Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cereb Cortex ; 33(13): 8773-8782, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37163750

RESUMO

Numerous studies have investigated low-frequency (theta-band) and high-frequency (gamma-band) neural activities that are phase-locked to temporal structures, including the temporal envelope and fine structure (TFS) of speech signals. Nonetheless, the neural mechanisms underlying the interaction between envelope and TFS processing remain elusive. Here we examined high gamma-band activities and their low-frequency amplitude modulations while listening to monotone speech (MS) with a fundamental frequency (F0) of 80 Hz and non-speech sounds with similar temporal characteristics to MS, namely an amplitude-modulated click train (AMC). Additionally, we utilized noise-vocoded speech (NVS) to evaluate the impact of eliminating the TFS from MS on the high gamma-band activity. We observed discernible high gamma-band activity at the same frequency as F0 of MS and the train frequency of AMC (80 Hz). Furthermore, source localization analysis revealed that the high gamma-band activities exhibited left hemisphere dominance in both MS and AMC conditions. Finally, high gamma-band activities exhibited amplitude-modulation at the same rate as the stimulus envelope of MS and AMC (5 Hz), though such modulation was not observed in NVS. Our findings indicate that the high gamma-band activity in the left hemisphere is pivotal in the interaction of envelope and TFS information processing, regardless of the nature of the stimulus being speech or non-speech.


Assuntos
Percepção da Fala , Percepção Auditiva , Ruído , Fala , Som , Estimulação Acústica
2.
Cogn Neurodyn ; 17(2): 399-410, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37007205

RESUMO

Gamma-band activity was thought to be related to several high-level cognitive functions, and Gamma ENtrainment Using Sensory stimulation (GENUS, 40 Hz sensory combined visual and auditory stimulation) was found to have positive effects on patients with Alzheimer's dementia. Other studies found, however, that neural responses induced by single 40 Hz auditory stimulation were relatively weak. To address this, we included several new experimental conditions (sounds with sinusoidal or square wave; open-eye and closed-eye state) combined with auditory stimulation with the aim of investigating which of these induces a stronger 40 Hz neural response. We found that when participant´s eyes were closed, sounds with 40 Hz sinusoidal wave induced the strongest 40 Hz neural response in the prefrontal region compared to responses in other conditions. More interestingly, we also found there is a suppression of alpha rhythms with 40 Hz square wave sounds. Our results provide potential new methods when using auditory entrainment, which may result in a better effect in preventing cerebral atrophy and improving cognitive performance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09834-x.

3.
Brain Stimul ; 15(5): 1077-1087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35952963

RESUMO

BACKGROUND: The exact architecture of the human auditory cortex remains a subject of debate, with discrepancies between functional and microstructural studies. In a hierarchical framework for sensory perception, simple sound perception is expected to take place in the primary auditory cortex, while the processing of complex, or more integrated perceptions is proposed to rely on associative and higher-order cortices. OBJECTIVES: We hypothesize that auditory symptoms induced by direct electrical stimulation (DES) offer a window into the architecture of the brain networks involved in auditory hallucinations and illusions. The intracranial recordings of these evoked perceptions of varying levels of integration provide the evidence to discuss the theoretical model. METHODS: We analyzed SEEG recordings from 50 epileptic patients presenting auditory symptoms induced by DES. First, using the Juelich cytoarchitectonic parcellation, we quantified which regions induced auditory symptoms when stimulated (ROI approach). Then, for each evoked auditory symptom type (illusion or hallucination), we mapped the cortical networks showing concurrent high-frequency activity modulation (HFA approach). RESULTS: Although on average, illusions were found more laterally and hallucinations more posteromedially in the temporal lobe, both perceptions were elicited in all levels of the sensory hierarchy, with mixed responses found in the overlap. The spatial range was larger for illusions, both in the ROI and HFA approaches. The limbic system was specific to the hallucinations network, and the inferior parietal lobule was specific to the illusions network. DISCUSSION: Our results confirm a network-based organization underlying conscious sound perception, for both simple and complex components. While symptom localization is interesting from an epilepsy semiology perspective, the hallucination-specific modulation of the limbic system is particularly relevant to tinnitus and schizophrenia.


Assuntos
Córtex Auditivo , Epilepsia , Ilusões , Estimulação Acústica , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Estimulação Elétrica , Eletroencefalografia , Alucinações/etiologia , Humanos , Ilusões/fisiologia
4.
Front Syst Neurosci ; 16: 941534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910003

RESUMO

Awareness or consciousness in the context of stimulus perception can directly be assessed in well controlled test situations with humans via the persons' reports about their subjective experiences with the stimuli. Since we have no direct access to subjective experiences in animals, their possible awareness or consciousness in stimulus perception tasks has often been inferred from behavior and cognitive abilities previously observed in aware and conscious humans. Here, we analyze published human data primarily on event-related potentials and brain-wave generation during perception and responding to sensory stimuli and extract neural markers (mainly latencies of evoked-potential peaks and of gamma-wave occurrence) indicating that a person became aware or conscious of the perceived stimulus. These neural correlates of consciousness were then applied to sets of corresponding data from various animals including several species of mammals, and one species each of birds, fish, cephalopods, and insects. We found that the neural markers from studies in humans could also successfully be applied to the mammal and bird data suggesting that species in these animal groups can become subjectively aware of and conscious about perceived stimuli. Fish, cephalopod and insect data remained inconclusive. In an evolutionary perspective we have to consider that both awareness of and consciousness about perceived stimuli appear as evolved, attention-dependent options added to the ongoing neural activities of stimulus processing and action generation. Since gamma-wave generation for functional coupling of brain areas in aware/conscious states is energetically highly cost-intensive, it remains to be shown which animal species under which conditions of lifestyle and ecological niche may achieve significant advantages in reproductive fitness by drawing upon these options. Hence, we started our discussion about awareness and consciousness in animals with the question in how far these expressions of brain activity are necessary attributes for perceiving stimuli and responding in an adaptive way.

5.
Front Comput Neurosci ; 16: 889235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769530

RESUMO

The brain produces rhythms in a variety of frequency bands. Some are likely by-products of neuronal processes; others are thought to be top-down. Produced entirely naturally, these rhythms have clearly recognizable beats, but they are very far from periodic in the sense of mathematics. The signals are broad-band, episodic, wandering in amplitude and frequency; the rhythm comes and goes, degrading and regenerating. Gamma rhythms, in particular, have been studied by many authors in computational neuroscience, using reduced models as well as networks of hundreds to thousands of integrate-and-fire neurons. All of these models captured successfully the oscillatory nature of gamma rhythms, but the irregular character of gamma in reduced models has not been investigated thoroughly. In this article, we tackle the mathematical question of whether signals with the properties of brain rhythms can be generated from low dimensional dynamical systems. We found that while adding white noise to single periodic cycles can to some degree simulate gamma dynamics, such models tend to be limited in their ability to capture the range of behaviors observed. Using an ODE with two variables inspired by the FitzHugh-Nagumo and Leslie-Gower models, with stochastically varying coefficients designed to control independently amplitude, frequency, and degree of degeneracy, we were able to replicate the qualitative characteristics of natural brain rhythms. To demonstrate model versatility, we simulate the power spectral densities of gamma rhythms in various brain states recorded in experiments.

6.
Front Hum Neurosci ; 16: 868549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741785

RESUMO

Emotional cues draw attention, thereby enabling enhanced processing. Electrophysiological brain research in humans suggests that increased gamma band activity and decreased alpha band activity over posterior brain areas is associated with the allocation of attention. However, emotional events can alternate quickly, like rapidly changing news items and it remains unknown whether the modulation of brain oscillations happens in a stimulus induced manner, changing with each individual stimulus, or whether the events lead to prolonged, state-like changes. To investigate this, we measured the electroencephalogram (EEG) during a passive viewing task (N = 32) while emotional pictures International Affective Picture System (IAPS) were presented in blocks containing either pleasant and neutral or unpleasant and neutral pictures. As predicted, we found decreased alpha and increased gamma power over posterior areas in response to unpleasant compared to pleasant pictures (and also compared to neutral pictures for gamma power). When testing the neutral pictures of the unpleasant and pleasant block against each other, we found no significant difference, which speaks to a stimulus induced effect of alpha and gamma power rather than a state effect. In addition, the inter-trial interval (ITI) between the pictures did not differ between the unpleasant and pleasant block either, corroborating this conclusion. Since emotional pictures can at the same time elicit a freezing-like response and we were interested in whether this freezing-like response co-occurs with enhanced attention, we also collected postural sway data. However, within this EEG-setup, postural analyses indicated no stimulus-related effects nor a correlation with EEG-data. We interpret the alpha and gamma band results as reflecting event-related attention toward unpleasant compared to pleasant (and neutral) pictures and discuss this finding in light of previous EEG research and in combination with behavioral research on threat-induced reductions in body sway (freezing-like response).

7.
Neurosci Biobehav Rev ; 124: 308-323, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581223

RESUMO

NMDA-R hypofunctioninig is a core pathophysiological mechanism in schizophrenia. However, it is unclear whether the physiological changes observed following NMDA-R antagonist administration are consistent with gamma-band alterations in schizophrenia. This systematic review examined the effects of NMDA-R antagonists on the amplitude of spontaneous gamma-band activity and functional connectivity obtained from preclinical (n = 24) and human (n = 9) studies and compared these data to resting-state EEG/MEG-measurements in schizophrenia patients (n = 27). Overall, the majority of preclinical and human studies observed increased gamma-band power following acute administration of NMDA-R antagonists. However, the direction of gamma-band power alterations in schizophrenia were inconsistent, which involved upregulation (n = 10), decreases (n = 7), and no changes (n = 8) in spectral power. Five out of 6 preclinical studies observed increased connectivity, while in healthy controls receiving Ketamine and in schizophrenia patients the direction of connectivity results was also inconsistent. Accordingly, the effects of NMDA-R hypofunctioning on gamma-band oscillations are different than pathophysiological signatures observed in schizophrenia. The implications of these findings for current E/I balance models of schizophrenia are discussed.


Assuntos
N-Metilaspartato , Esquizofrenia , Antagonistas de Aminoácidos Excitatórios , Ritmo Gama , Humanos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico
8.
Front Hum Neurosci ; 15: 787229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975438

RESUMO

Prevailing theories of the neural basis of at least a subset of individuals with autism spectrum disorder (ASD) include an imbalance of excitatory and inhibitory neurotransmission. These circuitry imbalances are commonly probed in adults using auditory steady-state responses (ASSR, driven at 40 Hz) to elicit coherent electrophysiological responses (EEG/MEG) from intact circuitry. Challenges to the ASSR methodology occur during development, where the optimal ASSR driving frequency may be unknown. An alternative approach (more agnostic to driving frequency) is the amplitude-modulated (AM) sweep in which the amplitude of a tone (with carrier frequency 500 Hz) is modulated as a sweep from 10 to 100 Hz over the course of ∼15 s. Phase synchrony of evoked responses, measured via intra-trial coherence, is recorded (by EEG or MEG) as a function of frequency. We applied such AM sweep stimuli bilaterally to 40 typically developing and 80 children with ASD, aged 6-18 years. Diagnoses were confirmed by DSM-5 criteria as well as autism diagnostic observation schedule (ADOS) observational assessment. Stimuli were presented binaurally during MEG recording and consisted of 20 AM swept stimuli (500 Hz carrier; sweep 10-100 Hz up and down) with a duration of ∼30 s each. Peak intra-trial coherence values and peak response frequencies of source modeled responses (auditory cortex) were examined. First, the phase synchrony or inter-trial coherence (ITC) of the ASSR is diminished in ASD; second, hemispheric bias in the ASSR, observed in typical development (TD), is maintained in ASD, and third, that the frequency at which the peak response is obtained varies on an individual basis, in part dependent on age, and with altered developmental trajectories in ASD vs. TD. Finally, there appears an association between auditory steady-state phase synchrony (taken as a proxy of neuronal circuitry integrity) and clinical assessment of language ability/impairment. We concluded that (1) the AM sweep stimulus provides a mechanism for probing ASSR in an unbiased fashion, during developmental maturation of peak response frequency, (2) peak frequencies vary, in part due to developmental age, and importantly, (3) ITC at this peak frequency is diminished in ASD, with the degree of ITC disturbance related to clinically assessed language impairment.

9.
Neuroimage ; 224: 117452, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059050

RESUMO

Sleep spindles are crucial to memory consolidation. Cortical gamma oscillations (30-100 Hz) are considered to reflect processing of memory in local cortical networks. The temporal and regulatory relationship between spindles and gamma activity might therefore provide clues into how sleep strengthens cortical memory representations. Here, combining EEG with MEG recordings during sleep in healthy humans (n = 12), we investigated the temporal relationships of cortical gamma band activity, always measured by MEG, during fast (12-16 Hz) and slow (8-12 Hz) sleep spindles detected in the EEG or MEG. Time-frequency distributions did not show a consistent coupling of gamma to the spindle oscillation, although activity in the low gamma (30-40 Hz) and neighboring beta range (<30 Hz) was generally increased during spindles. However, more fine-grained analyses of cross-frequency interactions revealed that both low and high gamma power (30-100 Hz) was coupled to the phase of slow and fast EEG spindles, importantly, with this coupling at a fixed phase only for the oscillations within an individual spindle, but with variable phase across spindles. We did not observe any coupling of gamma activity for spindles detected solely in the MEG and not in parallel EEG recordings, raising the possibility that these are more local spindles of different quality. Similar to fast spindle activity, low gamma band power followed a ~0.025 Hz infraslow rhythm during sleep whose frequency, however, was significantly faster than that of spindle activity. Our findings suggest a general function of fast and slow spindles that by spanning larger cortical networks might serve to synchronize gamma band activity occurring in more local but distributed networks. Thereby, spindles might help linking local memory processing between distributed networks.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia , Ritmo Gama/fisiologia , Magnetoencefalografia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Masculino , Consolidação da Memória/fisiologia , Polissonografia , Sono/fisiologia , Fases do Sono/fisiologia , Adulto Jovem
10.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168747

RESUMO

The purpose of this paper is to record and analyze induced gamma-band activity (GBA) (30-60 Hz) in cerebral motor areas during imaginary movement and to compare it quantitatively with activity recorded in the same areas during actual movement using a simplified electroencephalogram (EEG). Brain activity (basal activity, imaginary motor task and actual motor task) is obtained from 12 healthy volunteer subjects using an EEG (Cz channel). GBA is analyzed using the mean power spectral density (PSD) value. Event-related synchronization (ERS) is calculated from the PSD values of the basal GBA (GBAb), the GBA of the imaginary movement (GBAim) and the GBA of the actual movement (GBAac). The mean GBAim and GBAac values for the right and left hands are significantly higher than the GBAb value (p = 0.007). No significant difference is detected between mean GBA values during the imaginary and actual movement (p = 0.242). The mean ERS values for the imaginary movement (ERSimM (%) = 23.52) and for the actual movement (ERSacM = 27.47) do not present any significant difference (p = 0.117). We demonstrated that ERS could provide a useful way of indirectly checking the function of neuronal motor circuits activated by voluntary movement, both imaginary and actual. These results, as a proof of concept, could be applied to physiology studies, brain-computer interfaces, and diagnosis of cognitive or motor pathologies.


Assuntos
Sincronização de Fases em Eletroencefalografia/fisiologia , Ritmo Gama/fisiologia , Imaginação/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Adulto , Encéfalo/fisiologia , Eletroencefalografia , Feminino , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
11.
Front Hum Neurosci ; 12: 389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337865

RESUMO

Visual sensory processing of external events decreases when attention is internally oriented toward self-generated thoughts and also differences in attenuation have been shown depending on the thought's modality (visual or auditory thought). The present study aims to assess whether such modulations occurs also in auditory modality. In order to investigate auditory sensory modulations, we compared a passive listening condition with two conditions in which attention was internally oriented as a part of a task; a visual imagery condition and an inner speech condition. EEG signal was recorded from 20 participants while they were exposed to auditory probes during these three conditions. ERP results showed no differences in N1 auditory response comparing the three conditions reflecting maintenance of evoked electrophysiological reactivity for auditory modality. Nonetheless, time-frequency analyses showed that gamma and theta power in frontal regions was higher for passive listening than for internal attentional conditions. Specifically, the reduced amplitude in early gamma and theta band during both inward attention conditions may reflect reduced conscious attention of the current auditory stimulation. Finally, different pattern of beta band activity was observed only during visual imagery which can reflect cross-modal integration between visual and auditory modalities and it can distinguish this form of mental imagery from the inner speech. Taken together, these results showed that attentional suppression mechanisms in auditory modality are different from visual modality during mental imagery processes. Our results about oscillatory activity also confirm the important role of gamma oscillations in auditory processing and the differential neural dynamics underlying the visual and auditory/verbal imagery.

12.
Elife ; 72018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30260771

RESUMO

We examined alterations in E/I-balance in schizophrenia (ScZ) through measurements of resting-state gamma-band activity in participants meeting clinical high-risk (CHR) criteria (n = 88), 21 first episode (FEP) patients and 34 chronic ScZ-patients. Furthermore, MRS-data were obtained in CHR-participants and matched controls. Magnetoencephalographic (MEG) resting-state activity was examined at source level and MEG-data were correlated with neuropsychological scores and clinical symptoms. CHR-participants were characterized by increased 64-90 Hz power. In contrast, FEP- and ScZ-patients showed aberrant spectral power at both low- and high gamma-band frequencies. MRS-data showed a shift in E/I-balance toward increased excitation in CHR-participants, which correlated with increased occipital gamma-band power. Finally, neuropsychological deficits and clinical symptoms in FEP and ScZ-patients were correlated with reduced gamma band-activity, while elevated psychotic symptoms in the CHR group showed the opposite relationship. The current study suggests that resting-state gamma-band power and altered Glx/GABA ratio indicate changes in E/I-balance parameters across illness stages in ScZ.


Assuntos
Ritmo Gama/fisiologia , Inibição Neural/fisiologia , Descanso/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Fatores de Risco , Índice de Gravidade de Doença , Adulto Jovem
13.
J Neurodev Disord ; 10(1): 27, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165814

RESUMO

BACKGROUND: Face processing has been found to be impaired in autism spectrum disorders (ASD). One hypothesis is that individuals with ASD engage in piecemeal compared to holistic face processing strategies. To investigate the role of possible impairments in holistic face processing in individuals with autism, the current study investigated behavioral and electroencephalography (EEG) correlates of face processing (P1/N170 and gamma-band activity) in adolescents with ASD and sex-, age-, and IQ-matched neurotypical controls. METHODS: Participants were presented with upright and inverted Mooney stimuli; black and white low information faces that are only perceived as faces when processed holistically. Participants indicated behaviorally the detection of a face. EEG was collected time-locked to the presentation of the stimuli. RESULTS: Adolescents with ASD perceived Mooney stimuli as faces suggesting ability to use holistic processing but displayed a lower face detection rate and slower response times. ERP components suggest slowed temporal processing of Mooney stimuli in the ASD compared to control group for P1 latency but no differences between groups for P1 amplitude and at the N170. Increases in gamma-band activity was similar during the perception of the Mooney images by group, but the ASD group showed prolonged temporal elevation in activity. CONCLUSION: Overall, our results suggest that adolescents with ASD were able to utilize holistic processing to perceive a face within the Mooney stimuli. Delays in early processing, marked by the P1, and elongated elevation in gamma activity indicate that the neural systems supporting holistic processing are slightly altered suggesting a less automatic and less efficient facial processing system. TRIAL REGISTRATION: Non-applicable.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Encéfalo/fisiopatologia , Reconhecimento Facial/fisiologia , Adolescente , Criança , Potenciais Evocados , Feminino , Ritmo Gama , Humanos , Masculino , Tempo de Reação
14.
Hum Brain Mapp ; 39(2): 709-721, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094783

RESUMO

Intracranial recordings captured from subdural electrodes in patients with drug resistant epilepsy offer clinicians and researchers a powerful tool for examining neural activity in the human brain with high spatial and temporal precision. There are two major challenges, however, to interpreting these signals both within and across individuals. Anatomical distortions following implantation make accurately identifying the electrode locations difficult. In addition, because each implant involves a unique configuration, comparing neural activity across individuals in a standardized manner has been limited to broad anatomical regions such as cortical lobes or gyri. We address these challenges here by introducing a semi-automated method for localizing subdural electrode contacts to the unique surface anatomy of each individual, and by using a surface-based grid of regions of interest (ROIs) to aggregate electrode data from similar anatomical locations across individuals. Our localization algorithm, which uses only a postoperative CT and preoperative MRI, builds upon previous spring-based optimization approaches by introducing manually identified anchor points directly on the brain surface to constrain the final electrode locations. This algorithm yields an accuracy of 2 mm. Our surface-based ROI approach involves choosing a flexible number of ROIs with different spatial resolutions. ROIs are registered across individuals to represent identical anatomical locations while accounting for the unique curvature of each brain surface. This ROI based approach therefore enables group level statistical testing from spatially precise anatomical regions.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Eletrocorticografia/métodos , Adulto , Estudos de Coortes , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrodos Implantados , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Reconhecimento Automatizado de Padrão , Tomografia Computadorizada por Raios X
15.
Basic Clin Neurosci ; 8(5): 419-426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167729

RESUMO

INTRODUCTION: Children with attention-deficit/hyperactivity disorder (ADHD) have some impairment in emotional relationship which can be due to problems in emotional processing. The present study investigated neural correlates of early stages of emotional face processing in this group compared with typically developing children using the Gamma Band Activity (GBA). METHODS: A total of 19 children diagnosed with ADHD (Combined type) based on DSM-IV classification were compared with 19 typically developing children matched on age, gender, and IQ. The participants performed an emotional face recognition while their brain activities were recorded using an event-related oscillation procedure. RESULTS: The results indicated that ADHD children compared to normal group showed a significant reduction in the gamma band activity, which is thought to reflect early perceptual emotion discrimination for happy and angry emotions (P<0.05). CONCLUSION: The present study supports the notion that individuals with ADHD have some impairments in early stage of emotion processing which can cause their misinterpretation of emotional faces.

16.
Alcohol Clin Exp Res ; 41(12): 2173-2184, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28944474

RESUMO

BACKGROUND: Children with fetal alcohol spectrum disorder (FASD), who were exposed to alcohol in utero, display a broad range of sensory, cognitive, and behavioral deficits, which are broadly theorized to be rooted in altered brain function and structure. Based on the role of neural oscillations in multisensory integration from past studies, we hypothesized that adolescents with FASD would show a decrease in oscillatory power during event-related gamma oscillatory activity (30 to 100 Hz), when compared to typically developing healthy controls (HC), and that such decrease in oscillatory power would predict behavioral performance. METHODS: We measured sensory neurophysiology using magnetoencephalography (MEG) during passive auditory, somatosensory, and multisensory (synchronous) stimulation in 19 adolescents (12 to 21 years) with FASD and 23 age- and gender-matched HC. We employed a cross-hemisphere multisensory paradigm to assess interhemispheric connectivity deficits in children with FASD. RESULTS: Time-frequency analysis of MEG data revealed a significant decrease in gamma oscillatory power for both unisensory and multisensory conditions in the FASD group relative to HC, based on permutation testing of significant group differences. Greater beta oscillatory power (15 to 30 Hz) was also noted in the FASD group compared to HC in both unisensory and multisensory conditions. Regression analysis revealed greater predictive power of multisensory oscillations from unisensory oscillations in the FASD group compared to the HC group. Furthermore, multisensory oscillatory power, for both groups, predicted performance on the Intra-Extradimensional Set Shift Task and the Cambridge Gambling Task. CONCLUSIONS: Altered oscillatory power in the FASD group may reflect a restricted ability to process somatosensory and multisensory stimuli during day-to-day interactions. These alterations in neural oscillations may be associated with the neurobehavioral deficits experienced by adolescents with FASD and may carry over to adulthood.


Assuntos
Percepção Auditiva/fisiologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Ritmo Gama/fisiologia , Percepção do Tato/fisiologia , Estimulação Acústica , Adolescente , Estudos de Casos e Controles , Criança , Feminino , Humanos , Magnetoencefalografia , Masculino , Adulto Jovem
17.
Eur Neuropsychopharmacol ; 27(10): 1042-1053, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739134

RESUMO

Proceeding from a biophysical network model, the present study hypothesized that glutamatergic neurotransmission across the NMDA receptor (NMDAR) plays a key role in visual perception and its modulation by acute stress. To investigate these hypotheses, behavioral and electroencephalographic (EEG) indicators of partial report task processing were assessed in twenty-four healthy young men who randomly received a non-competitive NMDAR antagonist (0.8 mg/kg dextromethorphan, DXM) or a placebo, and concurrently accomplished a stress-induction (MAST) or control protocol in three consecutive sessions. Saliva samples served to quantify cortisol responses to the MAST, whereas a passive auditory oddball paradigm was implemented to verify the impact of DXM on the EEG-derived mismatch negativity component (MMN). DXM administration significantly increased MMN amplitudes but not salivary cortisol concentrations. By contrast, concurrent MAST exposure significantly reduced MMN latencies but also increased cortisol concentrations. With regard to EEG indicators, DXM administration reduced visually "evoked" (30Hz to 50Hz) and "induced" occipital gamma-band activity (70Hz to 100Hz), which was partly compensated by additional MAST exposure. However, neither the interventions nor EEG activity were significantly associated with behavioral partial report sensitivities. In summary, the present data suggest that glutamatergic neurotransmission across the NMDAR is only one among many determinants of intact visual perception. Accordingly, therapeutic doses of DXM and their inhibitory modulation by stress probably yield more pronounced electroencephalographic as compared with behavioural effects.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dextrometorfano/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo , Afeto/efeitos dos fármacos , Afeto/fisiologia , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Método Duplo-Cego , Eletroencefalografia , Potenciais Evocados Visuais/efeitos dos fármacos , Potenciais Evocados Visuais/fisiologia , Humanos , Hidrocortisona/metabolismo , Masculino , Testes Neuropsicológicos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Saliva/efeitos dos fármacos , Saliva/metabolismo , Estresse Psicológico/tratamento farmacológico , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia
18.
Neuroimage Clin ; 15: 541-558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652968

RESUMO

Chronic subjective tinnitus is an auditory phantom phenomenon characterized by abnormal neuronal synchrony in the central auditory system. As shown computationally, acoustic coordinated reset (CR) neuromodulation causes a long-lasting desynchronization of pathological synchrony by downregulating abnormal synaptic connectivity. In a previous proof of concept study acoustic CR neuromodulation, employing stimulation tone patterns tailored to the dominant tinnitus frequency, was compared to noisy CR-like stimulation, a CR version significantly detuned by sparing the tinnitus-related pitch range and including substantial random variability of the tone spacing on the frequency axis. Both stimulation protocols caused an acute relief as measured with visual analogue scale scores for tinnitus loudness (VAS-L) and annoyance (VAS-A) in the stimulation-ON condition (i.e. 15 min after stimulation onset), but only acoustic CR neuromodulation had sustained long-lasting therapeutic effects after 12 weeks of treatment as assessed with VAS-L, VAS-A scores and a tinnitus questionnaire (TQ) in the stimulation-OFF condition (i.e. with patients being off stimulation for at least 2.5 h). To understand the source of the long-lasting therapeutic effects, we here study whether acoustic CR neuromodulation has different electrophysiological effects on oscillatory brain activity as compared to noisy CR-like stimulation under stimulation-ON conditions and immediately after cessation of stimulation. To this end, we used a single-blind, single application, cross over design in 18 patients with chronic tonal subjective tinnitus and administered three different 16-minute stimulation protocols: acoustic CR neuromodulation, noisy CR-like stimulation and low frequency range (LFR) stimulation, a CR type stimulation with deliberately detuned pitch and repetition rate of stimulation tones, as control stimulation. We measured VAS-L and VAS-A scores together with spontaneous EEG activity pre-, during- and post-stimulation. Under stimulation-ON conditions acoustic CR neuromodulation and noisy CR-like stimulation had similar effects: a reduction of VAS-L and VAS-A scores together with a decrease of auditory delta power and an increase of auditory alpha and gamma power, without significant differences. In contrast, LFR stimulation had significantly weaker EEG effects and no significant clinical effects under stimulation-ON conditions. The distinguishing feature between acoustic CR neuromodulation and noisy CR-like stimulation were the electrophysiological after-effects. Acoustic CR neuromodulation caused the longest significant reduction of delta and gamma and increase of alpha power in the auditory cortex region. Noisy CR-like stimulation had weaker and LFR stimulation hardly any electrophysiological after-effects. This qualitative difference further supports the assertion that long-term effects of acoustic CR neuromodulation on tinnitus are mediated by a specific disruption of synchronous neural activity. Furthermore, our results indicate that acute electrophysiological after-effects might serve as a marker to further improve desynchronizing sound stimulation.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiopatologia , Ondas Encefálicas/fisiologia , Eletroencefalografia/métodos , Zumbido/diagnóstico , Zumbido/fisiopatologia , Adulto , Doença Crônica , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego
19.
Sensors (Basel) ; 17(5)2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28468250

RESUMO

The purpose of this paper is to determine whether gamma-band activity detection is improved when a filter, based on empirical mode decomposition (EMD), is added to the pre-processing block of single-channel electroencephalography (EEG) signals. EMD decomposes the original signal into a finite number of intrinsic mode functions (IMFs). EEGs from 25 control subjects were registered in basal and motor activity (hand movements) using only one EEG channel. Over the basic signal, IMF signals are computed. Gamma-band activity is computed using power spectrum density in the 30-60 Hz range. Event-related synchronization (ERS) was defined as the ratio of motor and basal activity. To evaluate the performance of the new EMD based method, ERS was computed from the basic and IMF signals. The ERS obtained using IMFs improves, from 31.00% to 73.86%, on the original ERS for the right hand, and from 22.17% to 47.69% for the left hand. As EEG processing is improved, the clinical applications of gamma-band activity will expand.


Assuntos
Eletroencefalografia , Algoritmos , Mãos , Humanos , Movimento , Processamento de Sinais Assistido por Computador
20.
Soc Cogn Affect Neurosci ; 12(7): 1036-1046, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402479

RESUMO

The recent call to move from focus on one brain's functioning to two-brain communication initiated a search for mechanisms that enable two humans to coordinate brain response during social interactions. Here, we utilized the mother-child context as a developmentally salient setting to study two-brain coupling. Mothers and their 9-year-old children were videotaped at home in positive and conflictual interactions. Positive interactions were microcoded for social synchrony and conflicts for overall dialogical style. Following, mother and child underwent magnetoencephalography while observing the positive vignettes. Episodes of behavioral synchrony, compared to non-synchrony, increased gamma-band power in the superior temporal sulcus (STS), hub of social cognition, mirroring and mentalizing. This neural pattern was coupled between mother and child. Brain-to-brain coordination was anchored in behavioral synchrony; only during episodes of behavioral synchrony, but not during non-synchronous moments, mother's and child's STS gamma power was coupled. Importantly, neural synchrony was not found during observation of unfamiliar mother-child interaction Maternal empathic/dialogical conflict style predicted mothers' STS activations whereas child withdrawal predicted attenuated STS response in both partners. Results define a novel neural marker for brain-to-brain synchrony, highlight the role of rapid bottom-up oscillatory mechanisms for neural coupling and indicate that behavior-based processes may drive synchrony between two brains during social interactions.


Assuntos
Encéfalo/diagnóstico por imagem , Empatia/fisiologia , Relações Mãe-Filho , Comportamento Social , Teoria da Mente/fisiologia , Adulto , Encéfalo/fisiologia , Criança , Feminino , Humanos , Magnetoencefalografia , Masculino , Mães
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA