Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
2.
Orphanet J Rare Dis ; 19(1): 255, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971792

RESUMO

BACKGROUND: The 22q11.2 Deletion Syndrome (22q11.2 DS) presents unique healthcare challenges for affected individuals, families, and healthcare systems. Despite its rarity, 22q11.2 DS is the most common microdeletion syndrome in humans, emphasizing the need to understand and address the distinctive healthcare requirements of those affected. This paper examines the multifaceted issue of health service access and caregivers' quality of life in the context of 22q11.2 DS in Brazil, a condition with diverse signs and symptoms requiring multidisciplinary care. This study employs a comprehensive approach to evaluate health service accessibility and the quality of life of caregivers of individuals with 22q11.2 DS. It utilizes a structured Survey and the WHOQOL-bref questionnaire for data collection. RESULTS: Individuals with 22q11.2 DS continue to receive incomplete clinical management after obtaining the diagnosis, even in the face of socioeconomic status that enabled an average age of diagnosis that precedes that found in sample groups that are more representative of the Brazilian population (mean of 3.2 years versus 10 years, respectively). In turn, caring for individuals with 22q11.2 DS who face difficulty accessing health services impacts the quality of life associated with the caregivers' environment of residence. CONCLUSIONS: Results obtained help bridge the research gap in understanding how caring for individuals with multisystem clinical conditions such as 22q11.2 DS and difficulties in accessing health are intertwined with aspects of quality of life in Brazil. This research paves the way for more inclusive healthcare policies and interventions to enhance the quality of life for families affected by this syndrome.


Assuntos
Síndrome de DiGeorge , Acessibilidade aos Serviços de Saúde , Qualidade de Vida , Humanos , Brasil , Masculino , Feminino , Criança , Adulto , Adolescente , Cuidadores/psicologia , Pré-Escolar , Inquéritos e Questionários , Adulto Jovem
3.
Ophthalmologie ; 2024 Jul 01.
Artigo em Alemão | MEDLINE | ID: mdl-38951244

RESUMO

The International Committee on Classification of Corneal Dystrophies (IC3D) was founded in 2005 to address difficulties arising from the outdated nomenclature for corneal dystrophies (CD) and to correct misconceptions in the literature. For each of the 22 CDs, a separate template was created to represent the current clinical, pathological and genetic knowledge of the disease. In addition, each template contains representative clinical photographs as well as light and electron microscopic images and, if available, confocal microscopic and coherence tomographic images of the respective CD. After the first edition was published in 2008, the revised version followed in 2015. The third edition of the IC3D was published as open access in February 2024. The latest edition is intended to serve as a reference work in everyday clinical practice and facilitate the diagnosis of CD, which might sometimes be difficult. This article provides an overview of the diagnostic and treatment principles of CD and presents the IC3D and its changes over time.

4.
Front Genet ; 15: 1404516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952711

RESUMO

Introduction: Many loci segregate alleles classified as "genetic diseases" due to their deleterious effects on health. However, some disease alleles have been reported to show beneficial effects under certain conditions or in certain populations. The beneficial effects of these antagonistically pleiotropic alleles may explain their continued prevalence, but the degree to which antagonistic pleiotropy is common or rare is unresolved. We surveyed the medical literature to identify examples of antagonistic pleiotropy to help determine whether antagonistic pleiotropy appears to be rare or common. Results: We identified ten examples of loci with polymorphisms for which the presence of antagonistic pleiotropy is well supported by detailed genetic or epidemiological information in humans. One additional locus was identified for which the supporting evidence comes from animal studies. These examples complement over 20 others reported in other reviews. Discussion: The existence of more than 30 identified antagonistically pleiotropic human disease alleles suggests that this phenomenon may be widespread. This poses important implications for both our understanding of human evolutionary genetics and our approaches to clinical treatment and disease prevention, especially therapies based on genetic modification.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38905063

RESUMO

PURPOSE: A case report of a six-year and five-month-old female admitted with typical symptoms of Rubinstein-Taybi syndrome is presented. Clinical and rehabilitation settings where she acquired her reading, writing, and communication skills are described. METHODS: Because of her cognitive disabilities, a multidisciplinary and long-term intervention (2014-2020) was necessary. Treatment included orthoptic, psychomotor, logopedic, occupational, and neuropsychological care. Her family and school were involved. RESULTS: Increased attention led to decreased dysfunctional behaviors. Test results are still below average, but there has been significant improvement. Better communication skills resulted from increased phonetic range, improved articulation, lexical-semantic structure, comprehension, and production of sentences. Digital technologies played a significant role in enhancing her communication skills, not just in social interactions but also in school activities. The patient is oriented in time and space with the help of agendas and calendars. She can express her needs and compose concise narratives. As a result of acquiring functional skills, she is better equipped to handle real-life situations, which has led to increased social and family activities. CONCLUSION: This case report highlights the importance of personalized rehabilitation programs. Obtaining an early genetic diagnosis is crucial for timely tailored rehabilitation, and any delays in this process can hinder progress.

6.
Front Neurol ; 15: 1289625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872814

RESUMO

A rare autosomal recessive genetic disease is spinal muscular atrophy with respiratory distress type 1 (SMARD 1; OMIM #604320), which is characterized by progressive distal limb muscle weakness, muscular atrophy, and early onset of respiratory failure. Herein, we report the case of a 4-month-old female infant with SMARD type 1 who was admitted to our hospital owing to unexplained distal limb muscle weakness and early respiratory failure. This report summarizes the characteristics of SMARD type 1 caused by heterozygous variation in the immunoglobulin mu DNA binding protein 2 (IGHMBP2) gene by analyzing its clinical manifestations, genetic variation characteristics, and related examinations, aiming to deepen clinicians' understanding of the disease, assisting pediatricians in providing medical information to parents and improving the decision-making process involved in establishing life support.

7.
J Biol Chem ; 300(7): 107437, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838776

RESUMO

Together with its ß-subunit OSTM1, ClC-7 performs 2Cl-/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, "HOD syndrome"), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl- uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl-/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.

8.
Exp Cell Res ; 440(1): 114118, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852763

RESUMO

Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of ß-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.


Assuntos
Autofagia , Cálcio , Miopatias Distais , Proteínas de Choque Térmico HSP70 , Complexos Multienzimáticos , Mutação , Humanos , Autofagia/genética , Autofagia/efeitos dos fármacos , Mutação/genética , Cálcio/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Células HEK293 , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Índia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38866638

RESUMO

Mitochondria are double membrane-bound organelles the network morphology of which in cells is shaped by opposing events of fusion and fission executed by dynamin-like GTPases. Mutations in these genes can perturb the form and functions of mitochondria in cell and animal models of mitochondrial diseases. An expanding array of chemical, mechanical, and genetic stressors can converge on mitochondrial-shaping proteins and disrupt mitochondrial morphology. In recent years, studies aimed at disentangling the multiple roles of mitochondrial-shaping proteins beyond fission or fusion have provided insights into the homeostatic relevance of mitochondrial morphology. Here, I review the pleiotropy of mitochondrial fusion and fission proteins with the aim of understanding whether mitochondrial morphology is important for cell and tissue physiology.

10.
Am J Hum Genet ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38843839

RESUMO

There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.

11.
Vaccines (Basel) ; 12(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38932365

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy for sickle cell anemia marks the beginning of a new era in gene editing. However, delivering CRISPR specifically into diseased cells in vivo is a significant challenge and an area of intense research. The identification of new CRISPR/Cas variants, particularly ultra-compact CAS systems with robust gene editing activities, paves the way for the low-capacity delivery vectors to be used in gene therapies. CRISPR/Cas technology has evolved beyond editing DNA to cover a wide spectrum of functionalities, including RNA targeting, disease diagnosis, transcriptional/epigenetic regulation, chromatin imaging, high-throughput screening, and new disease modeling. CRISPR/Cas can be used to engineer B-cells to produce potent antibodies for more effective vaccines and enhance CAR T-cells for the more precise and efficient targeting of tumor cells. However, CRISPR/Cas technology has challenges, including off-target effects, toxicity, immune responses, and inadequate tissue-specific delivery. Overcoming these challenges necessitates the development of a more effective and specific CRISPR/Cas delivery system. This entails strategically utilizing specific gRNAs in conjunction with robust CRISPR/Cas variants to mitigate off-target effects. This review seeks to delve into the intricacies of the CRISPR/Cas mechanism, explore progress in gene therapies, evaluate gene delivery systems, highlight limitations, outline necessary precautions, and scrutinize the ethical considerations associated with its application.

12.
Environ Mol Mutagen ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828778

RESUMO

Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.

13.
J Proteome Res ; 23(6): 1970-1982, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718259

RESUMO

Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.


Assuntos
Lamina Tipo A , Mutação , Proteômica , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Humanos , Proteômica/métodos , Células HEK293 , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ontologia Genética
14.
J Basic Clin Physiol Pharmacol ; 35(3): 181-187, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38743867

RESUMO

OBJECTIVES: Genetic disorders involved in skeleton system arise due to the disturbance in skeletal development, growth and homeostasis. Filamin B is an actin binding protein which is large dimeric protein which cross link actin cytoskeleton filaments into dynamic structure. A single nucleotide changes in the FLNB gene causes spondylocarpotarsal synostosis syndrome, a rare bone disorder due to which the fusion of carpels and tarsals synostosis occurred along with fused vertebrae. In the current study we investigated a family residing in north-western areas of Pakistan. METHODS: The whole exome sequencing of proband was performed followed by Sanger sequencing of all family members of the subject to validate the variant segregation within the family. Bioinformatics tools were utilized to assess the pathogenicity of the variant. RESULTS: Whole Exome Sequencing revealed a novel variant (NM_001457: c.209C>T and p.Pro70Leu) in the FLNB gene which was homozygous missense mutation in the FLNB gene. The variant was further validated and visualized by Sanger sequencing and protein structure studies respectively as mentioned before. CONCLUSIONS: The findings have highlighted the importance of the molecular diagnosis in SCT (spondylocarpotarsal synostosis syndrome) for genetic risk counselling in consanguineous families.


Assuntos
Sequenciamento do Exoma , Filaminas , Sinostose , Humanos , Sinostose/genética , Filaminas/genética , Masculino , Feminino , Linhagem , Escoliose/genética , Escoliose/congênito , Anormalidades Múltiplas/genética , Mutação de Sentido Incorreto , Paquistão , Homozigoto , Vértebras Lombares/anormalidades , Doenças Musculoesqueléticas , Vértebras Torácicas/anormalidades
15.
Eur J Ophthalmol ; : 11206721241257967, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803202

RESUMO

PURPOSE: To report clinical and imaging features of optic nerve and retinal involvement in a patient with mucopolysaccharidosis (MPS) type II B. METHODS: A 27-year-old man, diagnosed with MPS type II B and undergoing enzymatic substitution therapy for the past 19 years, was referred to the retina service. An ophthalmological evaluation, which included multimodal imaging, was conducted to investigate potential retinal and optic disc involvement. RESULTS: The eye examination revealed a pigmentary retinopathy with a predominant loss of the outer retinal loss, primarily in the parafoveal and perifoveal regions. Notably, multimodal imaging identified macular edema without any signs of leakage, implying an association between macular edema and retinal neurodegeneration. Additionally, both eyes exhibited an optic disc with blurred margins. CONCLUSION: We herein describe the multimodal imaging findings of retinal and optic disc involvement in a patient with MPS type II B. This report describes for the first-time the presence of macular edema without leakage alongside photoreceptor damage and optic disc swelling.

16.
J Community Genet ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795255

RESUMO

Inherited genetic conditions are family diseases. They affect consanguineous relatives, in lineage for several generations, and impact the family dynamics. Older generations have been considered highly influential in the health management of families with inherited genetic conditions. To our knowledge, no reviews so far addressed the health-related roles of older generations in these families. This scoping review aims to fill that gap by mapping the existent research about the health-roles roles performed by the older generations in families living with autosomal dominant inherited genetic conditions. Four electronic databases were searched: Scopus, Web of Science, PubMed, PsycInfo. Eleven studies were included, and relevant findings were extracted. Main roles included: informers vs. blockers of disease-related information; encouragers vs. discouragers of health screening or genetic testing; (non-)supporters; and role models in living and coping with the disease. The roles played by older generations are relevant to the health management of other family members and can be beneficial to themselves (reciprocal interactions). Acknowledging and understanding these roles is important for professionals and health-services. Results suggest the relevance of an intergenerational perspective when working with families with inherited genetic conditions.

17.
Eur J Ophthalmol ; : 11206721241249771, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710203

RESUMO

PURPOSE: In this report, we aim to present an unusual reappearance of hyaloidal artery remnant with atypical localization during the follow-up of an infant who underwent indirect laser photocoagulation for type 1 ROP. METHODS: Retrospective case report. RESULTS: We report a case of reappearance of an eccentrically located hyaloidal stalk in the macular area during the follow-up period, 2 weeks after laser photocoagulation for type 1 ROP subsequently progressed to cause foveal distortion, which is successfully removed with a lens-sparing vitrectomy. CONCLUSIONS: To the best of our knowledge, there is no similar case in the literature. In the presence of fibrovascular proliferation extending into the vitreous, especially in premature infants, it should be kept in mind that this may be a reappearance of PFV and it may not always be located on the optic disc.

18.
Sci Rep ; 14(1): 12463, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816452

RESUMO

The non-essential amino acid L-serine is involved in a number of metabolic pathways and in the brain its level is largely due to the biosynthesis from the glycolytic intermediate D-3-phosphoglycerate by the phosphorylated pathway (PP). This cytosolic pathway is made by three enzymes proposed to generate a reversible metabolon named the "serinosome". Phosphoserine phosphatase (PSP) catalyses the last and irreversible step, representing the driving force pushing L-serine synthesis. Genetic defects of the PP enzymes result in strong neurological phenotypes. Recently, we identified the homozygous missense variant [NM_004577.4: c.398A > G p.(Asn133Ser)] in the PSPH, the PSP encoding gene, in two siblings with a neurodevelopmental syndrome and a myelopathy. The recombinant Asn133Ser enzyme does not show significant alterations in protein conformation and dimeric oligomerization state, as well as in enzymatic activity and functionality of the reconstructed PP. However, the Asn133Ser variant is less stable than wild-type PSP, a feature also apparent at cellular level. Studies on patients' fibroblasts also highlight a strong decrease in the level of the enzymes of the PP, a partial nuclear and perinuclear localization of variant PSP and a stronger perinuclear aggregates formation. We propose that these alterations contribute to the formation of a dysfunctional serinosome and thus to the observed reduction of L-serine, glycine and D-serine levels (the latter playing a crucial role in modulating NMDA receptors). The characterization of patients harbouring the Asn133Ser PSP substitution allows to go deep into the molecular mechanisms related to L-serine deficit and to suggest treatments to cope with the observed amino acids alterations.


Assuntos
Serina , Humanos , Serina/metabolismo , Mutação de Sentido Incorreto , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fibroblastos/metabolismo , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Feminino
19.
Genome Med ; 16(1): 46, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584274

RESUMO

BACKGROUND: Genome sequencing of large biobanks from under-represented ancestries provides a valuable resource for the interrogation of Mendelian disease burden at world population level, complementing small-scale familial studies. METHODS: Here, we interrogate 6045 whole genomes from Qatar-a Middle Eastern population with high consanguinity and understudied mutational burden-enrolled at the national Biobank and phenotyped for 58 clinically-relevant quantitative traits. We examine a curated set of 2648 Mendelian genes from 20 panels, annotating known and novel pathogenic variants and assessing their penetrance and impact on the measured traits. RESULTS: We find that 62.5% of participants are carriers of at least 1 known pathogenic variant relating to recessive conditions, with homozygosity observed in 1 in 150 subjects (0.6%) for which Peninsular Arabs are particularly enriched versus other ancestries (5.8-fold). On average, 52.3 loss-of-function variants were found per genome, 6.5 of which affect a known Mendelian gene. Several variants annotated in ClinVar/HGMD as pathogenic appeared at intermediate frequencies in this cohort (1-3%), highlighting Arab founder effect, while others have exceedingly high frequencies (> 5%) prompting reconsideration as benign. Furthermore, cumulative gene burden analysis revealed 56 genes having gene carrier frequency > 1/50, including 5 ACMG Tier 3 panel genes which would be candidates for adding to newborn screening in the country. Additionally, leveraging 58 biobank traits, we systematically assess the impact of novel/rare variants on phenotypes and discover 39 candidate large-effect variants associating with extreme quantitative traits. Furthermore, through rare variant burden testing, we discover 13 genes with high mutational load, including 5 with impact on traits relevant to disease conditions, including metabolic disorder and type 2 diabetes, consistent with the high prevalence of these conditions in the region. CONCLUSIONS: This study on the first phase of the growing Qatar Genome Program cohort provides a comprehensive resource from a Middle Eastern population to understand the global mutational burden in Mendelian genes and their impact on traits in seemingly healthy individuals in high consanguinity settings.


Assuntos
Diabetes Mellitus Tipo 2 , Recém-Nascido , Humanos , Bancos de Espécimes Biológicos , Frequência do Gene , Fenótipo , Homozigoto
20.
Cureus ; 16(3): e55883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38595885

RESUMO

Niemann-Pick disease (NPD) encompasses a minimum of three lysosomal storage diseases, all of which are inherited in an autosomal recessive manner. Acid sphingomyelinase (ASM) deficiency is the cause of NPD types A and B. ASM is the enzyme that hydrolyzes the sphingolipid sphingomyelin. An 18-month-old patient with progressive painless abdominal distension with organomegaly and neurological deficits presented to our hospital. Brain imaging and laboratory findings did not show anything, but there was a millstone growth delay. The diagnosis of NPD type A was confirmed by a genetic examination, which revealed a twofold change on chromosome 11p15.4 in the region encoding the sphingomyelin phosphodiesterase-1 (SMPD1) gene. The patient was followed up with no specific treatment, and signs of respiratory infections were later reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...