Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520209

RESUMO

Osteoarthritis is one of the common diseases that seriously affects the quality of life of middle-aged and elderly people worldwide. Geniposidic acid (GPA) is extracted from Eucommia ulmoides that exhibits various pharmacological effects. This study investigated the function of GPA on osteoarthritis (OA) in IL-1ß-stimulated mouse chondrocytes and mouse OA model. Mouse OA model was established by destabilization of the medial meniscus (DMM) and GPA was given intraperitoneal injection. The results demonstrated that GPA could alleviate DMM-induced OA in mice. In vitro, IL-1ß-induced PGE2, NO, MMP1 and MMP3 were suppressed by GPA. Furthermore, IL-1ß-induced ferroptosis was inhibited by GPA, as confirmed by the inhibition of MDA, iron, and ROS, as well as the upregulation of GSH, GPX4, and Ferritin. In addition, GPA was found to increase the expression of Nrf2 and HO-1. And the inhibition of GPA on IL-1ß-induced inflammation and ferroptosis were prevented by Nrf2 inhibitor. In conclusion, GPA alleviates OA progression through inhibiting inflammation and chondrocytes ferroptosis via Nrf2 signalling pathway.


Assuntos
Ferroptose , Glucosídeos Iridoides , Osteoartrite , Humanos , Pessoa de Meia-Idade , Camundongos , Animais , Idoso , Condrócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Qualidade de Vida , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças , NF-kappa B/metabolismo
2.
Phytomedicine ; 125: 155295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277945

RESUMO

BACKGROUND: Geniposidic acid (GPA) alleviates oxidative stress and inflammation in mice However, whether it can effectively regulate lipid accumulation and prevent hyperlipidemia requires further investigation. PURPOSE: This study combined the untargeted metabolomics of cells and a Caenorhabditis elegans model to evaluate the anti-hyperlipidemic potential of GPA by modulating oxidative stress and regulating lipid metabolism. A golden hamster model of hyperlipidemia was used to further validate the lipid-lowering effect and mechanism of action of GPA. METHODS: Chemical staining, immunofluorescence, and flow cytometry were performed to examine the effects of GPA on lipid accumulation and oxidative stress. Untargeted metabolomic analysis of cells and C. elegans was performed using ultra-performance liquid chromatography coupled with quadrupole electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap MS) to identify biomarkers altered by GPA action, analyze the affected metabolic pathways, and validate the mechanisms by which GPA regulates lipid metabolism and oxidative stress. A golden hamster model of hyperlipidemia was established to test the lipid-lowering effects of GPA. Body weight, biochemical markers, rate-limiting enzymes, and key proteins were assessed. Hematoxylin and eosin (H&E) and Oil Red O staining were performed. RESULTS: Phenotypic data showed that GPA decreased free fatty acid (FFA)-induced lipid buildup and high reactive oxygen species (ROS) levels, reversed the decrease in mitochondrial membrane potential (MMP), and increased the cellular reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio. GPA also reduces high glucose-induced lipid build-up and ROS production in C. elegans. Metabolomic analysis showed that GPA affected purine, lipid, and amino acid metabolism. Moreover, GPA inhibited xanthine oxidase (XOD), glutamate dehydrogenase (GLDH), fatty acid synthase (FAS), phosphorylation of P38 MAPK, and upregulated the expression of SIRT3 and CPT1A protein production to control lipid metabolism and produce antioxidant benefits in cells and golden hamsters. CONCLUSION: Current evidence suggests that GPA can effectively regulate lipid metabolism and the oxidative stress response, and has the potential to prevent hyperlipidemia. This study also provided an effective method for evaluating the mechanism of action of GPA.


Assuntos
Caenorhabditis elegans , Hiperlipidemias , Glucosídeos Iridoides , Cricetinae , Animais , Camundongos , Humanos , Caenorhabditis elegans/metabolismo , Células Hep G2 , Espécies Reativas de Oxigênio/metabolismo , Mesocricetus , Metabolômica , Hiperlipidemias/tratamento farmacológico , Lipídeos , Metabolismo dos Lipídeos
3.
Phytother Res ; 37(8): 3453-3466, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098758

RESUMO

Geniposidic acid (GPA) is a bioactive compound isolated from Gardenia jasminoides Ellis (Rubiaceae) that has long been used to treat arthritis, jaundice, and hypertension. However, the therapeutic effects of GPA against colitis remain underexplored. This study aimed to investigate the effect of GPA on the remission of colitis and the underlying mechanisms. A DSS-induced colitis mouse model was used to evaluate the influence of GPA on the modulation of gut microbiota and intestinal epithelial barrier function. Our results indicated that GPA improved DSS-induced mouse colitis, including loss of body weight, disease activity index (DAI), colon length, and colonic pathological damage. DSS-induced destruction of the intestinal barrier was also significantly repaired by GPA treatment. In addition, the relative levels of pro-inflammatory cytokines, such as IL-1ß and TNF-α, were markedly alleviated by GPA. Furthermore, western blot analysis revealed that GPA downregulated the protein expression of the nuclear transcription factor NF-κB. Finally, we first demonstrated that GPA could alleviate gut microbiota dysbiosis in mice with colitis by bacterial 16S rRNA sequencing. In conclusion, our study demonstrates the therapeutic and protective effects of GPA on IBD and provides novel insights into the prevention of colitis by targeting gut microbiota metabolism using natural products.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Camundongos , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Colo , Modelos Animais de Doenças , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL
4.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838952

RESUMO

In the 1970s, Eucommia leaf tea, known as Tochu-cha in Japanese, was developed from roasted Eucommia leaves in Japan and is considered as a healthy tea. The antihypertensive, diuretic, anti-stress, insulin resistance improving, and anti-obesity effects of Eucommia leaf extract have been reported. However, the identification and properties of the active components as well as the underlying mechanism of action are largely unknown. In this review, we summarize studies involving the oral administration of geniposidic acid, a major iridoid component of Eucommia leaf extract which increases plasma atrial natriuretic peptide (ANP) on the atria of spontaneously hypertensive rats (SHR) by activating the glucagon-like peptide-1 receptor (GLP-1R). To achieve the antihypertensive effects of the Eucommia leaf extract through ANP secretion in humans, combining a potent cyclic adenosine monophosphate phosphodiesterase (cAMP-PDE) inhibitor, such as pinoresinol di-ß-d-glucoside, with geniposidic acid may be necessary. Changes in the gut microbiota are an important aspect involved in the efficacy of asperuloside, another component of the Eucommia leaf extract, which improves obesity and related sequelae, such as insulin resistance and glucose intolerance. There are species differences of mechanisms associated with the antihypertensive and anti-obesity effects between rodents and humans, and not all animal test results are consistent with that of human studies. This review is focused on the mechanisms in antihypertensive and anti-obesity effects of the Eucommia leaf extract and summarizes the differences of mechanisms in their effects on rodents and humans based on our studies and those of others.


Assuntos
Eucommiaceae , Resistência à Insulina , Ratos , Animais , Humanos , Anti-Hipertensivos/farmacologia , Extratos Vegetais/química , Roedores , Iridoides , Ratos Endogâmicos SHR , Chá , Eucommiaceae/química
5.
J Orthop Translat ; 38: 23-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36313979

RESUMO

Background: Geniposidic acid (GPA), one of the active components of Eucommia ulmoides, promote bone formation and treat osteoporosis by activating farnesoid X receptor (FXR). However, GPA has low oral availability and lack of bone targeting in the treatment of bone related diseases. With the development of modern technology, small molecules, amino acids, or aptamers are used for biological modification of drugs and target cells in bone tissue, which has become the trend of bone targeted research. Methods: In this study, SDSSD (an osteoblast-targeting peptide) were modified in GPA using Fmoc solid-phase synthesis technique to form a new SDSSD-GPA conjugate (SGPA). The bone targeting of SGPA was evaluated using in vivo imaging and cell co-culture. In vitro, the effect of SGPA on cytotoxicity, osteoblastic activity, and mineralization ability were studied in mouse primary osteoblasts (OBs). In vivo, the therapeutic effect of SGPA on osteoporosis using an ovariectomized (OVX) mouse model. The bone mass, histomorphometry, serum biochemical parameters, and the molecular mechanism were evaluated. Results: SGPA was enriched in OBs and tends to accumulate in bone tissue. In vitro, SGPA significantly enhanced the osteogenic activity and mineralization of OBs compared with GPA. In vivo, SGPA enhanced serum BALP and P1NP levels, increased the trabecular bone mass of the mice, and SGPA administration have a higher bone mineralization deposition rate than the GPA-treated mice. Moreover, SGPA significantly activated FXR and Runt-related transcription factor 2 (RUNX2). Conclusions: Collectively, SGPA is enriched into OBs, and promotes bone formation by activating FXR-RUNX2 signalling, effectively treating osteoporosis at relatively low doses. The translational potential of this article: This study demonstrates a more efficient and safe application of GPA in treating osteoporosis, provide a new concept for the bone targeted application of natural compounds.

6.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500666

RESUMO

Eucommia ulmoides Oliver staminate flower (ESF) tea enjoys a good reputation in folk medicine and displays multiple bioactivities, such as antioxidant and antifatigue properties. However, the underlying biological mechanisms remain largely unknown. In this study, we aimed to investigate whether ESF tea can mitigate cellular oxidative stress. Crude ethyl alcohol extract and its three subfractions prepared by sequential extraction with chloroform, n-butyl alcohol and residual water were prepared from ESF tea. The results of antioxidant activity tests in vitro manifested n-butyl alcohol fraction (n-BUF) showed the strongest antioxidant capacity (DPPH: IC50 = 24.45 ± 0.74 µg/mL, ABTS: IC50 = 17.25 ± 0.04 µg/mL). Moreover, all subfractions of ESF tea, especially the n-BUF, exhibited an obvious capacity to scavenge the reactive oxygen species (ROS) and stimulate the NRF2 antioxidative response in human keratinocytes HaCaT treated by H2O2. Using ultra-high-performance liquid chromatography, we identified geniposidic acid (GPA) as the most abundant component in ESF tea extract. Furthermore, it was found that GPA relieved oxidative stress in H2O2-induced HaCaT cells by activating the Akt/Nrf2/OGG1 pathway. Our findings indicated that ESF tea may be a source of natural antioxidants to protect against skin cell oxidative damage and deserves further development and utilization.


Assuntos
Medicamentos de Ervas Chinesas , Eucommiaceae , Humanos , Eucommiaceae/química , 1-Butanol , Peróxido de Hidrogênio , Estresse Oxidativo , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Antioxidantes/análise , Medicamentos de Ervas Chinesas/farmacologia
7.
Biomedicines ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551860

RESUMO

Periodontal disease is predominantly caused by the pathogenic bacterium Porphyromonas gingivalis that produces inflammation-inducing factors in the host. Eucommia ulmoides is a plant native to China that has been reported to reduce blood pressure, promote weight loss, and exhibit anti-inflammatory effects. Geniposidic acid (GPA) is the major component of E. ulmoides. Herein, we investigated the effects of GPA on P. gingivalis-induced periodontitis by measuring the inflammatory responses in human gingival epithelial cells (HGECs) after P. gingivalis stimulation and GPA addition in a P. gingivalis-induced periodontitis mouse model. We found that GPA addition suppressed interleukin (IL)-6 mRNA induction (33.8% suppression), IL-6 production (69.2% suppression), toll-like receptor (TLR) 2 induction, and mitogen-activated protein kinase (MAPK) phosphorylation in HGECs stimulated by P. gingivalis. Inoculation of mice with GPA inhibited P. gingivalis-induced alveolar bone resorption (25.6% suppression) by suppressing IL-6 and TLR2 production in the serum and gingiva. GPA suppressed osteoclast differentiation of bone marrow cells induced by M-CSF and sRANKL in mice (56.7% suppression). GPA also suppressed the mRNA expression of OSCAR, NFATc1, c-Fos, cathepsin K, and DC-STAMP. In summary, GPA exerts an anti-inflammatory effect on periodontal tissue and may be effective in preventing periodontal disease.

8.
Immunopharmacol Immunotoxicol ; 44(6): 984-992, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35770920

RESUMO

BACKGROUND: Acute lung injury (ALI) is a common respiratory disease and is a serious threat to human health due to the lack of effective treatment. Geniposidic acid (GPA) is an iridoid glucoside extracted from Gardeniae jasminoides Ellis and can treat inflammation-related diseases. This study aimed to investigate the regulatory functions of GPA on lipopolysaccharide (LPS)-induced ALI and its potential mechanism, providing effective strategies for the clinical treatment of ALI. METHODS: ALI models were constructed by LPS in Sprague-Dawley rats and pulmonary epithelial cells. The function of GPA was investigated by hematoxylin-eosin staining, lung function assessment, Western blot, Masson staining, and Sirius Red staining, quantitative real-time PCR, enzyme-linked immunosorbent assay, cell counting kit-8 assay, apoptosis analysis, and immunofluorescence assays. RESULTS: Functionally, GPA increased survival, relieved pulmonary epithelial function in response to LPS, repressed pulmonary fibrosis and inflammation caused by ALI in vivo; GPA also repressed pulmonary epithelial cell injury and inflammation induced by LPS in vitro. Mechanistically, GPA decreased the protein levels of TLR4 and MyD88 and accelerated the nuclear export of p65, suggesting that GPA repressed the activation of p65. CONCLUSION: GPA protected LPS-induced ALI through the TLR4/MyD88 signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Glucosídeos Iridoides , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Lipopolissacarídeos/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Transdução de Sinais , Receptor 4 Toll-Like , Fator 88 de Diferenciação Mieloide
9.
Phytomedicine ; 103: 154258, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716540

RESUMO

BACKGROUND: New targets and strategies are urgently needed for the identification and development of anabolic drugs for osteoporosis. Farnesoid X receptor (FXR) is a promising novel therapeutic target for bone metabolism diseases. Although used clinically, FXR agonists have obvious side effects; therefore, the development of new FXR agonists for the treatment of osteoporosis would be welcomed. Geniposidic acid (GPA) is a bioactive compound extracted from Eucommiae cortex, which is used for treating arthritis, osteoporotic fractures, and hypertension. However, the therapeutic effects of GPA against osteoporosis remain underexplored. PURPOSE: This study aims to reveal the potential osteogenic effects of FXR and to explore the effect of GPA on bone formation, osteoporosis treatment, and FXR signaling. STUDY DESIGN & METHODS: The role of FXR in promoting bone formation was evaluated in Fxr knockout (Fxr-/-) mice and cell models. GPA activation of FXR was evaluated by molecular docking and luciferase reporter gene assays. Thirty female C57BL/6J mice were randomly assigned into a sham operation group (Sham) and four ovariectomized (OVX) groups (n=6 each) and were treated with vehicle or different doses of GPA (25, 50, and 100 mg/kg/day). The therapeutic effect of GPA on osteoporosis was systematically analyzed by performing bone histomorphometry and measuring serum biochemical parameters, and the molecular mechanism was also evaluated. Furthermore, the action of GPA in Fxr-/- mice was evaluated to investigate its dependency on FXR in promoting bone formation and treating osteoporosis. RESULTS: We found that FXR was highly expressed in bone tissues and enriched in osteoblasts. Notably, deletion of FXR significantly reduced the bone formation rate and bone mass of the Fxr-/- mice compared with wild-type mice. Furthermore, using a high throughput drug screening strategy based on fluorescent reporter genes, we found that GPA functions as a natural agonist of FXR. We confirmed the activities of GPA on FXR activation and osteogenesis in both osteoblast differentiation models and OVX-induced osteoporosis models. We revealed that GPA strongly promotes bone formation by activating FXR/RUNX2 signaling. Moreover, the osteoporotic therapeutic effect of GPA was abolished in Fxr-/- mice. CONCLUSION: This study demonstrated that FXR is a promising target for treating osteoporosis and that GPA promotes bone formation in OVX-induced osteoporosis by activating FXR signaling. These findings provide novel insight into the mechanism by which GPA promotes bone formation and more evidence for its application in the treatment of osteoporosis.


Assuntos
Glucosídeos Iridoides , Osteogênese , Osteoporose , Receptores Citoplasmáticos e Nucleares , Animais , Diferenciação Celular , Feminino , Glucosídeos Iridoides/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Osteoblastos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ovariectomia , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
J Prev Alzheimers Dis ; 9(1): 158-171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35098987

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a major cause of dementia, which is a growing global health problem and has a huge impact on individuals and society. As the modifying role of geniposidic acid (GPA) has been suggested in AD, this study sets out to determine if and how GPA treatment affects AD progression in mice. METHODS: Potential downstream target genes of GPA during AD were identified by bioinformatics analysis, revealing GAP43 as a primary candidate protein. Then, mPrP-APPswe/PS1De9 AD transgenic mice were treated with GPA via intragastric administration. This allowed for gain- and loss-of-function assays of candidate proteins being carried out with or without GPA treatment, after which behavioral tests could be conducted for mice. Cortical neuron apoptosis was measured by TUNEL staining, Amyloid ß-protein (Aß) expression in cerebral cortex by Thioflavin-s staining, and Aß, IL-1ß, IL-6, IL-4 and TNF-α levels in cerebral cortex by ELISA. GAP43 expression in cerebral cortex of mice was detected by immunohistochemistry. Primary cortical neurons of embryonic mice were isolated and induced by Aß1-42 to construct AD cell model. Cell viability was assessed by CCK-8, and axon growth by immunofluorescence. RESULTS: GPA administration significantly improved the cognitive impairment, reducing Aß accumulation and neuronal apoptosis in AD mice, and alleviated inflammation and axonal injury of Aß1-42-induced neurons. GAP43 was shown experimentally to be the target of GPA in AD. Silencing of GAP43 repressed the neuroprotective effect of GPA treatment on AD mice. GPA elevated GAP43 expression via PI3K/AKT pathway activation and ultimately improved nerve injury in AD mice. CONCLUSION: GPA activates a PI3K/AKT/GAP43 regulatory axis to alleviate AD progression in mice.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Glucosídeos Iridoides , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Biomed Pharmacother ; 141: 111901, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328117

RESUMO

INTRODUCTION: Eucommia ulmoides leaves are used as Tochu tea, which has a blood pressure lowering effect of unknown mechanism. PURPOSE AND METHODS: The effects of Tochu tea and its component, geniposidic acid, on blood pressure and renal hemodynamics were investigated in Dahl salt-sensitive (DS) rats received 1% saline solution from 4 weeks of age. At 9 weeks of age, 1% saline alone (DSHS), Tochu tea extract added 1% saline (DSHS+T), or geniposidic acid added 1% saline (DSHS+G) was administered for another 4 weeks. DS rats fed with tap water were used as controls (DSLS). At 13 weeks, the blood pressure, the renal plasma flow (RPF) and the renal NADPH oxidase, endothelial nitric oxide synthase (eNOS) were examined. RESULTS: Blood pressure in DSHS rats was significantly increased in comparison to DSLS (144 vs. 196 mmHg, p < 0.01), and was significantly reduced in DSHS+T (158 mmHg) and DSHS+G (162 mmHg) rats. RPF in DSHS+T rats was significantly higher than in DSHS rats (p < 0.05). The expression of NADPH oxidase in DSHS rats was enhanced in comparison to DSLS rats; however, it was suppressed in DSHS+T and DSHS+G rats, and the NO production by eNOS was increased; thus, RPF was improved. The urinary Na excretion in DSHS rats was higher than that in DSLS rats; however it was further increased in DSHS+T rats without changes in the tubular Na transporters. CONCLUSION: Tochu tea and geniposidic acid suppressed NADPH oxidase, increased eNOS, and improved blood pressure and renal hemodynamics.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Eucommiaceae/química , Glucosídeos Iridoides/farmacologia , Extratos Vegetais/farmacologia , Circulação Renal/efeitos dos fármacos , Animais , Citocinas/metabolismo , Masculino , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Folhas de Planta/química , Ratos , Ratos Endogâmicos Dahl
12.
Antioxidants (Basel) ; 10(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205671

RESUMO

Two compounds that can prolong the replicative lifespan of yeast, geniposidic acid (Compound 1) and geniposide (Compound 2), were isolated from Gardenia jasminoides Ellis. Compared with Compound 1, Compound 2 was different at C11 and showed better bioactivity. On this basis, seven new geniposidic derivatives (3-9) were synthesized. Geniposidic 4-isoamyl ester (8, GENI), which remarkably prolonged the replicative and chronological lifespans of K6001 yeast at 1 µM, was used as the lead compound. Autophagy and antioxidative stress were examined to clarify the antiaging mechanism of GENI. GENI increased the enzymes activities and gene expression levels of superoxide dismutase (SOD) and reduced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) to improve the survival rate of yeast under oxidative stress. In addition, GENI did not extend the replicative lifespan of ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆cat, and ∆gpx mutants with K6001 background. The free green fluorescent protein (GFP) signal from the cleavage of GFP-Atg8 was increased by GENI. The protein level of free GFP showed a considerable increase and was time-dependent. Furthermore, GENI failed to extend the replicative lifespans of ∆atg32 and ∆atg2 yeast mutants. These results indicated that antioxidative stress and autophagy induction were involved in the antiaging effect of GENI.

13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-907631

RESUMO

Objective:To compare the content change of 6 constituents in Plantaginis Semen from different habitats before and after salt processing. Methods:HPLC method was used to quantitatively analyze 6 ingredients in Plantaginis Semen and processed with salt including geniposidic acid, plantagoguanidinic acid, quercetin, kaempferol, verbascoside and isoverbascoside. Results:The geniposidic acid, plantagoguanidinic acid, quercetin, kaempferol, verbascoside and isoverbascoside were well separated. The linear ranges of which were 0.259 2-3.628 8 μg ( r=0.999 8), 0.054 3-0.760 5 μg ( r=0.999 6), 0.030 0-0.420 6 μg ( r=0.999 4), 0.055 6- 0.777 8 μg ( r=0.999 5), 0.287 0-4.018 0 μg ( r=0.999 8), 0.033 1-0.463 1 μg ( r=0.999 7), respectively. Average recovery rates were 98.68%, 98.46%, 98.87%, 98.99%, 98.34%, 98.75% ( n=6), respectively. There were mild differences in the contents of 6 ingredients of 8 batches of Plantaginis Semen from 5 different habitats. There were no obvious differences between the raw products and the products after salt process in Plantaginis Semen. The content of flavonoids, geniposidic acid and isoverbascoside in Plantaginis Semen were significantly increased after salt process, while the content of verbascoside was reduced. Conclusion:HPLC method to quantitatively analyze the 6 constituents in Plantaginis Semen before and after salt process could provided a reference for the quality change and the material basis for the efficacy of Plantaginis Semen before and after salt process.

14.
Food Res Int ; 134: 109252, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517903

RESUMO

Iridoid blue-based pigments can be found in fruits of genipap (Genipa americana L.). Besides being a potential source of natural blue colorant in the food industry, they have also been associated with pharmacological effects. Therefore, the recovery of iridoids by ultrasound-assisted extraction from both unripe and ripe fruits was analysed by UPLC-DAD-ESI-(-)-QTOF-MS/MS. Nine iridoids were identified from their exact masses and fragmentation pattern, namely geniposidic acid, gardenoside, genipin-1-ß-gentiobioside, geniposide, 6''-O-p-coumaroyl-1-ß-gentiobioside geniposidic acid, 6''-O-p-coumaroylgenipin-gentiobioside, genipin, 6'-O-p-coumaroyl-geniposidic acid and 6'-O-feruloyl-geniposidic acid. Among them, genipin (60.77 mg/g fdw) was found to be the most abundant iridoid in unripe genipap extract, while the ripe genipap extract mainly contained geniposide and geniposidic acid (89.48 and 25.04 mg/g fdw, respectively). It was also observed that the iridoids of the unripe genipap extract are able to scavenger DPPH, ABTS and peroxyl radicals as well as exerting a cytostatic effect against both glioma and breast cancer cell lines. This study provided information about the properties of unripe and ripe genipap extracts which can be used as a reference for further studies focusing on the potential application of G. americana L. in commercial products containing natural blue colorant with functional claims.


Assuntos
Antioxidantes , Frutas , Antioxidantes/farmacologia , Iridoides , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem
15.
Food Res Int ; 127: 108720, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882083

RESUMO

Growing awareness in favor of innovative and healthier alternatives is creating a noticeable shift from synthetic colorants to natural additives. And, such a swing in the consumer market is growing slowly but noticeably. In this context, genipap (Genipa americana L.) fruit represents an emerging source of blue colorants in Latin America with extensive application possibilities. This is despite the fact that there are few studies concerning its toxicity predictive factors. In this early-stage study we propose to investigate safety issues around genipap extract (IBBP); we also attempt to identify fingerprint profiling of both IBBP extract and solid lipid microparticles containing IBBP extract (SLM-IBBP) using in vitro assays. The main compounds identified were genipin, and genipin 1-ß-gentiobioside. Results indicated that IBBP extract, at 25 µg/mL, was able to promote DNA damage in CHO-K1 cells, suggesting a genotoxic effect. On the other hand, the SLM-IBBP inhibited almost all cancer cell lines with GI50 ranging from 0.25 µg/mL to 43.5 µg/mL. Also, IBBP-SLM seems to exert a desirable apoptosis induction (at 25 µg/mL dosage). The next steps for our work, therefore, will focus on other nanoparticle formulation approaches, in particular with the use of natural Brazilian starch. An evaluation of the metabolism and distribution of microparticles, and their safety for food and pharmaceutical purposes, are also required.


Assuntos
Frutas/química , Extratos Vegetais/farmacologia , Rubiaceae/química , Animais , Apoptose/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Lipídeos , Espectrometria de Massas , Microscopia Eletrônica
16.
Eur J Pharmacol ; 869: 172857, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31837991

RESUMO

Geniposidic acid (GPA) is an extract from Eucommia ulmoides Oliv. Bark (Eucommiaceae). Accumulating evidences have reported GPA has anti-aging, anti-oxidative stress, anti-inflammatory and neurotrophic effects on neurons. However, whether GPA could alleviate memory deficits in Alzheimer's disease animal models is not clear. We aimed to investigate the effect of GPA treatment on cognitive performance, Aß deposition and glial cells activation in the transgenic mouse model of AD. 6-7 months APP/PS1 mice were given GPA for 90 days; behavioral experiments were executed to estimate the memory and spatial learning abilities of mice, and the mechanism of neuroprotective effect of GPA was investigated with a focus on amyloid-ß deposition, astrocytes and microglia activation and neuroinflammation. GPA treatment significantly improved the spatial learning and memory abilities and also decreased cerebral amyloid-ß deposition in APP/PS1 mice. Via HE staining, we found that GPA could ameliorate histopathological changes in cerebrum. We also found that GPA treatment inhibited the activation of astrocytes and microglia, down-regulated the expression of pro-inflammatory cytokines and iNOS, and up-regulated the expression of anti-inflammatory cytokines and Arg-1. In addition, GPA down-regulated the gene expression of HMGB-1 receptors (TLR2, TLR4 and RAGE) then mediated MyD88, TRAF6 and phospho-ERK1/2, subsequently modulated the expression of key AP-1 and NF-κB family members (c-Fos, c-Jun and p65). The reversal of the pro-inflammatory state suggested GPA can serves as a multi-target candidate by alleviating Aß deposition and neuroinflammation for the auxiliary therapy of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Glucosídeos Iridoides/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Glucosídeos Iridoides/farmacologia , Memória/efeitos dos fármacos , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Presenilina-1/genética , Transdução de Sinais/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
17.
PeerJ ; 7: e6893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119085

RESUMO

BACKGROUND: A large number of secondary metabolites can be obtained from plants used for traditional medicine in two related genera (Ixora and Greenea) in the subfamily Ixoroideae (Rubiaceae), but there are only a few detailed studies on their bioactivities. Therefore, the main goals of this study were to determine the antibacterial activities of lipophilic extracts from plants of some Ixora and Greenea species native to Thailand, and to isolate some pure compounds from those extracts. Moreover, we compared the occurrence of compounds in different plant parts of samples from different habitats to better understand their variation. METHODS: A total of 56 lipophilic extracts were obtained from the leaves, stem bark, and root bark of eight Ixora and two Greenea species collected at various locations in Thailand. Isolated compounds were identified using nuclear magnetic resonance. Antimicrobial activities were evaluated against four Gram-positive and nine Gram-negative human pathogenic bacterial strains. RESULTS: Extracts from I. javanica, I. nigricans, I. brunonis, and G. montana, along with isolated scopoletin, exhibited antibacterial activities against Gram-positive methicillin-resistant Staphylococcus aureus ATCC 43300, with minimum inhibitory concentration values ranging from 64 to 256 µg/mL. The occurrence of scopoletin, isofraxidin, and geniposidic acid in lipophilic extracts showed some variation among different plant parts and species. CONCLUSIONS: Lipophilic extracts of Ixora and Greenea species have the potential to be developed as anti-Gram-positive agents, in particular to counter infections of methicillin-resistant S. aureus strains. The chemical profiles showed differences between floristic regions but similarity within the same plant parts.

18.
J Ethnopharmacol ; 239: 111925, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31055001

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: You-Gui-Yin (YGY) is a traditional Chinese recipe used for reinforcing kidney essence which is recorded in Jingyue Quanshu written by Zhang Jingyue in Ming dynasty. According to traditional Chinese medicine theory, kidney essence is associated with brain and without sufficient kidney essence, cognitive impairment may occur. AIM OF THE STUDY: In this study, we aimed to investigate the effect of YGY extract on cognitive impairment of chronic renal failure (CRF) mice and explore the mechanisms involved. MATERIALS AND METHODS: Aqueous extract of YGY was prepared from crude drugs and was quality controlled by high-performance liquid chromatography (HPLC). CRF was induced by 0.2% adenine in mice and CRF mice were intragastrically administered with 1.5 g kg-1, 3.0 g kg-1, and 6.0 g kg-1 of YGY extract. Mice were identified with CRF by determining several biochemical and physiological indexes, including creatinine clearance rate, serum creatinine, serum urea nitrogen, serum Ca, serum P, serum Mg, body weight and body temperature. Morris water maze and novel object recognition tests were conducted for evaluation of cognitive function. In addition, changes of CaMKIIα/CREB/BDNF and EPO/EPOR pathways in hippocampus were examined by detecting the protein expressions of CaMKIIα, p-CaMKIIα (Thr286), CREB1, p-CREB1 (Ser133), BDNF, EPO, EPOR, p-EPOR (Tyr485), STAT5, and AKT1 using western blotting assays. Also, the primary EPO-producing cells in brain (i.e. astrocytes) and EPO expression regulator HIF-2α were checked by fluorescence microscopy and western blotting assay, respectively. RESULTS: Nine components in YGY extract were figured out and monitored with their contents by HPLC for the quality control of YGY extract. Biochemical and physiological measurements validated the success of induction of CRF in mice, and YGY extract significantly retarded the CRF progression and ameliorated the CRF-induced cognitive impairment. The behavioral tests showed that compared with normal control mice, CRF mice had impaired cognitive function. However, treatment of YGY extract significantly ameliorated the cognitive impairment of CRF mice. Additionally, decreased expressions of hippocampal CaMKIIα, p-CaMKIIα (Thr286), CREB1, p-CREB1 (Ser133), and BDNF were observed in the hippocampus of CRF mice, but YGY extract significantly restored these protein expressions. Moreover, hippocampal EPO, EPOR, p-EPOR (Tyr485), STAT5, AKT1, and HIF-2α, as well as the number of astrocytes in CA1 zone of hippocampus were also decreased in CRF mice, while YGY extract prominently promoted the expressions of these proteins and increased the number of astrocytes. CONCLUSIONS: All the data in this study suggested that YGY extract ameliorated the cognitive impairment of CRF mice, and this amelioration was related to up-regulating the CaMKIIα/CREB/BDNF and EPO/EPOR pathways.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipocampo/efeitos dos fármacos , Falência Renal Crônica/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Eritropoetina/metabolismo , Hipocampo/metabolismo , Falência Renal Crônica/complicações , Falência Renal Crônica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptores da Eritropoetina/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Zhongguo Zhong Yao Za Zhi ; 44(4): 787-795, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30989893

RESUMO

To investigate the effects of geniposidic acid( GPA) on hepato-enteric circulation in cholestasis rats,and to explore the mechanism based on the sirtuin 1( Sirt1)-farnesol X receptor( FXR) pathway,sixty SD rats were randomly divided into 6 groups:blank control group,ANIT model group,ursodeoxycholic acid group( 100 mg·kg~(-1)·d-1 UDCA),and GPA high,medium and low( 100,50 and 25 mg·kg~(-1)·d-1) dosage groups,10 rats in each group. Corresponding drugs were intragastrically( ig) administered for10 days. After administration on day 8,all rats except blank rats were administered with 65 mg·kg~(-1)α-naphthalene isothiocyanate( ANIT) once. After the last administration,the serum levels of alanine aminotransferase( ALT),glutamine oxalacetate aminotransferase( AST),gamma-glutamyltransferase( γ-GGT),alkaline phosphatase( ALP),total bilirubin( TB) and total bile acid( TBA)were measured,and the mRNA transcription levels of Sirt1,FXR,multidrug resistant associated protein 2( MRP2),bile salt export pump( BSEP),sodium taurocholate contractible polypeptide( NTCP) in liver and apical sodium bile acid transporter( ASBT),ileum bile acid binding protein( IBABP) in ileum were detected by reverse transcription-polymerase chain reaction( RT-PCR). The protein expression levels of Sirt1,FXR and NTCP were detected by Western blot; the expression of MRP2,BSEP in liver and ASBT,IBABP in ileum were determined by immunofluorescence three staining. Primary rat hepatocytes were cultured in vitro to investigate the inhibitory effect of GPA on a potent and selective Sirt1 inhibitor( EX 527),and the mRNA and protein expression levels of Sirt1 and FXR were detected by RT-PCR and Western blot. GPA significantly decreased the levels of ALT,AST,γ-GGT,ALP,TB,TBA in serum( P<0.01) and improved the pathological damage of liver tissues in ANIT-induced cholestasis rats; significantly increased the mRNA and protein expression levels of Sirt1,FXR,MRP2,BSEP,NTCP in liver and ASBT,IBABP in ileum( P< 0.01). In vitro primary hepatocytes experiment indicated that the gene and protein expression levels of FXR and Sirt1 were noticeably improved by GPA in primary hepatocytes inhibited by EX-527( P<0.01). It was found that the improvement of GPA was in a dose-dependent manner. GPA could improve bile acid hepatointestinal circulation and play a liver protection and cholagogu role in cholestasis rats induced by ANIT.The mechanism may be that GPA activated FXR by regulating Sirt1,a key regulator of oxidative stress injury,and then the activated FXR could regulate protein of bile acid hepato-enteric circulation.


Assuntos
Colestase , Animais , Glucosídeos Iridoides , Fígado , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Sirtuína 1
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-777494

RESUMO

To investigate the effects of geniposidic acid( GPA) on hepato-enteric circulation in cholestasis rats,and to explore the mechanism based on the sirtuin 1( Sirt1)-farnesol X receptor( FXR) pathway,sixty SD rats were randomly divided into 6 groups:blank control group,ANIT model group,ursodeoxycholic acid group( 100 mg·kg~(-1)·d-1 UDCA),and GPA high,medium and low( 100,50 and 25 mg·kg~(-1)·d-1) dosage groups,10 rats in each group. Corresponding drugs were intragastrically( ig) administered for10 days. After administration on day 8,all rats except blank rats were administered with 65 mg·kg~(-1)α-naphthalene isothiocyanate( ANIT) once. After the last administration,the serum levels of alanine aminotransferase( ALT),glutamine oxalacetate aminotransferase( AST),gamma-glutamyltransferase( γ-GGT),alkaline phosphatase( ALP),total bilirubin( TB) and total bile acid( TBA)were measured,and the mRNA transcription levels of Sirt1,FXR,multidrug resistant associated protein 2( MRP2),bile salt export pump( BSEP),sodium taurocholate contractible polypeptide( NTCP) in liver and apical sodium bile acid transporter( ASBT),ileum bile acid binding protein( IBABP) in ileum were detected by reverse transcription-polymerase chain reaction( RT-PCR). The protein expression levels of Sirt1,FXR and NTCP were detected by Western blot; the expression of MRP2,BSEP in liver and ASBT,IBABP in ileum were determined by immunofluorescence three staining. Primary rat hepatocytes were cultured in vitro to investigate the inhibitory effect of GPA on a potent and selective Sirt1 inhibitor( EX 527),and the mRNA and protein expression levels of Sirt1 and FXR were detected by RT-PCR and Western blot. GPA significantly decreased the levels of ALT,AST,γ-GGT,ALP,TB,TBA in serum( P<0.01) and improved the pathological damage of liver tissues in ANIT-induced cholestasis rats; significantly increased the mRNA and protein expression levels of Sirt1,FXR,MRP2,BSEP,NTCP in liver and ASBT,IBABP in ileum( P< 0.01). In vitro primary hepatocytes experiment indicated that the gene and protein expression levels of FXR and Sirt1 were noticeably improved by GPA in primary hepatocytes inhibited by EX-527( P<0.01). It was found that the improvement of GPA was in a dose-dependent manner. GPA could improve bile acid hepatointestinal circulation and play a liver protection and cholagogu role in cholestasis rats induced by ANIT.The mechanism may be that GPA activated FXR by regulating Sirt1,a key regulator of oxidative stress injury,and then the activated FXR could regulate protein of bile acid hepato-enteric circulation.


Assuntos
Animais , Ratos , Colestase , Glucosídeos Iridoides , Fígado , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Sirtuína 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...