Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 976295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438106

RESUMO

Ocimum basilicum L. and its derived products are primarily consumed by humans; hence, agrochemical use seems inappropriate for its cultivation. However, farmers are accustomed to using rampant inorganic fertilizers to augment crop productivity, which has unintendedly engendered severe environmental perturbations. Concomitantly, farmers will soon have to confront the challenges of growing crops under suboptimal conditions driven by global climate change. Consequently, to develop a clean, sustainable, and resilient production technology, field experiments spanning over two years (2020 and 2021) were conducted, comprising three biostimulants, viz., vermicompost (0, 4, and 8 Mg ha-1), biofertilizer (uninoculated and inoculated), and liquid seaweed extract (without and at 7 ml L-1) in the Indian western Himalaya for the first time. Soil health indicators, leaf photosynthetic pigments, gaseous exchange, mineral contents, essential oil (EO) quantity, and composition were evaluated. Soil microbial respiration (SMR), microbial biomass carbon (MBC), organic carbon (OC), dehydrogenase (DHA), alkaline phosphatase (ALP), and ß-glucosidase activities were increased by 36.23, 83.98, 30.61, 42.69, 34.00, and 40.57%, respectively, when compared with the initial soil status. The net photosynthetic rate (Pn) was significantly increased with the highest (8 Mg ha-1) and moderate (4 Mg ha-1) vermicompost dosages by 13.96% and 4.56%, respectively, as compared with the unfertilized control (0 Mg ha-1). Likewise, the biofertilizer and seaweed extract also enhanced Pn by 15.09% and 10.09%, respectively. The crop's key EO constituents, viz., methyl chavicol and linalool, were significantly improved with the highest and moderate vermicompost rates of 2.71, 9.85%, and 1.18, 5.03%, respectively. Similarly, biofertilization and seaweed application also boosted methyl chavicol and linalool by 3.29, 8.67%, and 1.93, 3.66%, respectively. In both years, significantly higher herbage (8.86 and 11.25 Mg ha-1) and EO yield (113.78 and 154.87 kg ha-1) were recorded with a congregate treatment of the highest vermicompost dose, biofertilizer, and liquid seaweed extract. In conclusion, the integrated use of biostimulants having complementary properties can sustainably maximize the quantity and quality of O. basilicum and concomitantly ameliorate soil health. This study can inspire scientific communities and industries to develop second-generation biostimulant products, delivering better sustainability and resilience for a renaissance in agriculture.

2.
Front Plant Sci ; 13: 937436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720586

RESUMO

One of the most important growth factors in cannabis cultivation is light which plays a big role in its successful growth. However, understanding that how light controls the industrial hemp growth and development is poor and needs advanced research. Therefore, a pot study was conducted to investigate the effects of different colors of light, that is, white light (WL), blue light (BL), red light (RL), and 50% red with 50% blue mix light (RBL) on morphology, gaseous exchange and antioxidant capacity of industrial hemp. Compared with WL, BL significantly increase hemp growth in terms of shoot fresh biomass (15.1%), shoot dry biomass (27.0%), number of leaves per plant (13.7%), stem diameter (10.2%), root length (6.8%) and chlorophyll content (7.4%). In addition, BL promoted net photosynthesis, stomatal conductance, and transpiration, while reduces the lipid peroxidation and superoxide dismutase and peroxidase activities. However, RL and RBL significantly reduced the plant biomass, gas exchange parameters with enhanced antioxidant enzymes activities. Thus, blue light is useful for large-scale sustainable production of industrial hemp.

4.
Front Plant Sci ; 13: 850567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251114

RESUMO

It has been established that wheat (Triticum aestivum L.) has a higher Cd absorption capacity than other cereal crops causing an excess daily Cd intake and a huge threat for public health. Therefore, the reduction of Cd accumulation in wheat from the soil is a crucial food-security issue. A pot trial was performed on Cd-stressed wheat seedlings to evaluate the morphological and physio-biochemical responses via foliage spray of two different bio-stimulants, i.e., ascorbic acid (AsA) and moringa leaf extract (MLE). Two wheat cultivars (Fsd-08 and Glxy-13) were exposed to cadmium (CdCl2.5H2O) stress (0, 500, and 1,000 µM), along with foliar spray of AsA (0 and 50 mM) and MLE (0 and 3%). The most observable growth reduction was documented in plants that are exposed to a higher Cd concentration (1,000 µM), followed by the lower Cd level (500 µM). The wheat growth attributes, such as number of leaves per plant, number of tillers per plant, biomass yield, shoot/root length, and leaf area, were greatly depressed under the Cd stress, irrespective of the cultivar. Under the increasing Cd stress, a significant diminution was observed in maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) accompanied with reduced gas exchange attributes. However, Cd-induced phytotoxicity enhanced the non-photochemical quenching (NPQ) and internal carbon dioxide concentration (Ci), which was confirmed by their significant positive correlation with Cd contents in shoot and root tissues of both cultivars. The contents of proline, AsA, glycine betaine (GB), tocopherol, total free amino acid (TFAA), and total soluble sugar (TSS) were greatly decreased with Cd stress (1,000 µM), while MLE and AsA significantly enhanced the osmolytes accumulation under both Cd levels (especially 500 µM level). The Cd accumulation was predominantly found in the root as compared to shoots in both cultivars, which has declined after the application of MLE and AsA. Conclusively, MLE was found to be more effective to mitigate Cd-induced phytotoxicity up to 500 µM Cd concentration, compared with the AsA amendment.

5.
Plants (Basel) ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287101

RESUMO

The evaluation of root system architecture (RSA) development and the physiological responses of crop plants grown under water-limited conditions are of great importance. The purpose of this study was to examine the short-term variation of the morphological and physiological plasticity of Lagenaria siceraria genotypes under water deficit, evaluating the changes in the relationship between the root system architecture and leaf physiological responses. Bottle gourd genotypes were grown in rhizoboxes under well-watered and water deficit conditions. Significant genotype-water regime interactions were observed for several RSA traits and physiological parameters. Biplot analyses confirmed that the drought-tolerant genotypes (BG-48 and GC) showed a high net CO2 assimilation rate, stomatal conductance, transpiration rates with a smaller length, and a reduced root length density of second-order lateral roots, whereas the genotypes BG-67 and Osorno were identified as drought-sensitive and showed greater values for average root length and the density of second-order lateral roots. Consequently, a reduced length and density of lateral roots in bottle gourd should constitute a response to water deficit. The root traits studied here can be used to evaluate bottle gourd performance under novel water management strategies and as criteria for breeding selection.

6.
Braz. j. biol ; 80(3): 631-640, July-Sept. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1132427

RESUMO

Abstract It is a fact that the regions that cultivate the most maize crop do not have fully adequate technologies to measure productivity losses caused by irregularities in water availability. The objective of this study was to evaluate the physiological characteristics of maize hybrids tolerant (DKB 390) and sensitive (BRS 1030) to drought, at V5 growth stage and under water restriction, in order to understand the mechanisms involved in the induction of tolerance to drought by chitosan in contrasting maize genotypes. Plants were cultivated in pots at a greenhouse, and chitosan 100 ppm was applied by leaf spraying. The water restriction was imposed for 10 days and then leaf gaseous exchange and chlorophyll fluorescence were evaluated. The tolerant hybrid (DKB 390) showed higher photosynthesis, stomatal conductance, carboxylation efficiency, electron transport rate, and non-photochemical quenching when chitosan was used. Plants from tolerant genotype treated with chitosan were more tolerant to water stress because there were more responsive to the biopolymer.


Resumo As regiões que cultivam milho como cultura principal ainda não possuem tecnologias adequadas para mensurar as perdas na produtividade decorrentes na disponibilidade irregular de água. O objetivo desse estudo foi avaliar as características fisiológicas de híbridos de milho tolerante (DKB 390) e sensível (BRS1030) à seca, no estádio de crescimento V5 e sob restrição hídrica, para compreender os mecanismos envolvidos na indução de tolerância à seca pela quitosana em genótipos contrastantes. As plantas foram cultivadas vasos na casa de vegetação e a quitosana 100 ppm foi aplicada por pulverização foliar. A restrição hídrica durou 10 dias e foram avaliadas as trocas gasosas e a fluorescência da clorofila. O híbrido tolerante (DKB 390) apresentou maior fotossíntese, condutância estomática, eficiência de carboxilação, taxa de transporte de elétrons e quenching não fotoquímico quando aplicada a quitosana. As plantas do genótipo tolerante tratadas com quitosana foram mais tolerantes ao déficit hídrico porque foram mais responsivas ao biopolímero.


Assuntos
Zea mays , Quitosana , Fotossíntese , Estresse Fisiológico , Água , Folhas de Planta , Secas
7.
BMC Plant Biol ; 20(1): 288, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571226

RESUMO

BACKGROUND: Environmental stress is a crucial factor restricting plant growth as well as crop productivity, thus influencing the agricultural sustainability. Biochar addition is proposed as an effective management to improve crop performance. However, there were few studies focused on the effect of biochar addition on crop growth and productivity under interactive effect of abiotic stress (e.g., drought and salinity). This study was conducted with a pot experiment to investigate the interaction effects of drought and salinity stress on soybean yield, leaf gaseous exchange and water use efficiency (WUE) under biochar addition. RESULTS: Drought and salinity stress significantly depressed soybean phenology (e.g. flowering time) and all the leaf gas exchange parameters, but had inconsistent effects on soybean root growth and WUE at leaf and yield levels. Salinity stress significantly decreased photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate by 20.7, 26.3, 10.5 and 27.2%, respectively. Lower biomass production and grain yield were probably due to the restrained photosynthesis under drought and salinity stress. Biochar addition significantly enhanced soybean grain yield by 3.1-14.8%. Drought stress and biochar addition significantly increased WUE-yield by 27.5 and 15.6%, respectively, while salinity stress significantly decreased WUE-yield by 24.2%. Drought and salinity stress showed some negative interactions on soybean productivity and leaf gaseous exchange. But biochar addition alleviate the negative effects on soybean productivity and water use efficiency under drought and salinity stress. CONCLUSIONS: The results of the present study indicated that drought and salinity stress could significantly depress soybean growth and productivity. There exist interactive effects of drought and salinity stress on soybean productivity and water use efficiency, while we could employ biochar to alleviate the negative effects. We should consider the interactive effects of different abiotic restriction factors on crop growth thus for sustainable agriculture in the future.


Assuntos
Carvão Vegetal , Secas , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Biomassa , Gases/metabolismo , Folhas de Planta/metabolismo , Estresse Salino , Glycine max/metabolismo , Água/metabolismo
8.
Plants (Basel) ; 9(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213938

RESUMO

Copper (Cu) is an essential heavy metal for plants, but high Cu concentration in the soil causes phytotoxicity. Some plants, however, possess a system that can overcome Cu toxicity, such as Cu localization, and an active antioxidant defence system to reduce oxidative damage induced by high Cu concentration. The present study was conducted to explore the phytoremediation potential, morpho-physiological traits, antioxidant capacity, and fibre quality of jute (Corchorus capsularis) grown in a mixture of Cu-contaminated soil and natural soil at ratios of 0:1 (control), 1:0, 1:1, 1:2 and 1:4. Our results showed that high Cu concentration in the soil decreased plant growth, plant biomass, chlorophyll content, gaseous exchange, and fibre yield while increasing reactive oxygen species (ROS), which indicated oxidative stress induced by high Cu concentration in the soil. Antioxidant enzymes, such as superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) scavenge ROS in plant cells/tissues. Furthermore, high Cu concentration did not significantly worsen the fibre quality of C. capsularis, and this plant was able to accumulate a large amount of Cu, with higher Cu accumulation in its shoots than in its roots. Transmission electron microscopy (TEM) revealed that Cu toxicity affected different organelles of C. capsularis, with the chloroplast as the most affected organelle. On the basis of these results, we concluded that high Cu concentration was toxic to C. capsularis, reducing crop yield and plant productivity, but showing little effect on plant fibre yield. Hence, C. capsularis, as a fibrous crop, can accumulate a high concentration of Cu when grown in Cu-contaminated sites.

9.
Chemosphere ; 248: 126032, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32018110

RESUMO

Soil in mining areas is typically highly contaminated with heavy metals and lack essential nutrients for plants. Phosphorus reduces oxidative stress, improves plant growth, composition, and cellular structure, as well as facilitates the phytoremediation potential of fibrous crop plant species. In this study, we investigated two jute (Corchorus capsularis) varieties HongTieGuXuan and GuBaChangJia cultivated in copper (Cu)-contaminated soil (2221 mg kg-1), under different applications of phosphorus (0, 30, 60, and 120 kg ha-1) at both anatomical and physiological levels. At the same Cu concentration, the tolerance index of HongTieGuXuan was higher than that of GuBaChangJia, indicating that HongTieGuXuan may be more tolerant to Cu stress. Although the normal concentration of P (60 kg ha-1) in the soil improved plant growth, biomass, chlorophyll content, fibre yield and quality, and gaseous exchange attributes. However, high concentration of P (120 kg ha-1) was toxic to both jute varieties affected morphological and physiological attributes of the plants under same level of Cu. Moreover, Cu toxicity increased the oxidative stress in the leaves of both jute varieties was overcome by the activities of antioxidant enzymes. Furthermore, the high concentration of Cu altered the ultrastructure of chloroplasts, plastoglobuli, mitochondria, and many other cellular organelles in both jute varieties. Thus, phytoextraction of Cu by both jute varieties increased with the increase in P application in the Cu-contaminated soil. This suggests that P application enhanced the phytoremediation potential jute plants and can be cultivated as fibrous crop in Cu-contaminated sites.


Assuntos
Cobre/isolamento & purificação , Corchorus/metabolismo , Fósforo/farmacologia , Poluentes do Solo/isolamento & purificação , Antioxidantes/metabolismo , Biodegradação Ambiental , Clorofila/metabolismo , Cobre/toxicidade , Corchorus/citologia , Corchorus/efeitos dos fármacos , Corchorus/crescimento & desenvolvimento , Enzimas/metabolismo , Fertilizantes , Mineração , Organelas , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes do Solo/toxicidade
10.
PeerJ ; 8: e8321, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32030320

RESUMO

Kenaf (Hibiscus cannabinus L.) is a fibrous crop, grown in tropical climate having huge biomass and can be a good candidate for the phytoremediation of different heavy metals. Consequently, the present study was conducted to explore morpho-physiological traits, photosynthetic pigments, gaseous exchange attributes, antioxidative response and phytoextraction of copper (Cu) in H. cannabinus grown under different levels of Cu i.e. 0 (control), 60, 120 and 180 µmol L-1 in Hoagland nutrient solution (pH 6.2). The results from the present study revealed that Cu toxicity reduced plant height, plant diameter, plant fresh weight, plant dry weight, photosynthetic pigments and gaseous exchange attributes compared to control. Moreover, excess Cu in the nutrient solution ameliorates contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL) which showed that Cu induced oxidative damage in the roots and leaves of H. cannabinus. The oxidative stress which was induced by a high concentration of Cu in the nutrient solution is overcome by enzymatic activities of antioxidants which increased with the increase in Cu concentration, i.e. 60 and 120 µmol L-1, while the addition of Cu (180 µmol L-1) caused a reduction in the activities of superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) in the roots and leaves of H. cannabinus. The results also demonstrated that an increase in Cu concentration in the nutrient solution causes an increase in Cu accumulation through roots, leaves and stems of H. cannabinus, although the highest Cu concentration was accumulated in roots while only a little transported to the above ground parts (leaves and stems) of the plants. All the values of bioaccumulation factor (BAF) and translocation factor (TF) were less than 1, which also indicated that a small quantity of Cu concentration is transported to the aboveground part of the plants. These findings suggested that phytotoxicity of Cu affected plant growth and biomass and increased ROS production while accumulation of Cu in different parts of plant proved that H. cannabinus is an ideal specie for phytoremediation of Cu when grown under Cu contaminated sites.

11.
Plant J ; 101(4): 768-779, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31583771

RESUMO

The intricate and interconnecting reactions of C3 photosynthesis are often limited by one of two fundamental processes: the conversion of solar energy into chemical energy, or the diffusion of CO2 from the atmosphere through the stomata, and ultimately into the chloroplast. In this review, we explore how the contributions of stomatal morphology and distribution can affect photosynthesis, through changes in gaseous exchange. The factors driving this relationship are considered, and recent results from studies investigating the effects of stomatal shape, size, density and patterning on photosynthesis are discussed. We suggest that the interplay between stomatal gaseous exchange and photosynthesis is complex, and that a disconnect often exists between the rates of CO2 diffusion and photosynthetic carbon fixation. The mechanisms that allow for substantial reductions in maximum stomatal conductance without affecting photosynthesis are highly dependent on environmental factors, such as light intensity, and could be exploited to improve crop performance.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/anatomia & histologia , Plantas Geneticamente Modificadas
12.
J Environ Manage ; 257: 109994, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868646

RESUMO

Flax (Linum usitatissimum L.) is one of the oldest predominant industrial crops grown for seed, oil and fiber. The present study was executed to evaluate the morpho-physiological traits, biochemical responses, gas exchange parameters and phytoextraction potential of flax raised in differentially copper (Cu) spiked soil viz (0, 200, 400 and 600 mg Cu kg-1 soil) under greenhouse pot experiment. The results revealed that flax plants were able to grow up to 400 mg kg-1 Cu level without showing significant growth inhabitation while, further inference of Cu (600 mg kg-1) in the soil prominently inhibited flax growth and biomass accumulation. Compared to the control, contents of proline and malondialdehyde (MDA) were increased by 160.0% and 754.1% accordingly, at 600 mg Cu kg-1 soil level. The Cu-induced oxidative stress was minimized by the enhanced activities of superoxide dismutase (SOD) by 189.2% and guaiacol peroxidase (POD) by 300.8% in the leaves of flax at 600 mg Cu kg-1 soil level, compared to the untreated control. The plant Cu concentration was determined at 35, 70, 105 and 140 days after sowing (DAS) and results depicted that 16.9 times higher Cu concentration was accumulated in flax roots while little (14.9 times) was transported to the shoots at early stage of growth, i.e. 35 DAS. While at 140 DAS, Cu was highly (21.7 times) transported to the shoots while, only 12.3 times Cu was accumulated in the roots at 600 mg Cu kg-1 soil level, compared to control. Meanwhile, Cu uptake by flax was boosted up to 253 mg kg-1 from the soil and thereby extracted 43%, 39% and 41% of Cu at 200, 400 and 600 mg Cu kg-1 soil level, compared to initial Cu concentration. Therefore, study concluded that flax has a great potential to accumulate high concentration of Cu in its shoots and can be utilized as phytoremediation material when grown in Cu contaminated soils.


Assuntos
Linho , Poluentes do Solo , Biodegradação Ambiental , Cobre , Estresse Oxidativo , Raízes de Plantas , Solo
13.
Environ Sci Pollut Res Int ; 26(20): 20689-20700, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104234

RESUMO

Cadmium (Cd) toxicity in agricultural crops is a widespread problem. Little is known about biochar and arbuscular mycorrhizal fungi (AMF) effect on Cd concentration in maize plant either applied separately or in combination. Current study was performed to demonstrate effects of biochar and Rhizophagus clarus on plant growth, photosynthesis activity, nutrients (P, Ca, Mg, Fe, Cu, and Mn), and Cd concentration in maize grown in Cd-spiked soil. The alkaline soil was spiked by Cd factor at three levels: 0 (Cd 0), 5 (Cd 5), and 10 (Cd 10) mg/kg; biochar factor at two levels: 0 and 1%; and mycorrhizal inoculum factor at two levels: MF0 and MF1 (R. clraus). Plants were harvested after 70 days of seed germination, and various morphological and physiological parameters, as well as elemental concentration and root colonization, were recorded. Addition of biochar increased plant biomass by 21% (Cd 5) and 93% (Cd 10), MF1 enhanced by 53% (Cd 0) and 69% (Cd 10), while biochar + MF1 enhanced dry plant biomass by 70% (Cd 0) and 94% (Cd 10). Results showed maximum increase of 94% (Cd 10) in plant biomass was observed in Cd-spiked soil. Root colonization decreased proportionally by increasing Cd concentration and at Cd 10, colonization was 36.7% and 31.7% for MF1 and biochar + MF1 treatments, respectively. Besides that, addition of biochar enhanced root attributes (root length, volume, and surface area) by 34-58% compared to control in Cd 10. The MF1 increased these attributes by 11-78% while biochar + MF1 enhanced by 32-61% in Cd-spiked soil. However, biochar + MF1 neutralized Cd stress in maize plant for gaseous attributes (assimilation rate, transpiration rate, intercellular CO2, and stomatal conductance). The MF1 enhanced Cd concentration in plant as it was 3.32 mg/kg in Cd 5 and 6.73 mg/kg in Cd 10 treatments while addition of biochar phytostabilized Cd and reduced its concentration in plants by 2.0 mg/kg in Cd 5 and 4.27 mg/kg in Cd 10. The biochar + MF1 had 2.9 mg/kg and 4.8 mg/kg Cd concentration in Cd 5 and Cd 10 plants, respectively. Phosphorus concentration was augmented in shoots (up to 26%) and roots (up to 20%) of maize plant in biochar-amended soil than control plants. In biochar + MF1, concentration of P was 1.01% and 0.73% in Cd 5 and Cd 10, respectively. It is concluded that biochar + MF1 treatment enhances plant biomass while addition of sole biochar reduced Cd uptake, slightly indifferent to earlier treatment.


Assuntos
Cádmio/metabolismo , Carvão Vegetal/química , Glomeromycota/fisiologia , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Zea mays/crescimento & desenvolvimento , Biomassa , Cádmio/química , Cádmio/toxicidade , Carvão Vegetal/análise , Nutrientes/metabolismo , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Zea mays/metabolismo , Zea mays/microbiologia
14.
Chemosphere ; 211: 335-344, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077929

RESUMO

Organophosphorus flame retardants (OPFRs) have been detected ubiquitously in the air and water worldwide, but no study has focused on their air-water exchange process. Here, we investigated the concentrations, distributions, and seasonal variations of OPFRs in the coastal air and water of Dalian, China. The total concentrations of 10 OPFRs in the air based on passive air sampling ranged from 0.50 to 20.0 ng/m3, while the concentrations of OPFRs in the water dissolved phase ranged from 48.3 to 681 ng/L. Relatively high concentrations were mainly discovered near the industry areas or river estuaries, suggesting that point sources along the coastline may significantly influence the local OPFR concentrations. Tris(2-chloroisopropyl) phosphate (TCIPP) was the most dominant congener followed by tris(2-chloroethyl) phosphate (TCEP), which was consistent with their high production and persistence. The air-water gaseous exchanges of OPFRs were estimated for the first time according to their concentrations in gaseous and dissolved phases. Generally, the gaseous exchange fluxes varied with sampling site and period. TCIPP showed the highest gaseous deposition flux of -395 ±â€¯1211 ng/(m2 d), while TCEP showed the highest emission flux of 1414 ±â€¯2093 ng/(m2 d). The dry deposition fluxes of OPFRs (0.05-822 ng/(m2 d)) were also calculated based on their particle fractions in the air. The result suggested that both gaseous exchange and particle deposition processes significantly influenced the air-water transport of OPFRs in this area.


Assuntos
Exposição Ambiental/análise , Estuários , Retardadores de Chama/análise , Compostos Organofosforados/análise , Águas Residuárias/química , Água/química , China , Rios/química
15.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467326

RESUMO

Abstract It is a fact that the regions that cultivate the most maize crop do not have fully adequate technologies to measure productivity losses caused by irregularities in water availability. The objective of this study was to evaluate the physiological characteristics of maize hybrids tolerant (DKB 390) and sensitive (BRS 1030) to drought, at V5 growth stage and under water restriction, in order to understand the mechanisms involved in the induction of tolerance to drought by chitosan in contrasting maize genotypes. Plants were cultivated in pots at a greenhouse, and chitosan 100 ppm was applied by leaf spraying. The water restriction was imposed for 10 days and then leaf gaseous exchange and chlorophyll fluorescence were evaluated. The tolerant hybrid (DKB 390) showed higher photosynthesis, stomatal conductance, carboxylation efficiency, electron transport rate, and non-photochemical quenching when chitosan was used. Plants from tolerant genotype treated with chitosan were more tolerant to water stress because there were more responsive to the biopolymer.


Resumo As regiões que cultivam milho como cultura principal ainda não possuem tecnologias adequadas para mensurar as perdas na produtividade decorrentes na disponibilidade irregular de água. O objetivo desse estudo foi avaliar as características fisiológicas de híbridos de milho tolerante (DKB 390) e sensível (BRS1030) à seca, no estádio de crescimento V5 e sob restrição hídrica, para compreender os mecanismos envolvidos na indução de tolerância à seca pela quitosana em genótipos contrastantes. As plantas foram cultivadas vasos na casa de vegetação e a quitosana 100 ppm foi aplicada por pulverização foliar. A restrição hídrica durou 10 dias e foram avaliadas as trocas gasosas e a fluorescência da clorofila. O híbrido tolerante (DKB 390) apresentou maior fotossíntese, condutância estomática, eficiência de carboxilação, taxa de transporte de elétrons e quenching não fotoquímico quando aplicada a quitosana. As plantas do genótipo tolerante tratadas com quitosana foram mais tolerantes ao déficit hídrico porque foram mais responsivas ao biopolímero.

16.
J Food Sci Technol ; 51(7): 1223-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24966416

RESUMO

Concentrations of different gases and volatiles present or produced inside a fruit are determined by the permeability of the fruit tissue to these compounds. Primarily, surface morphology and anatomical features of a given fruit determine the degree of permeance across the fruit. Species and varietal variability in surface characteristics and anatomical features therefore influence not only the diffusibility of gases and volatiles across the fruits but also the activity and response of various metabolic and physiological reactions/processes regulated by these compounds. Besides the well-known role of ethylene, gases and volatiles; O2, CO2, ethanol, acetaldehyde, water vapours, methyl salicylate, methyl jasmonate and nitric oxide (NO) have the potential to regulate the process of ripening individually and also in various interactive ways. Differences in the prevailing internal atmosphere of the fruits may therefore be considered as one of the causes behind the existing varietal variability of fruits in terms of rate of ripening, qualitative changes, firmness, shelf-life, ideal storage requirement, extent of tolerance towards reduced O2 and/or elevated CO2, transpirational loss and susceptibility to various physiological disorders. In this way, internal atmosphere of a fruit (in terms of different gases and volatiles) plays a critical regulatory role in the process of fruit ripening. So, better and holistic understanding of this internal atmosphere along with its exact regulatory role on various aspects of fruit ripening will facilitate the development of more meaningful, refined and effective approaches in postharvest management of fruits. Its applicability, specially for the climacteric fruits, at various stages of the supply chain from growers to consumers would assist in reducing postharvest losses not only in quantity but also in quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...