Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37237838

RESUMO

Regulatory authorities authorize the clinical use of generic drugs (GD) based on bioequivalence studies, which consist of the evaluation of pharmacokinetics after a single dose in vitro or in healthy individuals. There are few data on clinical equivalence between generic and branded antibiotics. Our aim was to synthesize and analyze the available evidence on the clinical efficacy and safety of generic antibiotics compared to their original formulations. A systematic review was performed on Medline (PubMed) and Embase and validated through Epistemonikos and Google Scholar. The last search was conducted on 30 June 2022. Meta-analyses of clinical cure and mortality outcomes were performed. One randomized clinical trial (RCT) and 10 non-randomized intervention studies were included. No differences in clinical cure were observed between groups in the meta-analysis (OR = 0.89, 95% CI [0.61-1.28]; I2 = 70%, p = 0.005). No difference was observed between groups when considering the use of carbapenems for overall mortality (OR = 0.99, 95% CI [0.63-1.55]; I2 = 78%) or death associated with infections (OR = 0.79, 95% CI [0.48-1.29], I2 = 67%). Most of the studies were observational, and the duration of follow-up, the characteristics of the participants, and the sites of infections were heterogeneous. Due to the uncertainty of the evidence, it is not possible to contraindicate the use of generics, which is an important strategy to expand access.

2.
Infect Chemother ; 54(3): 393-408, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36047302

RESUMO

The antibiotic resistance arena is fraught with myths and misconceptions, leading to wrong strategies to combat it. It is crucial to identify them, discuss them in light of current evidence, and dispel those that are unequivocally wrong. This article proposes some concepts that may qualify as misconceptions around antibiotic resistance: the susceptible-resistant dichotomy; that incomplete antibiotic courses cause resistance; that resistance "emerges" in patients and hospitals; that antibiotics are mostly abused clinically; that resistance is higher in countries that use more antibiotics; that reducing antibiotic usage would reduce resistance; that financial incentives would "jumpstart" research and development of antibiotics; that generic and "original" antibiotics are the same; and that new anti-infective therapies are just around the corner. While some of these issues are still controversial, it is important to recognize their controversial status, instead of repeating them in specialized literature and lectures and, especially, in the planning of strategies to cope with resistance.

3.
Int J Antimicrob Agents ; 49(2): 189-197, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27988068

RESUMO

Recent studies have shown that the pharmacodynamic (PD) index driving the efficacy of ß-lactam/ß-lactamase inhibitor combinations such as ceftazidime/avibactam and ceftolozane/tazobactam is the percentage of time the free inhibitor concentration is above a threshold (fT>threshold). However, data with piperacillin/tazobactam (TZP) are scarce. Here we aimed to assess the relationship between fT>threshold and TZP antibacterial efficacy by a population pharmacokinetic study in mice and dose-effect experiments in a neutropenic murine thigh infection model with two isogenic strains of Escherichia coli differentially expressing TEM-1 ß-lactamase. We also explored the dynamics of resistance selection with the innovator and a non-equivalent generic, extrapolated the results to the clinic by Monte Carlo simulation of standard TZP doses, and estimated the economic impact of generic-selected resistance. The fT>threshold index described well the efficacy of TZP versus E. coli, with threshold values from 0.5 mg/L to 2 mg/L and mean exposures of 42% for stasis and 56% for 1 log10 kill. The non-equivalent generic required a longer exposure (fT>threshold 33%) to suppress resistance compared with the innovator (fT>threshold 22%), leading to a higher frequency of resistance selection in the clinical simulation (16% of patients with the generic vs. 1% with the innovator). Finally, we estimated that use of TZP generics in a scenario of 25% therapeutic non-equivalence would result in extra expenses approaching US$1 billion per year in the USA owing to selection of resistant micro-organisms, greatly offsetting the savings gained from generic substitution and further emphasising the need for demonstrated and not assumed therapeutic equivalence.


Assuntos
Antibacterianos/farmacocinética , Farmacorresistência Bacteriana , Medicamentos Genéricos/farmacocinética , Infecções por Escherichia coli/tratamento farmacológico , Ácido Penicilânico/análogos & derivados , Seleção Genética , Inibidores de beta-Lactamases/farmacocinética , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Modelos Animais de Doenças , Medicamentos Genéricos/administração & dosagem , Medicamentos Genéricos/farmacologia , Feminino , Camundongos , Ácido Penicilânico/administração & dosagem , Ácido Penicilânico/farmacocinética , Ácido Penicilânico/farmacologia , Piperacilina/administração & dosagem , Piperacilina/farmacocinética , Piperacilina/farmacologia , Combinação Piperacilina e Tazobactam , Resultado do Tratamento , Inibidores de beta-Lactamases/administração & dosagem , Inibidores de beta-Lactamases/farmacologia
4.
Front Microbiol ; 2: 230, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164154

RESUMO

A multi-national working group on antibiotic stewardship, from the International Society of Chemotherapy, put together ten recommendations to physicians prescribing antibiotics to outpatients. These recommendations are: (1) use antibiotics only when needed; teach the patient how to manage symptoms of non-bacterial infections; (2) select the adequate ATB; precise targeting is better than shotgun therapy; (3) consider pharmacokinetics and pharmacodynamics when selecting an ATB; use the shortest ATB course that has proven clinical efficacy; (4) encourage patients' compliance; (5) use antibiotic combinations only in specific situations; (6) avoid low quality and sub-standard drugs; prevent prescription changes at the drugstore; (7) discourage self-prescription; (8) follow only evidence-based guidelines; beware those sponsored by drug companies; (9) rely (rationally) upon the clinical microbiology lab; and (10) prescribe ATB empirically - but intelligently; know local susceptibility trends, and also surveillance limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA