Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt A): 324-345, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39096702

RESUMO

Gemini surfactants have become the research focus of novel excellent inhibitors because of their special structure (two amphiphilic moieties covalently connected at head group by a spacer) and excellent surface properties. It is proved by theoretical calculations that 1, 3-bis (dodecyl dimethyl ammonium chloride) propane (BDDACP) molecules can perform electron transfer with Fe (110). And it has a small fraction free volume, thus greatly reducing the diffusion and migration degree of corrosive particles. The potentiodynamic polarization curve showed that coefficients of cathodic and anodic reaction less than 1 and polarization resistance increased to 1602.9 Ω cm-2 after added BDDACP, confirming that BDDACP significantly inhibited the corrosion reaction by occupying the active site. The electrochemical impedance spectrum of imperfect semi-circle shows that the system resistance increases and double layer capacitance after added BDDACP. Weight loss tests also confirmed that BDDACP forms protective film by occupying the active sites on steel surface, and the maximum inhibition efficiency is 92 %. Comparison of the microscopic morphology showed that steel surface roughness was significantly reduced after added BDDACP. The results of time-of-flight secondary ion mass spectrometry show that steel surface contains some elements from BDDACP, which confirms the adsorption of BDDACP on steel surface.

2.
Molecules ; 29(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275014

RESUMO

Surfactants are hailed as "industrial monosodium glutamate", and are widely used as emulsifiers, demulsifiers, water treatment agents, etc., in the petroleum industry. However, due to the unidirectivity of conventional surfactants, the difficulty in demulsifying petroleum emulsions generated after emulsification with such surfactants increases sharply. Therefore, it is of great significance and application value to design and develop a novel switchable surfactant for oil exploitation. In this study, a CO2-switchable Gemini surfactant of N,N'-dimethyl-N,N'-didodecyl butylene diamine (DMDBA) was synthesized from 1, 4-dibromobutane, dodecylamine, formic acid, and formaldehyde. Then, the synthesized surfactant was structurally characterized by infrared (IR) spectroscopy, hydrogen nuclear magnetic resonance (1H NMR) spectroscopy, and electrospray ionization mass spectrometry (ESI-MS); the changes in conductivity and Zeta potential of DMDBA before and after CO2/N2 injection were also studied. The results show that DMDBA had a good CO2 response and cycle reversibility. The critical micelle concentration (CMC) of cationic surfactant obtained from DMDBA by injecting CO2 was 1.45 × 10-4 mol/L, the surface tension at CMC was 33.4 mN·m-1, and the contact angle with paraffin was less than 90°, indicating that it had a good surface activity and wettability. In addition, the kinetic law of the process of producing surfactant by injecting CO2 was studied, and it was found that the process was a second-order reaction. The influence of temperature and gas velocity on the reaction dynamics was explored. The calculated values from the equation were in good agreement with the measured values, with a correlation coefficient greater than 0.9950. The activation energy measured during the formation of surfactant was Ea = 91.16 kJ/mol.

3.
BMC Complement Med Ther ; 24(1): 337, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304876

RESUMO

BACKGROUND: Drug combination therapy is preferred over monotherapy in clinical research to improve therapeutic effects. Developing a new nanodelivery system for cancer drugs can reduce side effects and provide several advantages, including matched pharmacokinetics and potential synergistic activity. This study aimed to examine and determine the efficiency of the gemini surfactants (GSs) as a pH-sensitive polymeric carrier and cell-penetrating agent in cancer cells to achieve dual drug delivery and synergistic effects of curcumin (Cur) combined with tamoxifen citrate (TMX) in the treatment of MCF-7 and MDA-MB-231 human BC cell lines. METHODS: The synthesized NPs were self-assembled using a modified nanoprecipitation method. The functional groups and crystalline form of the nanoformulation were examined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) used to assess zeta potential and particle size, and the morphological analysis determined by transmission electron microscopy (TEM). The anticancer effect was evaluated through an in vitro cytotoxicity MTT assay, flow cytometry analysis, and apoptosis analysis performed for mechanism investigation. RESULTS: The tailored NPs were developed with a size of 252.3 ± 24.6 nm and zeta potential of 18.2 ± 4.4 mV capable of crossing the membrane of cancer cells. The drug loading and release efficacy assessment showed that the loading of TMX and Cur were 93.84% ± 1.95% and 90.18% ± 0.56%, respectively. In addition, the drug release was more controlled and slower than the free state. Polymeric nanocarriers improved controlled drug release 72.19 ± 2.72% of Tmx and 55.50 ± 2.86% of Cur were released from the Tmx-Cur-Gs NPs after 72 h at pH = 5.5. This confirms the positive effect of polymeric nanocarriers on the controlled drug release mechanism. moreover, the toxicity test showed that combination-drug delivery was much more greater than single-drug delivery in MCF-7 and MDA-MB-231 cell lines. Cellular imaging showed excellent internalization of TMX-Cur-GS NPs in both MCF-7 and MDA-MB-231 cells and synergistic anticancer effects, with combination indices of 0.561 and 0.353, respectively. CONCLUSION: The combined drug delivery system had a greater toxic effect on cell lines than single-drug delivery. The synergistic effect of TMX and Cur with decreasing inhibitory concentrations could be a more promising system for BC-targeted therapy using GS NPs.


Assuntos
Neoplasias da Mama , Curcumina , Nanopartículas , Tensoativos , Tamoxifeno , Humanos , Curcumina/farmacologia , Curcumina/química , Tamoxifeno/farmacologia , Tamoxifeno/química , Nanopartículas/química , Neoplasias da Mama/tratamento farmacológico , Tensoativos/química , Tensoativos/farmacologia , Concentração de Íons de Hidrogênio , Feminino , Sinergismo Farmacológico , Células MCF-7 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química
4.
J Hazard Mater ; 478: 135458, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173379

RESUMO

Surfactant-enhanced aquifer remediation (SEAR) has effectively removed dense nonaqueous phase liquids (DNAPLs) from the contaminated aquifers. However, restricted by structural defects, typical monomeric surfactants undergo precipitation, high adsorption loss, and poor solubilization in aquifers, resulting in low remediation efficiency. In this study, a novel sugar-based anionic and non-ionic Gemini surfactant (SANG) was designed and synthesized for SEAR. Glucose was introduced into SANG as a non-ionic group to overcome the interference of low temperature and ions in groundwater. Sodium sulfonate was introduced as an anionic group to overcome aquifer adsorption loss. Two long-straight carbon chains were introduced as hydrophobic groups to provide high surface activity and solubilizing capacity. Even with low temperature or high salt content, its solution did not precipitate in aquifer conditions. The adsorption loss was as low as 0.54 and 0.90 mg/g in medium and fine sand, respectively. Compared with typical surfactants used for SEAR, SANG had the highest solubilization and desorption abilities for perchloroethylene (PCE) without emulsification, a crucial negative that Tween80 and other non-ionic surfactants exhibit. After flushing the contaminated aquifer using SANG, > 99 % of PCE was removed. Thus, with low potential environmental risk, SANG is effectively applicable in subsurface remediation, making it a better surfactant choice for SEAR.

5.
J Control Release ; 374: 293-311, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151831

RESUMO

The persistent presence of covalently closed circular DNA (cccDNA) in hepatocyte nuclei poses a significant obstacle to achieving a comprehensive cure for hepatitis B virus (HBV). Current applications of CRISPR/Cas9 for targeting and eliminating cccDNA have been confined to in vitro studies due to challenges in stable cccDNA expression in animal models and the limited non-immunogenicity of delivery systems. This study addresses these limitations by introducing a novel non-viral gene delivery system utilizing Gemini Surfactant (GS). The developed system creates stable and targeted CRISPR/Cas9 nanodrugs with a negatively charged surface through modification with red blood cell membranes (RBCM) or hepatocyte membranes (HCM), resulting in GS-pDNA@Cas9-CMs complexes. These GS-pDNA complexes demonstrated complete formation at a 4:1 w/w ratio. The in vitro transfection efficiency of GS-pDNA-HCM reached 54.61%, showing homotypic targeting and excellent safety. Additionally, the study identified the most effective single-guide RNA (sgRNA) from six sequences delivered by GS-pDNA@Cas9-HCM. Using GS-pDNA@Cas9-HCM, a significant reduction of 96.47% in in vitro HBV cccDNA and a 52.34% reduction in in vivo HBV cccDNA were observed, along with a notable decrease in other HBV-related markers. The investigation of GS complex uptake by AML-12 cells under varied time and temperature conditions revealed clathrin-mediated endocytosis (CME) for GS-pDNA and caveolin-mediated endocytosis (CVME) for GS-pDNA-HCM and GS-pDNA-RBCM. In summary, this research presents biomimetic gene-editing nanovectors based on GS (GS-pDNA@Cas9-CMs) and explores their precise and targeted clearance of cccDNA using CRISPR/Cas9, demonstrating good biocompatibility both in vitro and in vivo. This innovative approach provides a promising therapeutic strategy for advancing the cure of HBV.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Transferência de Genes , Vírus da Hepatite B , Hepatite B , Nanopartículas , Hepatite B/terapia , Vírus da Hepatite B/genética , Humanos , Nanopartículas/química , Animais , Células Hep G2 , Terapia Genética/métodos , Materiais Biomiméticos/química , DNA Circular , Plasmídeos/genética , Plasmídeos/administração & dosagem , Hepatócitos/metabolismo , Biomimética/métodos , Tensoativos/química , DNA Viral/genética , Camundongos
6.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607107

RESUMO

Drug delivery vehicles composed of lipids and gemini surfactants (GS) are promising in gene therapy. Tuning the composition and properties of the delivery vehicle is important for the efficient load and delivery of DNA fragments (genes). In this paper, we studied novel gene delivery systems composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-3-phosphocholine (DPPC), and GS of the type N,N-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide at different ratios. The nanoscale properties of the mixed DOPC-DPPC-GS monolayers on the surface of the gene delivery system were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that lipid-GS mixed monolayers result in the formation of nanoscale domains that vary in size, height, and electrical surface potential. We show that the presence of GS can impart significant changes to the domain topography and electrical surface potential compared to monolayers composed of lipids alone.

7.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675545

RESUMO

The use of surfactants in oil recovery can effectively improve crude oil recovery rate. Due to the enhanced salt and temperature resistance of surfactant molecules by non-ionic chain segments, anionic groups have good emulsifying stability. Currently, there are many studies on anionic non-ionic surfactants for oil recovery in China, but there is relatively little systematic research on introducing EOs into hydrophobic alkyl chains, especially on their self-assembly behavior. This article proposes a simple and effective synthesis method, using 3-aminopropane sulfonic acid, fatty alcohol polyoxyethylene ether, and epichlorohydrin as raw materials, to insert EO into hydrophobic alkyl chains and synthesize a series of new anionic non-ionic Gemini surfactants (CnEO-5, n = 8, 12, 16). The surface activity, thermodynamic properties, and self-assembly behavior of these surfactants were systematically studied through surface tension, conductivity, steady-state fluorescence probes, transmission electron microscopy, and molecular dynamics simulations. The surface tension test results show that CnEO-5 has high surface activity and is higher than traditional single chain surfactants and structurally similar anionic non-ionic Gemini surfactants. Additionally, thermodynamic parameters (e.g., ΔG°mic ΔH°mic ΔS°mic et al. indicate that CnEO-5 molecules are exothermic and spontaneous during the micellization process. DLS, p-values, and TEM results indicate that anionic non-ionic Gemini surfactants with shorter hydrophobic chains (such as C8EO-5) tend to form larger vesicles in aqueous solutions, which are formed in a tail to tail and staggered manner; Negative non-ionic Gemini surfactants with longer hydrophobic chains (such as C12EO-5, C16EO-5) tend to form small micelles. The test results indicate that CnEO-5 anionic non-ionic Gemini surfactants have certain application prospects in improving crude oil recovery.

8.
Biomed Pharmacother ; 171: 116104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198956

RESUMO

Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 µg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Obesidade , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Ouro/farmacologia , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade/tratamento farmacológico , Termogênese , Aumento de Peso
9.
Angew Chem Int Ed Engl ; 63(9): e202315822, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38081787

RESUMO

Electroreduction of CO2 into valuable chemicals and fuels is a promising strategy to mitigate energy and environmental problems. However, it usually suffers from unsatisfactory selectivity for a single product and inadequate electrochemical stability. Herein, we report the first work to use cationic Gemini surfactants as modifiers to boost CO2 electroreduction to formate. The selectivity, activity and stability of the catalysts can be all significantly enhanced by Gemini surfactant modification. The Faradaic efficiency (FE) of formate could reach up to 96 %, and the energy efficiency (EE) could achieve 71 % over the Gemini surfactants modified Cu electrode. In addition, the Gemini surfactants modified commercial Bi2 O3 nanosheets also showed an excellent catalytic performance, and the FE of formate reached 91 % with a current density of 510 mA cm-2 using the flow cell. Detailed studies demonstrated that the double quaternary ammonium cations and alkyl chains of the Gemini surfactants played a crucial role in boosting electroreduction CO2 , which can not only stabilize the key intermediate HCOO* but also provide an easy access for CO2 . These observations could shine light on the rational design of organic modifiers for promoted CO2 electroreduction.

10.
Chemosphere ; 350: 140928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092174

RESUMO

CO2-responsive microemulsion (ME) is considered a promising candidate for deep-cleaning and oil recovery from oil-contaminated soils. Understanding the responsive nature of different microstructures (i.e., oil-in-water (O/W), bicontinuous (B.C.) and water-in-oil (W/O)) is essential for unlocking the potential and mechanisms of CO2-responsive emulsions in complex multiphase systems and providing comprehensive guidance for remediation of oil-contaminated soils. Herein, the responsiveness of microstructures of ME to CO2 trigger was investigated using experimental designs and coarse-grained molecular dynamic simulations. MEs were formed for the first time by a weakly associated pseudo-Gemini surfactant of indigenous organic acids (naphthenic acids, NAs are a class of natural surface-active molecules in crude oil) and tetraethylenepentamine (TEPA) through fine tuning of co-solvent of dodecyl benzene sulfonic acid (DBSA) and butanol. The O/W ME exhibited an optimal CO2-responsive character due to easier proton migration in the continuous aqueous phase and more pronounced dependence of configuration on deprotonated NA ions. Conversely, the ME with W/O microstructure exhibited a weak to none responsive characteristic, most likely attributed to its high viscosity and strong oil-NA interactions. The O/W ME also showed superior cleaning efficiency and oil recovery from oil-contaminated soils. The results from this study provide insights for the design of CO2-responsive MEs with desired performance and guidance for choosing the favorable operating conditions in various industrial applications, such as oily solid waste treatment, enhanced oil recovery (EOR), and pipeline transportation. The insights from this work allow more efficient and tailored design of switchable MEs for manufacturing advanced responsive materials in various industrial sectors and formulation of household products.


Assuntos
Dióxido de Carbono , Óleos , Óleos/química , Tensoativos/química , Emulsões/química , Água/química , Solo
11.
Mol Pharm ; 20(10): 5066-5077, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37726201

RESUMO

Cubosomes are nanoparticles with bicontinuous cubic internal nanostructures that have been considered for use in drug delivery systems (DDS). However, their low structural stability is a crucial concern for medical applications. Herein, we investigated the use of a gemini surfactant, sodium dilauramidoglutamide lysine (DLGL), which is composed of two monomeric surfactants linked with a spacer to improve the structural stability of cubosomes prepared with phytantriol (PHY). Uniform nanosuspensions comprising a specific mixing ratio of DLGL and PHY in water prepared via ultrasonication were confirmed by using dynamic light scattering. Small-angle X-ray scattering and cryo-transmission electron microscopy revealed the formation of Pn3̅m cubosomes in a range of DLGL/PHY solid ratios between 1 and 3% w/w. By contrast, cubosome formation was not observed at DLGL/PHY solid ratios of 5% w/w or higher, suggesting that excess DLGL interfered with cubosome formation and caused them to transform into small unilamellar vesicles. The addition of phosphate-buffered saline to the nanosuspension caused aggregation when the solid ratio of DLGL/PHY was less than 5% w/w. However, Im3̅m cubosomes were obtained at solid ratios of DLGL/PHY of 6, 7.5, and 10% w/w. The lattice parameters of the Pn3̅m and Im3̅m cubosomes were approximately 7 and 11-13 nm, respectively. The lattice parameters of Im3̅m cubosomes were affected by the concentration of DLGL. Pn3̅m cubosomes were surprisingly stable for 4 weeks at both 25 and 5 °C. In conclusion, DLGL, a gemini surfactant, was found to act as a new stabilizer for PHY cubosomes at specific concentrations. Cubosomes composed of DLGL are stable under low-temperature storage conditions, such as in refrigerators, making them a viable option for heat-sensitive DDS.


Assuntos
Sistemas de Liberação de Medicamentos , Tensoativos , Tensoativos/química , Álcoois Graxos/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
12.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569687

RESUMO

A synthesis procedure and aggregation properties of a new homologous series of dicationic gemini surfactants with a dodecane spacer and two carbamate fragments (N,N'-dialkyl-N,N'-bis(2-(ethylcarbamoyloxy)ethyl)-N,N'-dimethyldodecan-1,6-diammonium dibromide, n-12-n(Et), where n = 10, 12, 14) were comprehensively described. The critical micelle concentrations of gemini surfactants were obtained using tensiometry, conductometry, spectrophotometry, and fluorimetry. The thermodynamic parameters of adsorption and micellization, i.e., maximum surface excess (Гmax), the surface area per surfactant molecule (Amin), degree of counterion binding (ß), and Gibbs free energy of micellization (∆Gmic), were calculated. Functional activity of the surfactants, including the solubilizing capacity toward Orange OT and indomethacin, incorporation into the lipid bilayer, minimum inhibitory concentration, and minimum bactericidal and fungicidal concentrations, was determined. Synthesized gemini surfactants were further used for the modification of liposomes dual-loaded with α-tocopherol and donepezil hydrochloride for intranasal treatment of Alzheimer's disease. The obtained liposomes have high stability (more than 5 months), a significant positive charge (approximately + 40 mV), and a high degree of encapsulation efficiency toward rhodamine B, α-tocopherol, and donepezil hydrochloride. Korsmeyer-Peppas, Higuchi, and first-order kinetic models were used to process the in vitro release curves of donepezil hydrochloride. Intranasal administration of liposomes loaded with α-tocopherol and donepezil hydrochloride for 21 days prevented memory impairment and decreased the number of Aß plaques by 37.6%, 40.5%, and 72.6% in the entorhinal cortex, DG, and CA1 areas of the hippocampus of the brain of transgenic mice with Alzheimer's disease model (APP/PS1) compared with untreated animals.

13.
Antibiotics (Basel) ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37627696

RESUMO

Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, -36.7, and -45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics.

14.
Nanomicro Lett ; 15(1): 182, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450089

RESUMO

Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air. However, scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas, which is an unsettled but urgent issue. In this work, a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure, considerably enhancing the coverage and smoothness of the perovskite films. The long gemini surfactant plays a distinctively synergistic role in perovskite film construction, crystallization kinetics modulation and defect passivation, leading to a certified record power conversion efficiency of 15.46% with Voc of 1.13 V and Jsc of 22.92 mA cm-2 for this type of modules. Importantly, all of the functional layers of the module are printed through a simple and high-speed (300 cm min-1) blade coating strategy in ambient atmosphere. These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.

15.
Chemosphere ; 339: 139658, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506892

RESUMO

With the increasingly worldwide concentration of environmental pollution, exploiting cost-effective adsorbents has been a research hotspot. Here we introduce novel "functional connector" amide-containing gemini surfactants (LDAB, LDAPP, LDAMP and LDABP) and apply to modify Na-vermiculite (Na-Vt) for Congo red (CR) removal. Chain amide as the functional connector in the modifier, increases 6.9 times of CR uptake than traditional organo-Vts, which is further enhanced by tunning the functional group of modifier spacers. Superb uptake of CR on organo-Vts reaches 1214.05, 1375.47 and 1449.80 mg/g, and the removal efficiencies achieve 80.94%, 91.70% and 96.65% on LDAB-Vt, LDAPP-Vt and LDAMP-Vt, respectively. Notably, the maximum experimental adsorption capacity of LDAPP-Vt is 1759.64 mg/g. These experimental values are among the highest reported CR adsorbents. A combination experimental and theoretical analysis is conducted to unveil the structure-adsorptivity relationship: (i) Adsorptivity enhancement of organo-Vts is more effectively by regulating functional chains than the functional spacer. (ii) para-substituted aromatic spacers own the best adsorptive configuration and strongest stability for π-π interaction. (iii) π-π interaction provided by isolated aromatic ring is stronger than biphenyl, whose steric hindrance depresses the adsorptivity. Results in this study not only explain a new "functional connector" strategy to Vt-based adsorbents, but also provide a practical designing strategy for organic adsorbents characterized with high uptake capacity.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Silicatos de Alumínio , Cinética
16.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513340

RESUMO

Five ester-bonded gemini quaternary ammonium surfactants C12-En-C12 (n = 2, 4, 6), with a flexible spacer group, and C12-Bm-C12 (m = 1, 2), with rigid benzene spacers, were synthesized via a two-step reaction and analyzed. Furthermore, the effects of the spacer structure, spacer length and polymerization degree on the self-aggregation, antimicrobial activity and cytotoxicity of C12-En-C12 and C12-Bm-C12 and their corresponding monomer N-dodecyl-N,N,N-trimethyl ammonium chloride DTAC were investigated. The results showed that C12-En-C12 and C12-Bm-C12 had markedly lower critical micellar concentration (CMC) values and lower surface tension than DTAC. Moreover, the CMC values of C12-En-C12 and C12-Bm-C12 decreased with increasing spacer length. In the case of equivalent chain length, the rigidity and steric hindrance of phenylene and 1,4-benzenediyl resulted in larger CMC values for C12-Bm-C12 than for C12-En-C12. The antibacterial ability of C12-En-C12 and C12-Bm-C12 was assessed using Escherichia coli (E. coli) and Staphylococcus albus (S. aureus) based on minimum inhibitory concentrations (MICs). Furthermore, C12-En-C12 and C12-Bm-C12 exhibited higher antimicrobial activity than DTAC and had stronger function toward S. aureus than E. coli. The antimicrobial activity was enhanced by increasing the spacer chain length and decreased with the increased rigidity of the spacers. The cytotoxic effects of C12-En-C12 and C12-Bm-C12 in cultured Hela cells were evaluated by the standard CCK8 method based on half-maximal inhibitory concentration (IC50). The cytotoxicity of C12-En-C12 and C12-Bm-C12 was significantly lower than alkanediyl-α,ω-bis(dimethyldodecylammonium) bromide surfactants and DTAC. The spacer structure and the spacer length could induce significant cytotoxic effects on Hela cells. These findings indicate that the five ester-bonded GQASs have stronger antibacterial activity and lower toxicity profile, and thus can be used in the pharmaceutical industry.


Assuntos
Escherichia coli , Sais , Humanos , Sais/farmacologia , Células HeLa , Staphylococcus aureus , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/química , Antibacterianos/farmacologia , Tensoativos/farmacologia , Tensoativos/química
17.
ACS Appl Bio Mater ; 6(7): 2795-2815, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37277159

RESUMO

Compaction of calf thymus DNA (ct-DNA) by two cationic gemini surfactants, 12-4-12 and 12-8-12, in the absence and presence of negatively charged SiO2 nanoparticles (NPs) (∼100 nm) has been explored using various techniques. 12-8-12 having a longer hydrophobic spacer induces a greater extent of ct-DNA compaction than 12-4-12, which becomes more efficient with SiO2 NPs. While 50% ct-DNA compaction in the presence of SiO2 NPs occurs at ∼77 nM of 12-8-12 and ∼130 nM of 12-4-12, but a conventional counterpart surfactant, DTAB, does it at its concentration as high as ∼7 µM. Time-resolved fluorescence anisotropy measurements show changes in the rotational dynamics of a fluorescent probe, DAPI, and helix segments in the condensed DNA. Fluorescence lifetime data and ethidium bromide exclusion assays reveal the binding sites of surfactants to ct-DNA. 12-8-12 with SiO2 NPs has shown the highest cell viability (≥90%) and least cell death in the human embryonic kidney (HEK) 293 cell lines in contrast to the cell viability of ≤80% for DTAB. These results show that 12-8-12 with SiO2 NPs has the highest time and dose-dependent cytotoxicity compared to 12-8-12 and 12-4-12 in the murine breast cancer 4T1 cell line. Fluorescence microscopy and flow cytometry are performed for in vitro cellular uptake of YOYO-1-labeled ct-DNA with surfactants and SiO2 NPs using 4T1 cells after 3 and 6 h incubations. The in vivo tumor accumulation studies are carried out using a real-time in vivo imaging system after intravenous injection of the samples into 4T1 tumor-bearing mice. 12-8-12 with SiO2 has delivered the highest amount of ct-DNA in cells and tumors in a time-dependent manner. Thus, the application of a gemini surfactant with a hydrophobic spacer and SiO2 NPs in compacting and delivering ct-DNA to the tumor is proven, warranting its further exploration in nucleic acid therapy for cancer treatment.


Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Animais , Camundongos , Dióxido de Silício/química , Tensoativos/química , Células HEK293 , DNA/genética , DNA/química , Nanopartículas/química
18.
Polymers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177301

RESUMO

Gemini surfactant corrosion inhibitor (CI) is one type of CI mainly used in mitigating corrosion in the complex system of oil/gas production industries. Computer modeling methods such as density functional theory (DFT) calculation and molecular dynamic (MD) simulation are required to develop new CI molecules focusing on their application condition as a prediction or screening process before the physical empirical assessment. In this work, the adsorption inhibition efficiencies of two monomer surfactants (2B and H) and their respective Gemini structures with the addition of different spacers (alkyl, benzene, ester, ether, and ketone) are investigated using DFT calculation and MD simulation method in 3% sodium chloride (NaCl), and 1500 ppm acetic acid solutions. In DFT calculation, 2B-benzene molecules are assumed to have the most promising inhibition efficiency based on their high reactivity and electron-donating ability at their electron-rich benzene ring region based on the lowest bandgap energy (0.765 eV) and highest HOMO energy value (-2.879 eV), respectively. DFT calculation results correlate with the adsorption energy calculated from MD simulation, where 2B-benzene is also assumed to work better as a CI molecule with the most adsorption strength towards Fe (110) metal with the highest negative adsorption energy value (-1837.33 kJ/mol at temperature 323 K). Further, diffusion coefficient and molecular aggregation analysis in different CI concentrations through MD simulation reveals that only a small amount of Gemini surfactant CI is needed in the inhibition application compared to its respective monomer. Computer simulation methods successfully predict and screen the Gemini surfactant CI molecules that can work better as a corrosion inhibitor in acetic acid media. The amount of Gemini surfactant CI that needs to be used is also predicted. The future planning or way forward from this study will be the development of the most promising Gemini surfactant CI based on the results from DFT calculation and MD simulations.

19.
Arch Microbiol ; 205(5): 184, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039867

RESUMO

Influenza A virus (IAV) affects human health worldwide as a high-risk disease. It can neither be easily controlled by current vaccines and nor be treated by conventional drugs. Gemini surfactants (GS) have shown several properties including antiviral activity. In this study, the antiviral capacity of some GS compounds with different levels of hydrophobicity was examined. The 50% cytotoxic (CC50) and non-cytotoxic (NCTC) concentrations of the compounds were determined by MTT method. The NCTCs, the same as effective concentrations (EC50s), were tested for the antiviral capacity against IAV in different combination treatments for 1 h incubation on MDCK cells. The HA and MTT assays were used to evaluate the virus titer and cell viabilities, respectively. The hemolytic activity of the compounds was also assessed using an HA inhibition assay. To evaluate the apoptotic effect of GS compounds, Annexin V-PI kit was used. The HA titers decreased between 1-6.5 logs, 1-4.5 logs, and 1-5.5 logs in simultaneous, pre- and post-penetration combination treatments, respectively. The cell viability values in all combination treatments were favorable. The HI assay indicated the hemolytic potential of GSs and their physical interaction with viral HA. The apoptosis test results highlighted anti-apoptotic capacity of the GS compounds alone and in the presence of influenza virus especially for the hydrophobic ones. Gemini surfactants were generally more efficacious in simultaneous treatment. Their antiviral potential may be attributed to their physical interaction with viral membrane or HA glycoprotein that disrupts viral particle or blocks viral entry to the cell and inhibits its propagation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Animais , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Antivirais/farmacologia , Vírus da Influenza A/metabolismo , Células Madin Darby de Rim Canino
20.
Small ; 19(28): e2206866, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37026420

RESUMO

Measuring the release dynamics of drug molecules after their delivery to the target organelle is critical to improve therapeutic efficacy and reduce side effects. However, it remains challenging to quantitatively monitor subcellular drug release in real time. To address the knowledge gap, a novel gemini fluorescent surfactant capable of forming mitochondria-targeted and redox-responsive nanocarriers is designed. A quantitative Förster resonance energy transfer (FRET) platform is fabricated using this mitochondria-anchored fluorescent nanocarrier as a FRET donor and fluorescent drugs as a FRET acceptor. The FRET platform enables real-time measurement of drug release from organelle-targeted nanocarriers. Moreover, the obtained drug release dynamics can evaluate the duration of drug release at the subcellular level, which established a new quantitative method for organelle-targeted drug release. This quantitative FRET platform can compensate for the absent assessment of the targeted release performances of nanocarriers, offering in-depth understanding of the drug release behaviors at the subcellular targets.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Organelas , Liberação Controlada de Fármacos , Transferência Ressonante de Energia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA