Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.355
Filtrar
1.
Food Chem ; 459: 140372, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986207

RESUMO

Rice, a primary staple food, may be improved in value via fermentation. Here, ten medicinal basidiomycetous fungi were separately applied for rice fermentation. After preliminary screening, Ganoderma boninense, Phylloporia pulla, Sanghuangporus sanghuang and Sanghuangporus weigelae were selected for further LC-MS based determination of the changes in metabolic profile after their fermentation with rice, and a total of 261, 296, 312, and 355 differential compounds were identified, respectively. Most of these compounds were up-regulated and involved in the metabolic pathways of amino acid metabolism, lipid metabolism, carbohydrate metabolism and the biosynthesis of other secondary metabolites. Sanghuangporus weigelae endowed the rice with the highest nutritional and bioactive values. The metabolic network of the identified differential compounds in rice fermented by S. weigelae illustrated their close relationships. In summary, this study provides insights into the preparation and application of potential functional food via the fermentation of rice with medicinal fungi.

2.
J Ethnopharmacol ; 334: 118530, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977221

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Ganoderma leucocontextum T.H. Li, W. Q. Deng M. Wang & H.P.Hu. is a highland herbal medicine that has been shown to nourish the nervesand prolong life. Nevertheless, there is no evidence to indicate that Ganoderma leucocontextum triterpenoids (GLTs) reduce the damage triggered by Alzheimer's disease (AD). AIM OF THE STUDY: The aim of this investigation was to ascertain the protective effects of GLTs on AD mice models and cells, as well as to look into potential pathways. MATERIALS AND METHODS: In this study, the phytochemical characterization of GLTs was performed by High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The AD mouse model was induced by injecting intraperitoneally with D-galactose (120 mg/kg) and administering orally with aluminum chloride (20 mg/kg) daily for 28 days. After that, donepezil (5 mg/kg) and GLTs (0.4, 0.8, and 1.6 g/kg) were administered orally for 35 days. During the treatment period, aluminum chloride (20 mg/kg) and D-galactose (120 mg/kg) were continuously administered. And the behavior of the animals and the molecular changes of the hippocampus were determined after the whole experimental procedure. Furthermore, BV-2 cells were employed to validate GLTs' anti-neuroinflammatory properties. RESULTS: The total triterpenoids content was 443.12 ± 0.21 g/kg and was inferred to contain 19 classes of substances such as organic acids, amino acids, vitamins, flavonoids, and other chemicals in GLTs. Treatment of D-galactose/aluminum chloride-induced mouse with GLTs can ameliorate AD symptoms, counteract cognitive decline, improve Aß1-42 deposition, reduce the expression level of pro-apoptotic proteins, and attenuate the activation of hippocampal microglia and astrocytes. GLTs significantly increased the expression of antioxidant enzymes and significantly reduced the expression of inflammatory factors. GLTs inhibits nuclear factor kappa B (NF-κB) nuclear translocation and preserves myd88/traf6-mediated mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, GLTs (2 and 5 mg/mL) inhibited the generation of nitric oxide and protected lipopolysaccharide (1 mg/L)-induced neuroinflammation in BV-2 cells. CONCLUSIONS: Taken together, Ganoderma leucocontextum triterpenoids can improve cognitive functions, including learning and memory, by reducing neuroinflammation and oxidative stress, preventing apoptosis, and controlling amyloid genesis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38976188

RESUMO

Ganoderma sp., the fungal agent causing basal stem rot (BSR), poses a severe threat to global oil palm production. Alarming increases in BSR occurrences within oil palm growing zones are attributed to varying effectiveness in its current management strategies. Asymptomatic progression of the disease and the continuous monoculture of oil palm pose challenges for prompt and effective management. Therefore, the development of precise, early, and timely detection techniques is crucial for successful BSR management. Conventional methods such as visual assessments, culture-based assays, and biochemical and physiological approaches prove time-consuming and lack specificity. Serological-based diagnostic methods, unsuitable for fungal diagnostics due to low sensitivity, assay affinity, cross-contamination which further underscores the need for improved techniques. Molecular PCR-based assays, utilizing universal, genus-specific, and species-specific primers, along with functional primers, can overcome the limitations of conventional and serological methods in fungal diagnostics. Recent advancements, including real-time PCR, biosensors, and isothermal amplification methods, facilitate accurate, specific, and sensitive Ganoderma detection. Comparative whole genomic analysis enables high-resolution discrimination of Ganoderma at the strain level. Additionally, omics tools such as transcriptomics, proteomics, and metabolomics can identify potential biomarkers for early detection of Ganoderma infection. Innovative on-field diagnostic techniques, including remote methods like volatile organic compounds profiling, tomography, hyperspectral and multispectral imaging, terrestrial laser scanning, and Red-Green-Blue cameras, contribute to a comprehensive diagnostic approach. Ultimately, the development of point-of-care, early, and cost-effective diagnostic techniques accessible to farmers is vital for the timely management of BSR in oil palm plantations.

4.
Heliyon ; 10(12): e33307, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022015

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease resulting from dysregulated lipid metabolism, constituting the pathophysiological foundation of cardiovascular and cerebrovascular diseases. AS has a high incidence rate and mortality rate worldwide. As such, traditional Chinese medicine (TCM) has been widely used recently due to its stable therapeutic effect and high safety. Ganoderma lucidum polysaccharides (GLP) are the main active ingredients of Ganoderma lucidum, a Chinese herbal medicine. Research has also shown that GLP has anti-inflammatory and antioxidant properties, regulates gut microbiota, improves blood glucose and lipid levels, and inhibits obesity. Most of the current research on GLP anti-AS is focused on animal models. Thus, its clinical application remains to be discovered. In this review, we combine relevant research results and start with the pathogenesis and risk factors of GLP on AS, proving that GLP can prevent and treat AS, providing a scientific basis and reference for the future prevention and treatment of AS with GLP.

5.
Phytochemistry ; 224: 114168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823569

RESUMO

Three previously undescribed highly modified lanostane triterpenoids, ganopyrone A, ganocolossusin I, and ganodermalactone Y, were isolated from the artificially cultivated fruiting bodies of the basidiomycete Ganoderma colossus TBRC-BCC 17711. Ganopyrone A possesses an unprecedented polycyclic carbon skeleton with an α-pyrone ring and C-18/C-23 bond. It showed antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with an IC50 value of 7.8 µM (positive control: dihydroartemisinin, IC50 1.4 nM), while its cytotoxicity (Vero cells) was much weaker (IC50 103 µM).


Assuntos
Antimaláricos , Carpóforos , Ganoderma , Plasmodium falciparum , Triterpenos , Ganoderma/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Carpóforos/química , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Animais , Estrutura Molecular , Células Vero , Chlorocebus aethiops , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Lanosterol/química , Lanosterol/isolamento & purificação , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
6.
Biosci Rep ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904095

RESUMO

Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a "main active ingredient-target" network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The TNF protein was verified by western blot;Twenty one active ingredients in GL and 142 corresponding targets  were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI.GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer disease pathway and TNF protein.

7.
IMA Fungus ; 15(1): 16, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915080

RESUMO

Fomes weberianus Bres. & Henn. ex Sacc. is currently the basionym of two very distinct polypores (Basidiomycota), Ganoderma weberianum (Polyporales) and Phylloporia weberiana (Hymenochaetales). This fact has led to almost fifty years of taxonomic confusion. Fomes weberianus was first lectotypified by Steyaert, who accepted the species as G. weberianum. However, studies of Weber's original material in B, duplicate material in S, the protologue, and early interpretations of the name have shown that Steyaert's choice conflicts with the protologue and early interpretations, and that his interpretation as a species of Ganoderma is erroneous. A new lectotype was designated and the species was re-described under the correct interpretation Phylloporia weberiana.

8.
Molecules ; 29(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38893392

RESUMO

Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Reishi , Doenças Neurodegenerativas/tratamento farmacológico , Humanos , Reishi/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Animais , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/uso terapêutico , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
9.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893471

RESUMO

Ganoderma lucidum, renowned as an essential edible and medicinal mushroom in China, remains shrouded in limited understanding concerning the intrinsic mechanisms governing the accumulation of active components and potential protein expression across its diverse developmental stages. Accordingly, this study employed a meticulous integration of metabolomics and proteomics techniques to scrutinize the dynamic alterations in metabolite accumulation and protein expression in G. lucidum throughout its growth phases. The metabolomics analysis unveiled elevated levels of triterpenoids, steroids, and polyphenolic compounds during the budding stage (BS) of mushroom growth, with prominent compounds including Diplazium and Ganoderenic acids E, H, and I, alongside key steroids such as cholesterol and 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol. Additionally, nutrients such as polysaccharides, flavonoids, and purines exhibited heightened presence during the maturation stage (FS) of ascospores. Proteomic scrutiny demonstrated the modulation of triterpenoid synthesis by the CYP450, HMGR, HMGS, and ERG protein families, all exhibiting a decline as G. lucidum progressed, except for the ARE family, which displayed an upward trajectory. Therefore, BS is recommended as the best harvesting period for G. lucidum. This investigation contributes novel insights into the holistic exploitation of G. lucidum.


Assuntos
Proteômica , Reishi , Triterpenos , Reishi/metabolismo , Reishi/crescimento & desenvolvimento , Reishi/química , Triterpenos/metabolismo , Triterpenos/química , Proteômica/métodos , Metabolômica/métodos , Proteínas Fúngicas/metabolismo
10.
Carbohydr Polym ; 341: 122298, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876710

RESUMO

Cutaneous melanoma is a lethal skin cancer variant with pronounced aggressiveness and metastatic potential. However, few targeted medications inhibit the progression of melanoma. Ganoderma lucidum, which is a type of mushroom, is widely used as a non-toxic alternative adjunct therapy for cancer patients. This study determines the effect of WSG, which is a water-soluble glucan that is derived from G. lucidum, on melanoma cells. The results show that WSG inhibits cell viability and the mobility of melanoma cells. WSG induces changes in the expression of epithelial-to-mesenchymal transition (EMT)-related markers. WSG also downregulates EMT-related transcription factors, Snail and Twist. Signal transduction assays show that WSG reduces the protein levels in transforming growth factor ß receptors (TGFßRs) and consequently inhibits the phosphorylation of intracellular signaling molecules, such as FAK, ERK1/2 and Smad2. An In vivo study shows that WSG suppresses melanoma growth in B16F10-bearing mice. To enhance transdermal drug delivery and prevent oxidation, two highly biocompatible compounds, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), are used to synthesize a dissolvable microneedle patch that is loaded with WSG (MN-WSG). A functional assay shows that MN-WSG has an effect that is comparable to that of WSG alone. These results show that WSG has significant potential as a therapeutic agent for melanoma treatment. MN-WSG may allow groundbreaking therapeutic approaches and offers a novel method for delivering this potent compound effectively.


Assuntos
Reishi , Fatores de Transcrição da Família Snail , Animais , Camundongos , Reishi/química , Fatores de Transcrição da Família Snail/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Linhagem Celular Tumoral , Proteína 1 Relacionada a Twist/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Álcool de Polivinil/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Transdução de Sinais/efeitos dos fármacos
11.
Toxics ; 12(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922058

RESUMO

Ganoderma triterpenes and spore powder have shown promising results in mitigating cadmium-induced renal and hepatic injuries. Ganoderma lucidum active peptide GLP4 is a natural protein with dual antioxidant activities derived from the mycelium of Ganoderma lucidum. However, its efficacy in alleviating cadmium-induced lung injury remains unexplored. This study aims to investigate the protective effects of GLP4 against cadmium-induced lung injury in mice. Mice were exposed to cadmium chloride via nebulization to induce lung injury. The protective effect of GLP4 was assessed by measuring the total cell count in BALF, levels of inflammatory cytokines, and the expression of NLRP3 in lung tissues a through histopathological examination of lung tissue changes. The results showed that GLP4 significantly mitigated histopathological damage in lung tissues, decreased the secretion of inflammatory cytokines, and reduced the expression of NLRP3, which was elevated in cadmium-exposed mice. In vitro studies further revealed that GLP4 inhibited the cadmium-induced activation of the NLRP3 inflammasome. Notably, acute cadmium exposure by the respiratory tract did not affect the liver and kidneys of the mice. The findings suggest that GLP4 reduces cadmium-induced lung injury in mice by inhibiting the activation of the NLRP3 inflammasome, which provides a theoretical foundation for using Ganoderma lucidum as a preventive and therapeutic agent against cadmium poisoning.

12.
Nutrients ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931214

RESUMO

The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.


Assuntos
Acetaminofen , Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Polissacarídeos , Reishi , Acetaminofen/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Reishi/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Masculino , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Polissacarídeos Fúngicos/farmacologia , Antioxidantes/farmacologia
13.
Redox Biol ; 74: 103227, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865903

RESUMO

Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.


Assuntos
Resposta ao Choque Térmico , Homeostase , Sulfeto de Hidrogênio , Potencial da Membrana Mitocondrial , Mitocôndrias , Reishi , Triterpenos , Sulfeto de Hidrogênio/metabolismo , Reishi/metabolismo , Reishi/genética , Triterpenos/metabolismo , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Quinona Redutases/metabolismo , Quinona Redutases/genética , DNA Mitocondrial/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética
14.
Front Microbiol ; 15: 1410368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873146

RESUMO

Ganoderic acids (GAs) are major functional components of Ganoderma lucidum. The study aimed to breed a new G. lucidum strain with increased contents of individual GAs. Two mating-compatible monokaryotic strains, G. 260125 and G. 260124, were successfully isolated from the dikaryotic G. lucidum CGMCC 5.0026 via protoplast formation and regeneration. The Vitreoscilla hemoglobin gene (vgb) and squalene synthase gene (sqs) were overexpressed in the monokaryotic G. 260124 and G. 260125 strain, respectively. Mating between the G. 260124 strain overexpressing vgb and the G. 260125 strain overexpressing sqs resulted in the formation of the new hybrid dikaryotic G. lucidum strain sqs-vgb. The maximum contents of ganoderic acid (GA)-T, GA-Me, and GA-P in the fruiting body of the mated sqs-vgb strain were 23.1, 15.3, and 39.8 µg/g dry weight (DW), respectively, 2.23-, 1.75-, and 2.69-fold greater than those in G. lucidum 5.0026. The squalene and lanosterol contents increased 2.35- and 1.75-fold, respectively, in the fruiting body of the mated sqs-vgb strain compared with those in the G. lucidum 5.0026. In addition, the maximum expression levels of the sqs and lanosterol synthase gene (ls) were increased 3.23- and 2.13-fold, respectively, in the mated sqs-vgb strain. In summary, we developed a new G. lucidum strain with higher contents of individual GAs in the fruiting body by integrating genetic engineering and mono-mono crossing.

15.
J Pharm Bioallied Sci ; 16(Suppl 2): S1456-S1460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882887

RESUMO

Nanotechnology is developing into a fast-expanding discipline with applications in science and technology, and nanostructures are a crucial research tool in many fields. Due to their remarkable electrical, optical, magnetic, catalytic, and pharmacological capabilities, metal and metal oxide nanoparticles (NPs) have drawn study interest. Natural elements (plants, microorganisms, fungi, etc.) are utilized in a chemical-free, environmentally benign way to synthesize metals and metal oxides. The optical, electrical, and antimicrobial qualities of silver nanoparticle (AgNP) make them a popular choice. More than 200 active ingredients, including water-soluble, organic-soluble, and volatile chemicals, are found in Ganoderma. The main components are polysaccharides, adenosine, and terpenoids, each of which has exceptional therapeutic properties. This article explains the synthesis of Ag NPs by Ganoderma lucidum and tests the antibacterial effectiveness for use in biological applications.

16.
Phytochemistry ; 224: 114148, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763311

RESUMO

Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 µM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.


Assuntos
Carpóforos , Substâncias Protetoras , Reishi , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Humanos , Células Hep G2 , Carpóforos/química , Reishi/química , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Acetaminofen/farmacologia , Relação Estrutura-Atividade , Fígado/efeitos dos fármacos , Relação Dose-Resposta a Droga
17.
Sci Rep ; 14(1): 11536, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773201

RESUMO

Advances in modern medicine have extended human life expectancy, leading to a world with a gradually aging society. Aging refers to a natural decline in the physiological functions of a species over time, such as reduced pain sensitivity and reaction speed. Healthy-level physiological pain serves as a warning signal to the body, helping to avoid noxious stimuli. Physiological pain sensitivity gradually decreases in the elderly, increasing the risk of injury. Therefore, geriatric health care receives growing attention, potentially improving the health status and life quality of the elderly, further reducing medical burden. Health food is a geriatric healthcare choice for the elderly with Ganoderma tsuage (GT), a Reishi type, as the main product in the market. GT contains polysaccharides, triterpenoids, adenosine, immunoregulatory proteins, and other components, including anticancer, blood sugar regulating, antioxidation, antibacterial, antivirus, and liver and stomach damage protective agents. However, its pain perception-related effects remain elusive. This study thus aimed at addressing whether GT could prevent pain sensitivity reduction in the elderly. We used a galactose-induced animal model for aging to evaluate whether GT could maintain pain sensitivity in aging mice undergoing formalin pain test, hot water test, and tail flexes. Our results demonstrated that GT significantly improved the sensitivity and reaction speed to pain in the hot water, hot plate, and formalin tests compared with the control. Therefore, our animal study positions GT as a promising compound for pain sensitivity maintenance during aging.


Assuntos
Envelhecimento , Animais , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Masculino , Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Ganoderma/química , Modelos Animais de Doenças , Medição da Dor
18.
Anim Sci J ; 95(1): e13957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783587

RESUMO

The purpose of this study was to investigate the time-dependent change in Reishi (Ganoderma lingzhi) triterpenoids in rumen fluid. G. lingzhi fruiting bodies were milled and incubated in a tube with rumen fluid for 0, 4, 8, 12, 24, and 48 h at 39°C. After incubation, all the tubes were freeze-dried and extracted by ethanol. The contents of 18 triterpenoids in the ethanol extract were quantitated by liquid chromatography-mass spectrometry (LC-MS/MS). Based on the results, triterpenoids were categorized into three groups: (1) rapid decrease, indicating reductions of more than 50% within 8 h; (2) mild decrease, with reductions of more than 50% within 48 h; and (3) minimal change, even after 48 h, there was not much change. Ganoderic acid C6, DM, H, K, and TR as well as Ganoderenic acid D were classified in (1); Ganoderic acid LM2 and T-Q as well as Ganoderiol F in (2); and Ganoderic acid A, B, C1, C2, I, and TN; Gnoderenic acid C; and Ganodermanontriol in (3). In addition, a relationship between chemical structure and metabolic speed was observed in some cases. The results of this study revealed that G. lingzhi triterpenoids are digested and metabolized at different speeds in ruminant fluid.


Assuntos
Rúmen , Triterpenos , Animais , Rúmen/metabolismo , Triterpenos/metabolismo , Triterpenos/análise , Fatores de Tempo , Reishi/metabolismo , Reishi/química , Cromatografia Líquida , Líquidos Corporais/metabolismo , Espectrometria de Massas em Tandem
19.
Ecotoxicol Environ Saf ; 279: 116450, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768540

RESUMO

The purpose of this study is to evaluate the decolorization ability and detoxification effect of LAC-4 laccase on various types of single and mixed dyes, and lay a good foundation for better application of laccase in the efficient treatment of dye pollutants. The reaction system of the LAC-4 decolorizing single dyes (azo, anthraquinone, triphenylmethane, and indigo dyes, 17 dyes in total) were established. To explore the decolorization effect of the dye mixture by LAC-4, two dyes of the same type or different types were mixed at the same concentration (100 mg/L) in the reaction system containing 0.5 U laccase, and time-course decolorization were performed on the dye mixture. The combined dye mixtures consisted of azo + azo, azo + anthraquinone, azo + indigo, azo + triphenylmethane, indigo + triphenylmethane, and triphenylmethane + triphenylmethane. The results obtained in this study were as follows. Under optimal conditions of 30 °C and pH 5.0, LAC-4 (0.5 U) can efficiently decolorize four different types of dyes. The 24-hour decolorization efficiencies of LAC-4 for 800 mg/L Orange G and Acid Orange 7 (azo), Remazol Brilliant Blue R (anthraquinone), Bromophenol Blue and Methyl Green (triphenylmethane), and Indigo Carmine (indigo) were 75.94%, 93.30%, 96.56%, 99.94%, 96.37%, and 37.23%, respectively. LAC-4 could also efficiently decolorize mixed dyes with different structures. LAC-4 can achieve a decolorization efficiency of over 80% for various dye mixtures such as Orange G + Indigo Carmine (100 mg/L+100 mg/L), Reactive Orange 16 + Methyl Green (100 mg/L+100 mg/L), and Remazol Brilliant Blue R + Methyl Green (100 mg/L+100 mg/L). During the decolorization process of the mixed dyes by laccase, four different interaction relationships were observed between the dyes. Decolorization efficiencies and rates of the dyes that were difficult to be degraded by laccase could be greatly improved when mixed with other dyes. Degradable dyes could greatly enhance the ability of LAC-4 to decolorize extremely difficult-to-degrade dyes. It was also found that the decolorization efficiencies of the two dyes significantly increased after mixing. The possible mechanisms underlying the different interaction relationships were further discussed. Free, but not immobilized, LAC-4 showed a strong continuous batch decolorization ability for single dyes, two-dye mixtures, and four-dye mixtures with different structures. LAC-4 exhibited high stability, sustainable degradability, and good reusability in the continuous batch decolorization. The LAC-4-catalyzed decolorization markedly reduced or fully abolished the toxic effects of single dyes (azo, anthraquinone, and indigo dye) and mix dyes (nine dye mixtures containing four structural types of dyes) on plants. Our findings indicated that LAC-4 laccase had significant potential for use in bioremediation due to its efficient degradation and detoxification of single and mixed dyes with different structural types.


Assuntos
Compostos Azo , Corantes , Lacase , Reishi , Compostos de Tritil , Corantes/química , Corantes/toxicidade , Corantes/metabolismo , Lacase/metabolismo , Compostos Azo/toxicidade , Compostos Azo/metabolismo , Compostos de Tritil/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Biodegradação Ambiental , Antraquinonas/química , Antraquinonas/metabolismo , Índigo Carmim/metabolismo , Concentração de Íons de Hidrogênio , Descoloração da Água , Brancos
20.
Fitoterapia ; 176: 106031, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768793

RESUMO

Five undescribed meroterpenoids, baosglucidnes A - E (1-5), were isolated from the fruiting bodies of Ganoderma lucidum. Among them, baosglucidne B (2) as a racemic mixture was obtained. Chiral HPLC was employed to separate a pair of enantiomers (+)-2 and (-)-2. The structures and stereochemical features of these substances were characterized by utilizing spectroscopic data and ECD calculations. Finally, the results of anti-renal fibrosis activity evaluation showed that baosglucidne E (5) could inhibit the expression of collagen I in TGF-ß1-induced rat kidney proximal tubular cells at 20 µM.


Assuntos
Reishi , Terpenos , Animais , Reishi/química , Ratos , Terpenos/farmacologia , Terpenos/isolamento & purificação , Estrutura Molecular , Carpóforos/química , Fator de Crescimento Transformador beta1/metabolismo , Fibrose , China , Nefropatias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Colágeno Tipo I/metabolismo , Linhagem Celular , Túbulos Renais Proximais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...