RESUMO
The presence of IKZF1 deletions has been associated with an increased relapse rate in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). There is a particular subset of IKZF1del cases called IKZF1plus (defined by the co-occurrence of IKZF1del and deletions in CDKN2A/B, PAX5, or the PAR1 region, in the absence of ERG deletions), which is also associated with worse prognosis, but some recent studies have not found major differences between the IKZF1del and IKZF1plus groups. Therefore, the IKZF1plus group still needs further comprehension and our study aims to characterise the molecular heterogeneity and identify molecular markers exclusively associated with IKZF1plus. Two independent series of cases (TARGET, n = 125 and GenLAb, n = 60) were evaluated by segregating patients into 3 groups: IKZF1plus, IKZF1del, and IKZF1wild. Differential expression analyses showed that the membrane protein-coding genes most associated with the IKZF1plus group were: KCNA5, GREB1, EPOR, SDK1, and PTPRB. Notably, KCNA5 and GREB1 differential expression levels were validated in the GenLAb validation series. Regarding copy number alterations, we observed a high frequency of VPREB1 deletions in the IKZF1plus group, as well as additional exclusive deletions in the CD200 and BTLA genes. Recent research suggests that the importance of the IKZF1plus profile varies depending on the genetic subgroup. In this scenario, we found associations between IKZF1plus and certain genes in BCP-ALL, being KCNA5 and GREB1 the most promising biomarkers for predicting IKZF1plus. A deeper understanding of these genetic profiles will allow a better risk assessment and offer precise rationale for therapeutic strategies in BCP-ALL.
RESUMO
Cytokine Receptor-Like Factor 2 (CRLF2) overexpression occurs in 5-15% of B-cell precursor acute lymphoblastic leukaemia (B-ALL). In â¼50% of these cases, the mechanisms underlying this dysregulation are unknown. IKAROS Family Zinc Finger 1 (IKZF1) is a possible candidate to play a role in this dysregulation since it binds to the CRLF2 promoter region and suppresses its expression. We hypothesised that IKZF1 loss of function, caused by deletions or its short isoforms expression, could be associated with CRLF2 overexpression in B-ALL. A total of 131 paediatric and adult patients and 7 B-ALL cell lines were analysed to investigate the presence of IKZF1 deletions and its splicing isoforms expression levels, the presence of CRLF2 rearrangements or mutations, CRLF2 expression and JAK2 mutations. Overall survival analyses were performed according to the CRLF2 and IKZF1 subgroups. Our analyses showed that 25.2% of patients exhibited CRLF2 overexpression (CRLF2-high). CRLF2-high was associated with the presence of IKZF1 deletions (IKZF1del, p = 0.001), particularly with those resulting in dominant-negative isoforms (p = 0.006). Moreover, CRLF2 expression was higher in paediatric samples with high loads of the short isoform IK4 (p = 0.011). It was also associated with the occurrence of the IKZF1 plus subgroup (p = 0.004). Furthermore, patients with CRLF2-high/IKZF1del had a poorer prognosis in the RELLA05 protocol (p = 0.067, 36.1 months, 95%CI 0.0-85.9) and adult cohort (p = 0.094, 29.7 months, 95%CI 11.8-47.5). In this study, we show that IKZF1 status is associated with CRLF2-high and dismal outcomes in B-ALL patients regardless of age.
RESUMO
Although most antibiotics act on cells that are actively dividing and non-dividing cells such as in microbe sporulation or cancer stem cells represent a new paradigm for the control of disease. In addition to their relevance to health, such antibiotics may promote our understanding of the relationship between the cell cycle and cell death. No antibiotic specifically acting on microbial cells arrested in their cell cycle has been identified until the present time. In this study we used an antimicrobial peptide derived from α-pheromone, IP-1, targeted against MATa Saccharomyces cerevisiae cells in order to assess its dependence on cell cycle arrest to kill cells. Analysis by flow cytometry and fluorescence microscopy of various null mutations of genes involved in biological processes activated by the pheromone pathway (the mitogen-activated protein kinase pathway, cell cycle arrest, cell proliferation, autophagy, calcium influx) showed that IP-1 requires arrest in G0/G1 in order to kill yeast cells. Isolating cells in different cell cycle phases by elutriation provided further evidence that entry into cell cycle arrest, and not into G1 phase, is necessary if our peptide is to kill yeast cells. We also describe a variant of IP-1 that does not activate the pheromone pathway and consequently does not kill yeast cells that express the pheromone's receptor; the use of this variant peptide in combination with different cell cycle inhibitors that induce cell cycle arrest independently of the pheromone pathway confirmed that it is cell cycle arrest that is required for the cell death induced by this peptide in yeast. We show that the cell death induced by IP-1 differs from that induced by α-pheromone and depends on FIG1 in a way independent of the cell cycle arrest induced by the pheromone. Thus, IP-1 is the first molecule described that specifically kills microbial cells during cell cycle arrest, a subject of interest beyond the process of mating in yeast cells. The experimental system described in this study should be useful in the study of the mechanisms at play in the communication between cell cycle arrest and cell death on other organisms, hence promoting the development of new antibiotics.
RESUMO
Aspergillus niger "aggregate" is an informal taxonomic rank that represents a group of species from the section Nigri. Among A. niger "aggregate" species Aspergillus niger sensu stricto and its cryptic species Aspergillus welwitschiae (=Aspergillus awamori sensu Perrone) are proven as ochratoxin A and fumonisin B2 producing species. A. niger has been frequently found in tropical and subtropical foods. A. welwitschiae is a new species, which was recently dismembered from the A. niger taxon. These species are morphologically very similar and molecular data are indispensable for their identification. A total of 175 Brazilian isolates previously identified as A. niger collected from dried fruits, Brazil nuts, coffee beans, grapes, cocoa and onions were investigated in this study. Based on partial calmodulin gene sequences about one-half of our isolates were identified as A. welwitschiae. This new species was the predominant species in onions analyzed in Brazil. A. niger and A. welwitschiae differ in their ability to produce ochratoxin A and fumonisin B2. Among A. niger isolates, approximately 32% were OTA producers, but in contrast only 1% of the A. welwitschiae isolates revealed the ability to produce ochratoxin A. Regarding fumonisin B2 production, there was a higher frequency of FB2 producing isolates in A. niger (74%) compared to A. welwitschiae (34%). Because not all A. niger and A. welwitschiae strains produce ochratoxin A and fumonisin B2, in this study a multiplex PCR was developed for detecting the presence of essential genes involved in ochratoxin (polyketide synthase and radHflavin-dependent halogenase) and fumonisin (α-oxoamine synthase) biosynthesis in the genome of A. niger and A. welwitschiae isolates. The frequency of strains harboring the mycotoxin genes was markedly different between A. niger and A. welwitschiae. All OTA producing isolates of A. niger and A. welwitschiae showed in their genome the pks and radH genes, and 95.2% of the nonproducing isolates did not contain these genes. The α-oxoamine synthase gene was detected in 100% and 36% of the A. niger and A. welwitschiae isolates, respectively. The loss of ochratoxin A production in A. niger and A. welwitschiae is highly associated with gene deletions within the ochratoxin biosynthetic gene cluster. The loss of fumonisin production in A. welwitschiae is associated with gene deletions within the fumonisin biosynthetic gene cluster, but this is not the case with A. niger.
Assuntos
Aspergillus/genética , Microbiologia de Alimentos , Fumonisinas , Ocratoxinas , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Brasil , Família Multigênica/genética , Reação em Cadeia da Polimerase Multiplex , Ocratoxinas/biossínteseRESUMO
Alu-PCR is a relatively simple technique that can be used to investigate genomic instability in cancer. This technique allows identification of the loss, gain or amplification of gene sequences based on the analysis of segments between two Alu elements coupled with quantitative and qualitative analyses of the profiles obtained from tumor samples, surgical margins and blood. In this work, we used Alu-PCR to identify gene alterations in ten patients with invasive ductal breast cancer. Several deletions and insertions were identified, indicating genomic instability in the tumor and adjacent normal tissue. Although not associated with specific genes, the alterations, which involved chromosomal bands 1p36.23, 1q41, 11q14.3, 13q14.2, occurred in areas of well-known genomic instability in breast and other types of cancer. These results indicate the potential usefulness of Alu-PCR in identifying altered gene sequences in breast cancer. However, caution is required in its application since the Alu primer can produce non-specific amplification.
RESUMO
Alu-PCR is a relatively simple technique that can be used to investigate genomic instability in cancer. This technique allows identification of the loss, gain or amplification of gene sequences based on the analysis of segments between two Alu elements coupled with quantitative and qualitative analyses of the profiles obtained from tumor samples, surgical margins and blood. In this work, we used Alu-PCR to identify gene alterations in ten patients with invasive ductal breast cancer. Several deletions and insertions were identified, indicating genomic instability in the tumor and adjacent normal tissue. Although not associated with specific genes, the alterations, which involved chromosomal bands 1p36.23, 1q41, 11q14.3, 13q14.2, occurred in areas of well-known genomic instability in breast and other types of cancer. These results indicate the potential usefulness of Alu-PCR in identifying altered gene sequences in breast cancer. However, caution is required in its application since the Alu primer can produce non-specific amplification.