Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Genom ; 4(3): 100501, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335956

RESUMO

The precise roles of chromatin organization at osteoporosis risk loci remain largely elusive. Here, we combined chromatin interaction conformation (Hi-C) profiling and self-transcribing active regulatory region sequencing (STARR-seq) to qualify enhancer activities of prioritized osteoporosis-associated single-nucleotide polymorphisms (SNPs). We identified 319 SNPs with biased allelic enhancer activity effect (baaSNPs) that linked to hundreds of candidate target genes through chromatin interactions across 146 loci. Functional characterizations revealed active epigenetic enrichment for baaSNPs and prevailing osteoporosis-relevant regulatory roles for their chromatin interaction genes. Further motif enrichment and network mapping prioritized several putative, key transcription factors (TFs) controlling osteoporosis binding to baaSNPs. Specifically, we selected one top-ranked TF and deciphered that an intronic baaSNP (rs11202530) could allele-preferentially bind to YY2 to augment PAPSS2 expression through chromatin interactions and promote osteoblast differentiation. Our results underline the roles of TF-mediated enhancer-promoter contacts for osteoporosis, which may help to better understand the intricate molecular regulatory mechanisms underlying osteoporosis risk loci.


Assuntos
Osteoporose , Sequências Reguladoras de Ácido Nucleico , Humanos , Fatores de Transcrição/genética , Osteoporose/genética , Cromatina/genética , Regiões Promotoras Genéticas/genética
2.
Front Microbiol ; 14: 1293966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075919

RESUMO

Introduction: MrpC, a member of the CRP/Fnr transcription factor superfamily, is necessary to induce and control the multicellular developmental program of the bacterium, Myxococcus xanthus. During development, certain cells in the population first swarm into haystack-shaped aggregates and then differentiate into environmentally resistant spores to form mature fruiting bodies (a specialized biofilm). mrpC transcriptional regulation is controlled by negative autoregulation (NAR). Methods: Wild type and mutant mrpC promoter regions were fused to a fluorescent reporter to examine effects on mrpC expression in the population and in single cells in situ. Phenotypic consequences of the mutant mrpC promoter were assayed by deep convolution neural network analysis of developmental movies, sporulation efficiency assays, and anti-MrpC immunoblot. In situ analysis of single cell MrpC levels in distinct populations were assayed with an MrpC-mNeonGreen reporter. Results: Disruption of MrpC binding sites within the mrpC promoter region led to increased and broadened distribution of mrpC expression levels between individual cells in the population. Expression of mrpC from the mutant promoter led to a striking phenotype in which cells lose synchronized transition from aggregation to sporulation. Instead, some cells abruptly exit aggregation centers and remain locked in a cohesive swarming state we termed developmental swarms, while the remaining cells transition to spores inside residual fruiting bodies. In situ examination of a fluorescent reporter for MrpC levels in developmental subpopulations demonstrated cells locked in the developmental swarms contained MrpC levels that do not reach the levels observed in fruiting bodies. Discussion: Increased cell-to-cell variation in mrpC expression upon disruption of MrpC binding sites within its promoter is consistent with NAR motifs functioning to reducing noise. Noise reduction may be key to synchronized transition of cells in the aggregation state to the sporulation state. We hypothesize a novel subpopulation of cells trapped as developmental swarms arise from intermediate levels of MrpC that are sufficient to promote aggregation but insufficient to trigger sporulation. Failure to transition to higher levels of MrpC necessary to induce sporulation may indicate cells in developmental swarms lack an additional positive feedback signal required to boost MrpC levels.

3.
Plant Reprod ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823912

RESUMO

The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.

4.
Front Plant Sci ; 14: 1149879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089657

RESUMO

Introduction: The cooperative strategy of phenotypic traits during the growth of plants reflects how plants allocate photosynthesis products, which is the most favorable decision for them to optimize growth, survival, and reproduction response to changing environment. Up to now, we still know little about why plants make such decision from the perspective of biological genetic mechanisms. Methods: In this study, we construct an analytical mapping framework to explore the genetic mechanism regulating the interaction of two complex traits. The framework describes the dynamic growth of two traits and their interaction as Differential Interaction Regulatory Equations (DIRE), then DIRE is embedded into QTL mapping model to identify the key quantitative trait loci (QTLs) that regulate this interaction and clarify the genetic effect, genetic contribution and genetic network structure of these key QTLs. Computer simulation experiment proves the reliability and practicability of our framework. Results: In order to verify that our framework is universal and flexible, we applied it to two sets of data from Populus euphratica, namely, aboveground stem length - underground taproot length, underground root number - underground root length, which represent relationships of phenotypic traits in two spatial dimensions of plant architecture. The analytical result shows that our model is well applicable to datasets of two dimensions. Discussion: Our model helps to better illustrate the cooperation-competition patterns between phenotypic traits, and understand the decisions that plants make in a specific environment that are most conducive to their growth from the genetic perspective.

5.
J Exp Bot ; 74(14): 3933-3950, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37075814

RESUMO

The appearance of the flower marks a key event in the evolutionary history of plants. Among the four types of floral organs, the gynoecium represents the major adaptive advantage of the flower. The gynoecium is an enclosing structure that protects and facilitates the fertilization of the ovules, which then mature as seeds. Upon fertilization, in many species, the gynoecium itself eventually becomes the fruit, which contributes to the dispersal of the seeds. However, despite its importance and the recent advances in our understanding of the genetic regulatory network guiding early gynoecium development, many questions remain to be resolved regarding the extent of the conservation of the molecular mechanisms for gynoecium development among different taxa, and how these mechanisms give origin and diversification to the gynoecium. In this review, we compile the existing knowledge about the evolution, development, and molecular mechanisms involved in the origin and evolution of the gynoecium.


Assuntos
Arabidopsis , Arabidopsis/genética , Redes Reguladoras de Genes , Sementes/genética , Frutas/genética , Flores/genética
6.
New Phytol ; 237(1): 310-322, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36101514

RESUMO

The origin of phenotypic novelty is one of the most challenging problems in evolutionary biology. Although genetic regulatory network rewiring or co-option has been widely recognised as a major contributor, in most cases how such genetic rewiring/co-option happens is completely unknown. We have studied a novel foliar pigmentation pattern that evolved recently in the monkeyflower species Mimulus verbenaceus. Through genome-wide association tests using wild-collected samples, experimental crosses of laboratory inbred lines, gene expression analyses, and functional assays, we identified an anthocyanin-activating R2R3-MYB gene, STRIPY, as the causal gene triggering the emergence of the discrete, mediolateral anthocyanin stripe in the M. verbenaceus leaf. Chemical mutagenesis revealed the existence of upstream activators and repressors that form a 'hidden' prepattern along the leaf proximodistal axis, potentiating the unique expression pattern of STRIPY. Population genomics analyses did not reveal signatures of positive selection, indicating that nonadaptive processes may be responsible for the establishment of this novel trait in the wild. This study demonstrates that the origin of phenotypic novelty requires at least two separate phases, potentiation and actualisation. The foliar stripe pattern of M. verbenaceus provides an excellent platform to probe the molecular details of both processes in future studies.


Assuntos
Mimulus , Mimulus/genética , Antocianinas/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação/genética
7.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071961

RESUMO

Flowering is one of the most critical developmental transitions in plants' life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny's success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Biomarcadores , Redes Reguladoras de Genes , Fotoperíodo , Desenvolvimento Vegetal/genética , Estações do Ano , Temperatura
8.
BMC Genomics ; 22(1): 153, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663371

RESUMO

BACKGROUND: During vertebrate evolution, the heart has undergone remarkable changes that lead to morphophysiological differences in the fully formed heart of these species, such as chamber septation, heart rate frequency, blood pressure, and cardiac output volume. Despite these differences, the heart developmental process is guided by a core gene set conserved across vertebrates. Nonetheless, the regulatory mechanisms controlling the expression of genes involved in heart development and maintenance are largely uncharted. MicroRNAs (miRNAs) have been described as important regulatory elements in several biological processes, including heart biology. These small RNA molecules are broadly conserved in sequence and genomic context in metazoans. Mutations may occur in miRNAs and/or genes that contribute to the establishment of distinct repertoires of miRNA-target interactions, thereby favoring the differential control of gene expression and, consequently, the origin of novel phenotypes. In fact, several studies showed that miRNAs are integrated into genetic regulatory networks (GRNs) governing specific developmental programs and diseases. However, studies integrating miRNAs in vertebrate heart GRNs under an evolutionary perspective are still scarce. RESULTS: We comprehensively examined and compared the heart miRNome of 20 species representatives of the five major vertebrate groups. We found 54 miRNA families with conserved expression and a variable number of miRNA families with group-specific expression in fishes, amphibians, reptiles, birds, and mammals. We also detected that conserved miRNAs present higher expression levels and a higher number of targets, whereas the group-specific miRNAs present lower expression levels and few targets. CONCLUSIONS: Both the conserved and group-specific miRNAs can be considered modulators orchestrating the core and peripheral genes of heart GRNs of vertebrates, which can be related to the morphophysiological differences and similarities existing in the heart of distinct vertebrate groups. We propose a hypothesis to explain evolutionary differences in the putative functional roles of miRNAs in the heart GRNs analyzed. Furthermore, we present new insights into the molecular mechanisms that could be helping modulate the diversity of morphophysiology in the heart organ of vertebrate species.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , Animais , Evolução Molecular , Genoma , MicroRNAs/genética , Vertebrados/genética
9.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563821

RESUMO

In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination.IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Metabolômica , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Aspergillus nidulans/crescimento & desenvolvimento , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteômica , Reprodução Assexuada/genética , Esporos Fúngicos/crescimento & desenvolvimento , Transcriptoma
10.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33313791

RESUMO

Structures of genetic regulatory networks are not fixed. These structural perturbations can cause changes to the reachability of systems' state spaces. As system structures are related to genotypes and state spaces are related to phenotypes, it is important to study the relationship between structures and state spaces. However, there is still no method can quantitively describe the reachability differences of two state spaces caused by structural perturbations. Therefore, Difference in Reachability between State Spaces (DReSS) is proposed. DReSS index family can quantitively describe differences of reachability, attractor sets between two state spaces and can help find the key structure in a system, which may influence system's state space significantly. First, basic properties of DReSS including non-negativity, symmetry and subadditivity are proved. Then, typical examples are shown to explain the meaning of DReSS and the differences between DReSS and traditional graph distance. Finally, differences of DReSS distribution between real biological regulatory networks and random networks are compared. Results show most structural perturbations in biological networks tend to affect reachability inside and between attractor basins rather than to affect attractor set itself when compared with random networks, which illustrates that most genotype differences tend to influence the proportion of different phenotypes and only a few ones can create new phenotypes. DReSS can provide researchers with a new insight to study the relation between genotypes and phenotypes.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Genótipo , Modelos Genéticos
11.
BMC Genomics, v. 22, n. 153, mar. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3637

RESUMO

Background: During vertebrate evolution, the heart has undergone remarkable changes that lead to morphophysiological differences in the fully formed heart of these species, such as chamber septation, heart rate frequency, blood pressure, and cardiac output volume. Despite these differences, the heart developmental process is guided by a core gene set conserved across vertebrates. Nonetheless, the regulatory mechanisms controlling the expression of genes involved in heart development and maintenance are largely uncharted. MicroRNAs (miRNAs) have been described as important regulatory elements in several biological processes, including heart biology. These small RNA molecules are broadly conserved in sequence and genomic context in metazoans. Mutations may occur in miRNAs and/or genes that contribute to the establishment of distinct repertoires of miRNA-target interactions, thereby favoring the differential control of gene expression and, consequently, the origin of novel phenotypes. In fact, several studies showed that miRNAs are integrated into genetic regulatory networks (GRNs) governing specific developmental programs and diseases. However, studies integrating miRNAs in vertebrate heart GRNs under an evolutionary perspective are still scarce. Results: We comprehensively examined and compared the heart miRNome of 20 species representatives of the five major vertebrate groups. We found 54 miRNA families with conserved expression and a variable number of miRNA families with group-specific expression in fishes, amphibians, reptiles, birds, and mammals. We also detected that conserved miRNAs present higher expression levels and a higher number of targets, whereas the group-specific miRNAs present lower expression levels and few targets. Conclusions: Both the conserved and group-specific miRNAs can be considered modulators orchestrating the core and peripheral genes of heart GRNs of vertebrates, which can be related to the morphophysiological differences and similarities existing in the heart of distinct vertebrate groups. We propose a hypothesis to explain evolutionary differences in the putative functional roles of miRNAs in the heart GRNs analyzed. Furthermore, we present new insights into the molecular mechanisms that could be helping modulate the diversity of morphophysiology in the heart organ of vertebrate species.

12.
Entropy (Basel) ; 22(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33286034

RESUMO

Genetic regulatory networks have evolved by complexifying their control systems with numerous effectors (inhibitors and activators). That is, for example, the case for the double inhibition by microRNAs and circular RNAs, which introduce a ubiquitous double brake control reducing in general the number of attractors of the complex genetic networks (e.g., by destroying positive regulation circuits), in which complexity indices are the number of nodes, their connectivity, the number of strong connected components and the size of their interaction graph. The stability and robustness of the networks correspond to their ability to respectively recover from dynamical and structural disturbances the same asymptotic trajectories, and hence the same number and nature of their attractors. The complexity of the dynamics is quantified here using the notion of attractor entropy: it describes the way the invariant measure of the dynamics is spread over the state space. The stability (robustness) is characterized by the rate at which the system returns to its equilibrium trajectories (invariant measure) after a dynamical (structural) perturbation. The mathematical relationships between the indices of complexity, stability and robustness are presented in case of Markov chains related to threshold Boolean random regulatory networks updated with a Hopfield-like rule. The entropy of the invariant measure of a network as well as the Kolmogorov-Sinaï entropy of the Markov transition matrix ruling its random dynamics can be considered complexity, stability and robustness indices; and it is possible to exploit the links between these notions to characterize the resilience of a biological system with respect to endogenous or exogenous perturbations. The example of the genetic network controlling the kinin-kallikrein system involved in a pathology called angioedema shows the practical interest of the present approach of the complexity and robustness in two cases, its physiological normal and pathological, abnormal, dynamical behaviors.

13.
PeerJ ; 8: e9065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391205

RESUMO

Hematopoiesis is a highly complex developmental process that produces various types of blood cells. This process is regulated by different genetic networks that control the proliferation, differentiation, and maturation of hematopoietic stem cells (HSCs). Although substantial progress has been made for understanding hematopoiesis, the detailed regulatory mechanisms for the fate determination of HSCs are still unraveled. In this study, we propose a novel approach to infer the detailed regulatory mechanisms. This work is designed to develop a mathematical framework that is able to realize nonlinear gene expression dynamics accurately. In particular, we intended to investigate the effect of possible protein heterodimers and/or synergistic effect in genetic regulation. This approach includes the Extended Forward Search Algorithm to infer network structure (top-down approach) and a non-linear mathematical model to infer dynamical property (bottom-up approach). Based on the published experimental data, we study two regulatory networks of 11 genes for regulating the erythrocyte differentiation pathway and the neutrophil differentiation pathway. The proposed algorithm is first applied to predict the network topologies among 11 genes and 55 non-linear terms which may be for heterodimers and/or synergistic effect. Then, the unknown model parameters are estimated by fitting simulations to the expression data of two different differentiation pathways. In addition, the edge deletion test is conducted to remove possible insignificant regulations from the inferred networks. Furthermore, the robustness property of the mathematical model is employed as an additional criterion to choose better network reconstruction results. Our simulation results successfully realized experimental data for two different differentiation pathways, which suggests that the proposed approach is an effective method to infer the topological structure and dynamic property of genetic regulations.

14.
Bull Math Biol ; 82(4): 46, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236721

RESUMO

Time delays play important roles in genetic regulatory networks. In this paper, a gene regulatory network model with time delays and mutual inhibition is considered, where time delays are regarded as bifurcation parameters. In the first part of this paper, we analyze the associated characteristic equations and obtain the conditions for the stability of the system and the existence of Hopf bifurcations in five special cases. Explicit formulas are given to determine the direction and stability of the Hopf bifurcation by using the normal form method and the center manifold theorem. Numerical simulations are then performed to illustrate the results we obtained. In the second part of the paper, using time-delayed stochastic numerical simulations, we study the impact of biological fluctuations on the system and observe that, in modest noise regimes, unexpectedly, noise acts to stabilize the otherwise destabilized oscillatory system.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Simulação por Computador , Homeostase/genética , Conceitos Matemáticos , Processos Estocásticos , Biologia de Sistemas , Fatores de Tempo
15.
Math Biosci Eng ; 16(3): 1228-1243, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30947417

RESUMO

This research proposes a genetic regulatory network based sequencing method that minimizes multiple objectives including utility work costs, production rate variation costs and setup costs in mixed-model assembly lines. After constructing mathematical model of this multi-objective sequencing problem, the proposed method generates a set of genes to represent the decision variables and develops a gene regulation equation to describe decision variable interactions composed of production constraints and some validated sequencing rules. Moreover, a gene expression procedure that determines each gene's expression state based on the gene regulation equation is designed. This enables the generation of a series of problem solutions by indicating decision variable values with related gene expression states, and realizes the minimization of weighted sum of multiple objectives by applying a regulatory parameter optimization mechanism in regulation equations. The proposed genetic regulatory network based sequencing method is validated through a series of comparative experiments, and the results demonstrate its effectiveness over other methods in terms of solution quality, especially for industrial instances collected from a diesel engine assembly line.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Redes Reguladoras de Genes , Análise e Desempenho de Tarefas , Algoritmos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Indústrias , Modelos Lineares , Modelos Genéticos , Modelos Teóricos , Carga de Trabalho
16.
J R Soc Interface ; 15(148)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429261

RESUMO

The development of form in an embryo is the result of a series of topological and informational symmetry breakings. We introduce the vector-reaction-diffusion-drift (VRDD) system where the limit cycle of spatial dynamics is morphogen concentrations with Dirac delta-type distributions. This is fundamentally different from the Turing reaction-diffusion system, as VRDD generates system-wide broken symmetry. We developed 'fundamental forms' from spherical blastula with a single organizing axis (rotational symmetry), double axis (mirror symmetry) and triple axis (no symmetry operator in three dimensions). We then introduced dynamics for cell differentiation, where genetic regulatory states are modelled as a finite-state machine (FSM). The state switching of an FSM is based on local morphogen concentrations as epigenetic information that changes dynamically. We grow complicated forms hierarchically in spatial subdomains using the FSM model coupled with the VRDD system. Using our integrated simulation model with four layers (topological, physical, chemical and regulatory), we generated life-like forms such as hydra. Genotype-phenotype mapping was investigated with continuous and jump mutations. Our study can have applications in morphogenetic engineering, soft robotics and biomimetic design.


Assuntos
Desenvolvimento Embrionário/fisiologia , Hydra/embriologia , Modelos Biológicos , Animais
17.
Math Biosci ; 305: 133-145, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30217694

RESUMO

We consider the inverse problem for the identification of the finite dimensional set of parameters for systems of nonlinear ordinary differential equations (ODEs) arising in systems biology. A numerical method which combines Bellman's quasilinearization with sensitivity analysis and Tikhonov's regularization is implemented. We apply the method to various biological models such as the classical Lotka-Volterra system, bistable switch model in genetic regulatory networks, gene regulation and repressilator models from synthetic biology. The numerical results and application to real data demonstrate the quadratic convergence.


Assuntos
Biologia de Sistemas/estatística & dados numéricos , Algoritmos , Animais , Simulação por Computador , Cadeia Alimentar , Redes Reguladoras de Genes , Conceitos Matemáticos , Modelos Biológicos , Dinâmica não Linear , Comportamento Predatório , Biologia Sintética
18.
Cancer Inform ; 17: 1176935118790262, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083052

RESUMO

Effective cancer treatment strategy requires an understanding of cancer behavior and development across multiple temporal and spatial scales. This has resulted into a growing interest in developing multiscale mathematical models that can simulate cancer growth, development, and response to drug treatments. This study thus investigates multiscale tumor modeling that integrates drug pharmacokinetic and pharmacodynamic (PK/PD) information using stochastic hybrid system modeling framework. Specifically, (1) pathways modeled by differential equations are adopted for gene regulations at the molecular level; (2) cellular automata (CA) model is proposed for the cellular and multicellular scales. Markov chains are used to model the cell behaviors by taking into account the gene expression levels, cell cycle, and the microenvironment. The proposed model enables the prediction of tumor growth under given molecular properties, microenvironment conditions, and drug PK/PD profile. Simulation results demonstrate the effectiveness of the proposed approach and the results agree with observed tumor behaviors.

19.
Cancer Inform ; 16: 1176935117706888, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579741

RESUMO

As cancer growth and development typically involves multiple genes and pathways, combination therapy has been touted as the standard of care in the treatment of cancer. However, drug toxicity becomes a major concern whenever a patient takes 2 or more drugs simultaneously at the maximum tolerable dosage. A potential solution would be administering the drugs in a sequential or alternating manner rather than concurrently. This study therefore examines the feasibility of such an approach from a switched system control perspective. Particularly, we study how genetic regulatory systems respond to sequential (switched) drug inputs using the time-based switching mechanism. The design of the time-driven drug switching function guarantees the stability of the genetic regulatory system and the repression of the diseased genes. Simulation results using proof-of-concept models and the proliferation and survival pathways with sequential drug inputs show the effectiveness of the proposed approach.

20.
Methods Mol Biol ; 1552: 165-176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28224498

RESUMO

In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.


Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Cadeias de Markov , Modelos Genéticos , Algoritmos , Análise por Conglomerados , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...