datasets examined FOS represents an apoptosis-driver and high POU2F1 represents a driver mechanism for cancer development.

13.
Tuberculosis (Edinb) ; 95(4): 421-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025597

RESUMO

The goal of this study was to identify a host gene signature that can distinguish tuberculosis (TB) from other pulmonary diseases (OPD). We conducted real-time PCR on whole blood samples from patients in Brazil. TB and OPD patients (asthma and non-TB pneumonia) differentially expressed granzyme A (GZMA), guanylate binding protein 5 (GBP5) and Fc gamma receptor 1A (CD64). Receiver operating characteristic, tree classification and random forest analyses were applied to evaluate the discriminatory power of the three genes and find the gene panel most predictive of patients' disease classification. Tree classification produced a model based on GBP5 and CD64 expression. In random forest analysis, the combination of the three genes provided a robust biosignature to distinguish TB from OPD with 95% specificity and 93% sensitivity. Our results suggest that GBP5 and CD64 in tandem may be the most predictive combination. However, GZMA contribution to the prediction model requires further investigation. Regardless, these three genes show promise as a rapid diagnostic marker separating TB from OPD.


Assuntos
Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica/métodos , Granzimas/genética , Mycobacterium tuberculosis/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real , Receptores de IgG/genética , Tuberculose Pulmonar/diagnóstico , Adolescente , Adulto , Idoso , Área Sob a Curva , Asma/diagnóstico , Asma/genética , Brasil , Árvores de Decisões , Diagnóstico Diferencial , Feminino , Marcadores Genéticos , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico , Pneumonia/genética , Valor Preditivo dos Testes , Curva ROC , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , Adulto Jovem
14.
Dev Comp Immunol ; 41(4): 715-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23948147

RESUMO

Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting.


Assuntos
Vírus da Bronquite Infecciosa/imunologia , Tecido Linfoide/imunologia , Doenças das Aves Domésticas/imunologia , Vacinas Virais/imunologia , Vacinas Virais/farmacologia , Animais , Galinhas , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Imunidade Humoral/genética , Imunidade Humoral/imunologia , Interferon gama/genética , Interferon gama/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Baço/imunologia , Linfócitos T/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA