Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.717
Filtrar
1.
Talanta ; 281: 126814, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39245007

RESUMO

Constructing heterostructures is an effective way to improve the carrier mobility for metal oxide sensing material, since heterojunctions are usually built only on the surface of the material, the carrier transport efficiency inside the material still needs to be improved. In this paper, BiVO4 nanocrystals (BVO NCs) with an average size of 1 nm generated by pulsed laser irradiation were embedded in situ at the particle boundaries (PBs) of SnO2 nanofibers to form an effective n-n heterojunctions inside the material. After embedding the BVO NCs in the SnO2 samples, the response value for 10 ppm NO was improved to 48.91, which was 2.5 times higher than that of pure SnO2 at near room temperature (50 °C). Meanwhile, the detection limit was lowered to 50 ppb with excellent long term stability. Detailed analysis and theoretical calculations demonstrated that the formation of abundant n-n heterojunctions not only promotes the electron-hole separation and the carrier mobility, but also reduces the conductivity and adsorption energy of the material, which significantly improves its sensing performance. This work demonstrates a new approach to modulate the gas-sensing performance of metal oxide semiconductors by generating heterostructure inside the bulk of the material.

2.
ACS Sens ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259973

RESUMO

This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array's potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor's signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas-nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).

3.
Talanta ; 281: 126659, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39260259

RESUMO

Gas chromatography is a reference method for gas analysis. As part of efforts to miniaturize gas chromatography systems, the miniaturization of detectors is essential. In this work, we report a new integrated photonic platform for gas chromatography analyte detection. The fabricated silicon die integrates Mach-Zehnder interferometers into low dead volume microfluidic channels, with coherent cost-effective detection scheme with a fixed 850 nm wavelength laser. A proof of concept is demonstrated with the separation and detection of three volatile organic compounds: heptane, octane, and toluene. Peaks' widths at half height range from 1 to 5 s. Peaks are very well resolved by our system, which acquires more than 100 points per second. From a heptane dilution range, we evaluate the limit of detection of our system to be the headspace of a 0.26 % heptane concentration solution. To our knowledge, these are the first integrated Mach-Zehnder interferometers reported for gas chromatography detection. This work could open new strategies for fast low cost and low limit of detection specific gas chromatography silicon micro-detectors.

4.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274910

RESUMO

The rapid expansion of industrial activities has resulted in severe environmental pollution manifested by organic dyes discharged from the food, textile, and leather industries, as well as hazardous gas emissions from various industrial processes. Titanium dioxide (TiO2)-nanostructured materials have emerged as promising candidates for effective photocatalytic dye degradation and gas sensing applications owing to their unique physicochemical properties. This study investigates the development of a photocatalyst and a liquefied petroleum gas (LPG) sensor using hydrothermally synthesized globosa-like TiO2 nanostructures (GTNs). The synthesized GTNs are then evaluated to photocatalytically degrade methylene blue dye, resulting in an outstanding photocatalytic activity of 91% degradation within 160 min under UV light irradiation. Furthermore, these nanostructures are utilized to sense liquefied petroleum gas, which attains a superior sensitivity of 7.3% with high response and recovery times and good reproducibility. This facile and cost-effective hydrothermal method of fabricating TiO2 nanostructures opens a new avenue in photocatalytic dye degradation and gas sensing applications.

5.
BMC Res Notes ; 17(1): 244, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227855

RESUMO

OBJECTIVES: In recent years, there has been much discussion and research on electronic nose (e-nose). This topic has developed mainly in the medical and food fields. Typically, e-nose is combined with machine learning algorithms to predict or detect multiple sensory classes in each tea sample. Therefore, in e-nose systems, e-nose signal processing is an important part. In many situations, a comprehensive set of experiments is required to ensure the prediction model can be generalized well. This data set specifically focuses on two main goals such as classification of green tea quality and prediction of organoleptic score. In this experiment, Gambung dry green tea samples were used. The challenge is that dry tea does not emit as strong an aroma as tea infusions, making it more difficult for the e-nose system to detect and identify the aromas. This data set offers a valuable resource for researchers and developers to conduct investigations and experiments by classifying and detecting organoleptic scores that aim to categorize and identify organoleptic ratings. This enables a deeper understanding of the quality of dry green tea and encourages further integration of e-nose technology in the tea industry. DATA DESCRIPTION: This experiment focused on analyzing green tea aroma using six gas sensors. Seventy-eight green tea samples were tested, each observed three times, using a tea chamber connected to a sensor chamber via a hose and an intake micro air pump. Air flowed from the tea chamber to the sensor chamber for 60 s, followed by 60 s of aroma data recording. This data was saved into CSV files and labeled according to the Indonesian National Standard (SNI) 3945:2016, which includes special and general requirements for green tea quality. An organoleptic test by a tea tester further labeled the data set into "good" or "quality defect" for classification and provided organoleptic scores based on dry appearance, brew color, taste, aroma, and dregs of brewing for continuous label.


Assuntos
Nariz Eletrônico , Odorantes , Chá , Odorantes/análise , Humanos
6.
ACS Appl Mater Interfaces ; 16(36): 47973-47987, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39225263

RESUMO

Owing to the correlation between acetone in human's exhaled breath (EB) and blood glucose, the development of EB acetone gas-sensing devices is important for early diagnosis of diabetes diseases. In this article, a noninvasive blood glucose detection device through acetone sensing in EB, based on an α-Fe2O3-multiwalled carbon nanotube (MWCNT) nanocomposite, was successfully developed. Different amounts of α-Fe2O3 were added to the MWCNTs by a simple solution method. The optimized acetone gas sensor showed a response of 5.15 to 10 ppm acetone gas at 200 °C. Also, the fabricated sensor showed very good sensing properties even in an atmosphere with high relative humidity. Since the EB has high humidity, the proposed sensor is a promising device to exactly detect the amount of acetone in EB with high humidity. The sensor was powered by a 3200 mAh battery with the possibility of charging using mains electricity. To increase the reliability and calibration of the sensing device, a practical test was taken to detect acetone EB from 50 volunteers, and a deep learning algorithm (DLA) was used to detect the effect of various factors on the amount of acetone in each person's acetone EB. The proposed device with ±15 errors had almost 85% correct responses. Also, the proposed device had excellent response, short response time, good selectivity, and good repeatability, leading it to be a suitable candidate for noninvasive blood glucose sensing.


Assuntos
Acetona , Glicemia , Testes Respiratórios , Aprendizado Profundo , Nanocompostos , Nanotubos de Carbono , Acetona/análise , Nanotubos de Carbono/química , Humanos , Nanocompostos/química , Glicemia/análise , Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Compostos Férricos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Expiração
7.
Sci Rep ; 14(1): 21469, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277591

RESUMO

In general, defects are crucial in designing the different properties of two-dimensional materials. Therefore large variations in the electric and optical characteristics of two-dimensional layered molybdenum disulphide might be attributed to defects. This study presents the design of a temperature and nitrogen sensor based on few-layer molybdenum disulfide sheets (FLMS), which was developed from bulk MoS2 (BMS) through an exfoliation approach. The produced sulfur defect, molybdenum defect, line defect, and plane defect were characterized by scanning transmission electron microscopy (STEM), which substantially impacts the sensing characteristics of the resulting FLMS. Our theoretical analysis validates that the sulfur vacancies of the MoS2 lattice improve sensing performance by promoting effective charge transfer and surface interactions with target analytes. The FLMS-based sensor showed a high sensitivity for detecting nitrogen gas with a detection limit (LOD) of ~ 0.18 ppm. Additionally, temperature-detecting capabilities were assessed over various temperatures, showing outstanding stability and repeatability. To the best of our knowledge, this material is the first of its kind, demonstrating visible N2 gas sensing with chromic behaviour.

8.
ACS Appl Mater Interfaces ; 16(36): 48585-48597, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39221512

RESUMO

Nanostructured transition metal dichalcogenides have garnered significant research interest for physical and chemical sensing applications due to their unique crystal structure and large effective surface area. However, the high-yield synthesis of these materials on different substrates and in nanostructured films remains a challenge that hinders their real-world applications. In this work, we demonstrate the synthesis of two-dimensional (2D) tungsten disulfide (WS2) sheets on a hundred-milligram scale by sulfurization of tungsten trioxide (WO3) powder in an atmospheric pressure chemical vapor deposition reactor. The as-synthesized WS2 powders can be formulated into inks and deposited on a broad range of substrates using techniques like screen or inkjet printing, spin-coating, drop-casting, or airbrushing. Structural, morphological, and chemical composition analysis confirm the successful synthesis of edge-enriched WS2 sheets. The sensing performance of the WS2 films prepared with the synthesized 2D material was evaluated for ammonia (NH3) detection at different operating temperatures. The results reveal exceptional gas sensing responses, with the sensors showing a 100% response toward 5 ppm of NH3 at 150 °C. The sensor detection limit was experimentally verified to be below 1 ppm of NH3 at 150 °C. Selectivity tests demonstrated the high selectivity of the edge-enriched WS2 films toward NH3 in the presence of interfering gases like CO, benzene, H2, and NO2. Furthermore, the sensors displayed remarkable stability against high levels of humidity, with only a slight decrease in response from 100% in dry air to 93% in humid environments. Density functional theory and Bayesian optimization simulations were performed, and the theoretical results agree with the experimental findings, revealing that the interaction between gas molecules and WS2 is primarily based on physisorption.

9.
Discov Nano ; 19(1): 157, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331285

RESUMO

Novel sensing applications benefit from multifunctional nanomaterials responsive to various external stimuli such as mechanics, electricity, light, humidity, or pollution. While few such materials occur naturally, the careful design of synergized nanomaterials unifies the cross-coupled properties which are weak or absent in single-phase materials. In this study, 2D MoS2 integrated with ultrathin dielectric oxide layers forms hetero-nanostructures with significant impacts on carrier transport. The ternary TiO2/MoS2/ZnO hetero-nanostructures, along with their individual properties, improve the performance of multifunctional sensing devices. The synthesized hetero-nanostructure exhibits a responsivity of up to 16 mA/W to 700 nm light and responds to 5 ppm ammonia gas at room temperature. These enhancements are attributed to interface charge transfer and photogating effects. The ternary TiO2/MoS2/ZnO hetero-nanostructure is compatible with existing semiconductor fabrication technologies, making it feasible to integrate into flexible, lightweight semiconductor devices and circuits. These results may inspire new photodetectors and sensing devices based on two-dimensional (2D) layered materials for IoT applications.

10.
ACS Sens ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321551

RESUMO

Disease diagnosis of Helicobacter pylori (Hp) through human exhaled breath analysis has attracted considerable attention. However, conventional methods, such as carbon 13 (13C) breath test and infrared spectrometers, are facing the challenge of achieving portability and reliability synchronously. Herein, we report a portable and hand-held Hp analyzer using a bimetallic PtRu@SnO2-based gas sensor for the prediagnosis of Hp infection, which is based on detecting ammonia (NH3) as a potential biomarker in exhaled breath. Owing to the surface functionalization through highly catalytically active bimetallic PtRu nanoparticles (NPs) prepared by a photochemical reduction strategy, the PtRu@SnO2-based sensor exhibits high sensitivity and selectivity toward trace-level (200 ppb) NH3 even at high-humidity surroundings (80% RH). Consequently, the designed portable and hand-held Hp analyzer makes the accurate determination of NH3 at 800 ppb in exhaled breath. The tuning of energy band structure and electrical characteristics and the catalytic modulation of NH3 oxidation by PtRu NPs are proposed to be the reasons behind the enhanced NH3 gas-sensing performance, as confirmed by in situ analysis using an online MKS MultiGas 2030 FTIR gas analyzer. This work paves the way for the prediagnosis of Hp infection using a metal oxide gas sensor.

11.
ACS Sens ; 9(9): 4578-4590, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39223701

RESUMO

The real-time and room-temperature detection of nitrogen dioxide (NO2) holds significant importance for environmental monitoring. However, the performance of NO2 sensors has been hampered by the trade-off between the high sensitivity and stability of conventional sensitive materials. Here, we present a novel fully flexible paper-based gas sensing structure by combining a homogeneous screen-printed titanium carbide (Ti3C2Tx) MXene-based nonmetallic electrode with a MoS2 quantum dots/Ti3C2Tx (MoS2 QDs/Ti3C2Tx) gas-sensing film. These precisely designed gas sensors demonstrate an improved response value (16.3% at 5 ppm) and a low theoretical detection limit of 12.1 ppb toward NO2, which exhibit a remarkable 3.5-fold increase in sensitivity compared to conventional Au interdigital electrodes. The outstanding performance can be attributed to the integration of the quantum confinement effect of MoS2 QDs and the conductivity of Ti3C2Tx, establishing the main active adsorption sites and enhanced charge transport pathways. Furthermore, an end-sealing effect strategy was applied to decorate the defect sites with naturally oxygen-rich tannic acid and conductive polymer, and the formed hydrogen bonding network at the interface effectively mitigated the oxidative degradation of the Ti3C2Tx-based gas sensors. The exceptional stability has been achieved with only a 1.8% decrease in response over 4 weeks. This work highlights the innovative design of high-performance gas sensing materials and homogeneous gas sensor techniques.


Assuntos
Eletrodos , Dióxido de Nitrogênio , Pontos Quânticos , Titânio , Dióxido de Nitrogênio/análise , Titânio/química , Pontos Quânticos/química , Molibdênio/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Gases/química , Gases/análise , Dissulfetos
12.
Photoacoustics ; 39: 100647, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39309019

RESUMO

A novel method is introduced to improve the detection performance of photoacoustic spectroscopy for trace gas detection. For effectively suppressing various types of noise, this method integrates photoacoustic spectroscopy with residual networks model which encompasses a total of 40 weighted layers. Firstly, this approach was employed to accurately retrieve methane concentrations at various levels. Secondly, the analysis of the signal-to-noise ratio (SNR) of multiple sets of photoacoustic spectroscopy signals revealed significant enhancement. The SNR was improved from 21 to 805, 52-962, 98-944, 188-933, 310-941, and 587-936 across the different concentrations, respectively, as a result of the application of the residual networks. Finally, further exploration for the measurement precision and stability of photoacoustic spectroscopy system utilizing residual networks was carried out. The measurement precision of 0.0626 ppm was obtained and the minimum detectable limit was found to be 1.47 ppb. Compared to traditional photoacoustic spectroscopy method, an approximately 46-fold improvement in detection limit and 69-fold enhancement in measurement precision were achieved, respectively. This method not only advances the measurement precision and stability of trace gas detection but also highlights the potential of deep learning algorithms in spectroscopy detection.

13.
Talanta ; 281: 126916, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305764

RESUMO

In this work, three different dyes have been tested for the determination of gaseous ammonia. This gas is one of the products of microbial degradation and therefore its presence is an indicator of deterioration and could be used as a food freshness indicator. Three different sensors have been prepared and tested, two of them using the natural pigments curcumin and anthocyanin and the other one using bromothymol blue. All of them are biocompatible and therefore allowed to use in contact with food. Different compositions, materials for deposition, stability and reversibility for ammonia gas detection have been studied under high humidity conditions simulating real packaged food conditions. Colorimetry is the technique used to obtain the analytical parameter, the H coordinate of the HSV colour space, simply using a camera, avoiding the use of complex instrumentation. Sensibility, toxicity grade and stability found show that the sensor could be implemented in packaged food and form the basis of a freshness indicator for the food industry.

14.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275601

RESUMO

The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. Issues related to certain uncertainties concerning the influence of high humidity on DMS measurements with resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory lower detection limit of DMS are the subject of intensive research. This paper presents the results of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to the authors' previous studies contributed to the development of a sensor that is highly sensitive to 1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water vapour content (90% RH) in the analysed atmosphere.

15.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275763

RESUMO

Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties. Results show the AgNM forms a network with high transparency (79%) and low sheet resistance (7.23 Ω/□). A sol-gel ZnO thin film was coated on this mesh, providing a seed layer with a hexagonal wurtzite structure. Increasing the precursor concentration alters the diameter, length, and area density of ZNAs, affecting their performance. The ZNA-AgNM-based photodetector shows enhanced dark current and photocurrent with increasing precursor concentration, achieving a maximum photoresponsivity of 114 A/W at 374 nm and a detectivity of 6.37 × 1014 Jones at 0.05 M zinc acetate. For gas sensing, the resistance of ZNA-AgNM-based sensors decreases with temperature, with the best hydrogen response (2.71) at 300 °C and 0.04 M precursor concentration. These findings highlight the potential of ZNA-AgNM for high-performance UV photodetectors and hydrogen gas sensors, offering an alternative way for the development of future sensing devices with enhanced performance and functionality.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39312208

RESUMO

A promising strategy is proposed for fabricating flexible pressure/gas sensors, which have a microprotuberance and microwrinkle structure at micropillars on their sensing substrates. The sensing substrates were prepared by compression molding thermoplastic polyurethane (TPU; an industrial grade polymer) and subsequent pyrrole polymerization. Benefiting from the hierarchical structure on the sensing substrates, the flexible sensors exhibit high performances in detecting both pressure and ammonia (NH3). Mechanism for the functionalities of the hierarchical structure of the pressure sensors was analyzed. Such unique hierarchical structure endows the interlocked pressure sensor by assembling the substrates prepared at 60 min polymerization time with a relatively high sensitivity in a wider linearity range (1.15 kPa-1, 0-800 Pa), a lower detection limit of 6.2 Pa, and shorter response and recovery times (26/28 ms). The combination of stronger interfacial interaction between the TPU and polypyrrole layer, the mutual support of the interlocked micropillars, and the inherent high resilience of TPU endows the pressure sensor with lower hysteresis, good repeatability and stability, and higher durability (10,000 cycles). The interlocked pressure sensor can detect full-range human physiological activities from weak physiological signals (such as face muscle contraction, heartbeat, and breath) to body movements (such as head, elbow, and foot movement). The gas sensor assembled with the hierarchical sensing substrate prepared at 60 min polymerization time exhibits selective, stable, and faster sensing responses to NH3. The proposed facile and cost-effective preparation strategy can be an excellent candidate for fabricating high-performance and multifunctional sensors.

17.
Mikrochim Acta ; 191(10): 579, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243308

RESUMO

Highly sensitive detection of nitric dioxide (NO2) has recently attracted much attention due to its harmful to the human health even at a low concentration of 0.1 parts per million (ppm). Herein, In2O3 nanoparticles (NPs) were prepared via a facile ionic liquid (IL) assisted solvothermal method with subsequent calcination and then were analyzed through the characterization of X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption techniques. Morphological characterization demonstrated that the resultant compounds were In2O3 NPs with a diameter ranging from 20 to 30 nm. The gas sensor based on the In2O3 NPs prepared with IL exhibited excellent NO2-sensing properties in terms of fast response/recovery speed (26.6/10.0 s), high response (310.0), good repeatability and long-term stability to 10 ppm NO2 gas at low working temperature of 92 °C. The gas-sensing mechanism of In2O3 NPs to NO2 was represented to the surface adsorption control model and the possibilities relating to the improved NO2 sensing performance of the In2O3 NPs synthesized with IL-assisted were also discussed in detail.

18.
Sci Rep ; 14(1): 20600, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232056

RESUMO

The global industrial development and increase in the number of transportation vehicles, such as automobiles and ships, have led to a steady increase in the issues related to greenhouse gas emissions. NO2 is a greenhouse gas emitted in large quantities from automobiles and factories, and its emission is unavoidable in the modern world. Therefore, a sensor capable of precise detection of NO2 is required. The most commonly reported types of NO2 sensors are those based on metal oxides. However, their operation at room temperature is impossible owing to their high-temperature operating characteristics, and therefore, a heater must be designed inside or installed outside the sensor for heating. Meanwhile, NO2 sensors based on PbS quantum dots (QDs) are advantageous as they can operate at room temperature and can be easily manufactured through a solution process rather than a complicated semiconductor process. Herein, a NO2 sensor was fabricated by doping PbS QDs with poly(3-hexylthiophene) (P3HT). The as-developed sensor exhibited high responsivity to 100-0.4-ppm NO2 gas with a resolution of 200 ppb owing to the stability of the thin film and high hole mobility of P3HT.

19.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39275517

RESUMO

Surface engineering techniques can be used to develop high-performance gas sensing materials and advance the development of sensors. In this study, we improved the gas sensing performance of two-dimensional (2D) WO3 nanoplates by combining surface Zn modification and the in situ formation of ZnWO4/WO3 heterojunctions. Introducing Zn atoms by surface modification can reconstruct the atomic surface of 2D WO3 nanoplates, creating additional active sites. This allowed for the preparation of various types of ZnWO4/WO3 heterojunctions on the surface of the WO3 nanoplates, which improved the selectivity and sensitivity to the target gas triethylamine. The sensor exhibited good gas sensing performance for triethylamine even at low operating temperatures and strongly resisted humidity changes. The ZnWO4/WO3 material we prepared demonstrated a nearly threefold improvement in the triethylamine (TEA) response, with a gas sensing responsivity of 40.75 for 10 ppm of TEA at 250 °C. The sensor based on ZnWO4/WO3 has a limit of detection (LOD) for TEA of 200 ppb in practical measurements (its theoretical LOD is even as low as 31 ppb). The method of growing ZnWO4 on the surface of WO3 nanoplates using surface modification techniques to form surface heterojunctions differs from ordinary composites. The results suggest that the in situ construction of surface heterojunctions using surface engineering strategies, such as in situ modifying, is a practical approach to enhance the gas sensing properties and resistance to the humidity changes of metal oxide materials.

20.
Heliyon ; 10(17): e36692, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263073

RESUMO

Highly effective gas sensors for detecting a range of hazardous and toxic gases were successfully applied in the present study using Zinc oxide (ZnO) nanomaterials. In this work, the horizontal vapor phase growth (HVPG) technique was perfectly capable of the synthesis of zinc oxide (ZnO) nanomaterials. The effect of the growth time with different dwell times was discussed by comparing the SEM-EDX analysis and photoluminescence characterization of the samples. Magnetic field (AMF) was also incorporated to determine the effect of AMF on the synthesis of ZnO nanomaterials. The results showed that the ZnO nanorods and root-like shapes are formed with more than 5 µm length and a few nm diameters. The optimum parameter showed the sensors are shiner than the less effective sensor when applied. The introduction of an external magnetic field led to a reduced energy band gap by a maximum of 15 %. The non-AMF band gap energy value is observed to be between 3.51 and 3.58 eV, while the value obtained using AMF is found to be between 2.94 and 3.22 eV. During the CO2 gas sensor test, AMF ZnO nanomaterial samples exhibited higher voltage and gradient compared to non-AMF samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA