Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Genes (Basel) ; 15(7)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39062669

RESUMO

Wheat (Triticum aestivum L.) production is adversely impacted by Septoria nodorum blotch (SNB), a fungal disease caused by Parastagonospora nodorum. Wheat breeders are constantly up against this biotic challenge as they try to create resistant cultivars. The genome-wide association study (GWAS) has become an efficient tool for identifying molecular markers linked with SNB resistance. This technique is used to acquire an understanding of the genetic basis of resistance and to facilitate marker-assisted selection. In the current study, a total of 174 bread wheat accessions from South Asia and CIMMYT were assessed for SNB reactions at the seedling stage in three greenhouse experiments at CIMMYT, Mexico. The results indicated that 129 genotypes were resistant to SNB, 39 were moderately resistant, and only 6 were moderately susceptible. The Genotyping Illumina Infinium 15K Bead Chip was used, and 11,184 SNP markers were utilized to identify marker-trait associations (MTAs) after filtering. Multiple tests confirmed the existence of significant MTAs on chromosomes 5B, 5A, and 3D, and the ones at Tsn1 on 5B were the most stable and conferred the highest phenotypic variation. The resistant genotypes identified in this study could be cultivated in South Asian countries as a preventative measure against the spread of SNB. This work also identified molecular markers of SNB resistance that could be used in future wheat breeding projects.


Assuntos
Ascomicetos , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Plântula , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Ascomicetos/patogenicidade , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plântula/genética , Plântula/microbiologia , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Marcadores Genéticos , Genótipo
2.
Data Brief ; 54: 110300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586147

RESUMO

Three F2-derived biparental doubled haploid (DH) maize populations were generated for genetic mapping of resistance to common rust. Each of the three populations has the same susceptible parent, but a different resistance donor parent. Population 1 and 3 consist of 320 lines each, population 2 consists of 260 lines. The DH lines were evaluated for their susceptibility to common rust in two years and with two replications in each year. For phenotyping, a visual score (VS) for susceptibility was assigned. Additionally, unmanned aerial vehicle (UAV) derived multispectral and thermal infrared data was recorded and combined in different vegetation indices ("remote sensing", RS). The DH lines were genotyped with the DarTseq method, to obtain data on single nucleotide polymorphisms (SNPs). After quality control, 9051 markers remained. Missing values were "imputed" by the empirical mean of the marker scores of the respective locus. We used the data for comparison of genome-wide association studies and genomic prediction when based on different phenotyping methods, that is either VS or RS data. The data may be interesting for reuse for instance for benchmarking genomic prediction models, for phytopathological studies addressing common rust, or for specifications of vegetation indices.

3.
Clin Transl Oncol ; 26(8): 1856-1871, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38581481

RESUMO

Latin American populations, characterized by intricate admixture patterns resulting from the intermingling of ancestries from European, Native American (NA) Asian, and African ancestries which result in a vast and complex genetic landscape, harboring unique combinations of novel variants. This genetic diversity not only poses challenges in traditional population genetics methods but also opens avenues for a deeper understanding of its implications in health. In cancer, the interplay between genetic ancestry, lifestyle factors, and healthcare disparities adds a layer of complexity to the varying incidence and mortality rates observed across different Latin American subpopulations. This complex interdependence has been unveiled through numerous studies, whether conducted on Latin American patients residing on the continent or abroad, revealing discernible differences in germline composition that influence divergent disease phenotypes such as higher incidence of Luminal B and Her2 breast tumors, EGFR and KRAS mutated lung adenocarcinomas in addition to an enrichment in BRCA1/2 pathogenic variants and a higher than expected prevalence of variants in colorectal cancer associated genes such as APC and MLH1. In prostate cancer novel risk variants have also been solely identified in Latin American populations. Due to the complexity of genetic divergence, inputs from each individual ancestry seem to carry independent contributions that interplay in the development of these complex disease phenotypes. By understanding these unique population characteristics, genomic ancestries hold a promising avenue for tailoring prognostic assessments and optimizing responses to oncological interventions.


Assuntos
Neoplasias , Humanos , América Latina/epidemiologia , Neoplasias/genética , Neoplasias/epidemiologia , Masculino , Feminino , Genômica , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia
4.
Biomedica ; 44(1): 45-53, 2024 03 31.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38648345

RESUMO

INTRODUCTION: Vitamin D is required for bone and mineral metabolism and participates in the regulation of the immune response. It is also linked to several chronic diseases and conditions, usually in populations of European descent. Brazil presents a high prevalence of vitamin D deficiency and insufficiency despite the widespread availability of sunlight in the country. Thus, it is important to investigate the role of vitamin D as a risk factor for disease and to establish causal relationships between vitamin D levels and health-related outcomes in the Brazilian population. OBJECTIVE: To examine genetic variants identified as determinants of serum vitamin D in genome-wide association studies of European populations and check whether the same associations are present in Brazil. If so, these single nucleotide polymorphisms (SNPs) could be developed locally as proxies to use in genetically informed causal inference methods, such as Mendelian randomization. MATERIALS AND METHODS: We extracted SNPs associated with vitamin D from the genomewide association studies catalog. We did a literature search to select papers ascertaining these variants and vitamin D concentrations in Brazil. RESULTS: GC was the gene with the strongest association with vitamin D levels, in agreement with existing findings in European populations. However, VDR was the most investigated gene, regardless of its non-existing association with vitamin D in the genomewide association studies. CONCLUSIONS: More research is needed to validate sound proxies for vitamin D levels in Brazil, for example, prioritizing GC rather than VDR.


Introducción. La vitamina D es necesaria para el metabolismo óseo y mineral, y participa en la regulación de la respuesta inmunitaria. También está relacionada con enfermedades crónicas en poblaciones europeas. En Brasil, existe una prevalencia elevada de deficiencia e insuficiencia de vitamina D, a pesar de la amplia disponibilidad de luz solar. Por lo tanto, es importante investigar el papel de la vitamina D como factor de riesgo de diversas enfermedades y establecer relaciones causales entre los niveles de vitamina D y los problemas de salud en la población brasileña. Objetivo. Examinar variantes genéticas relacionadas con la vitamina D sérica en estudios de asociación genómica de poblaciones europeas y comprobar si estas mismas están presentes en Brasil. De ser así, estos SNPs podrían utilizarse como proxies en métodos de inferencia causal, tales como la aleatorización mendeliana. Materiales y métodos. A partir del catálogo de estudios de asociación de genoma completo se extrajeron SNPs relacionados con los niveles de vitamina D. Luego se hizo una búsqueda bibliográfica para identificar los artículos que evaluaran estos SNPs y la concentración de vitamina D en Brasil. Resultados. GC fue el gen más fuertemente asociado con los niveles de vitamina D, en concordancia con los resultados existentes en poblaciones europeas. Sin embargo, el gen VDR fue el más investigado, aunque no esté vinculado con la vitamina D en los estudios de asociación de genoma completo. Conclusiones. Se necesita más investigación para validar proxies genéticos de los niveles de vitamina D en Brasil y se recomienda priorizar el gen GC en lugar de VDR.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Deficiência de Vitamina D , Vitamina D , Humanos , Brasil/epidemiologia , Vitamina D/sangue , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/epidemiologia , Receptores de Calcitriol/genética , Proteína de Ligação a Vitamina D/genética
6.
J Hered ; 115(3): 302-310, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38451162

RESUMO

The Pacific whiteleg shrimp Penaeus (Litopenaeus) vannamei is a highly relevant species for the world's aquaculture development, for which an incomplete genome is available in public databases. In this work, PacBio long-reads from 14 publicly available genomic libraries (131.2 Gb) were mined to improve the reference genome assembly. The libraries were assembled, polished using Illumina short-reads, and scaffolded with P. vannamei, Feneropenaeus chinensis, and Penaeus monodon genomes. The reference-guided assembly, organized into 44 pseudo-chromosomes and 15,682 scaffolds, showed an improvement from previous reference genomes with a genome size of 2.055 Gb, N50 of 40.14 Mb, L50 of 21, and the longest scaffold of 65.79 Mb. Most orthologous genes (92.6%) of the Arthropoda_odb10 database were detected as "complete," and BRAKER predicted 21,816 gene models; from these, we detected 1,814 single-copy orthologues conserved across the genomic references for Marsupenaeus japonicus, F. chinensis, and P. monodon. Transcriptomic-assembly data aligned in more than 99% to the new reference-guided assembly. The collinearity analysis of the assembled pseudo-chromosomes against the P. vannamei and P. monodon reference genomes showed high conservation in different sets of pseudo-chromosomes. In addition, more than 21,000 publicly available genetic marker sequences were mapped to single-site positions. This new assembly represents a step forward to previously reported P. vannamei assemblies. It will be helpful as a reference genome for future studies on the evolutionary history of the species, the genetic architecture of physiological and sex-determination traits, and the analysis of the changes in genetic diversity and composition of cultivated stocks.


Assuntos
Genoma , Penaeidae , Penaeidae/genética , Animais , Bases de Dados Genéticas , Genômica/métodos , Anotação de Sequência Molecular
7.
Braz J Psychiatry ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467473

RESUMO

OBJECTIVE: Post-traumatic stress disorder (PTSD) is triggered by traumatic events, but genetic vulnerability and a history of childhood trauma are additional factors that may increase the risk of PTSD. Thus, our study focused on exploring the interaction between genetic susceptibility, as assessed by polygenic risk score (PRS), and traumatic events. METHODS: We evaluated 68 women with PTSD who had been sexually assaulted and 63 healthy controls without a history of sexual assault. DNA was genotyped using the Infinium Global Screening Array (Illumina), and PRS analysis was performed using PRSice. Furthermore, logistic regression models were employed to examine the interaction between childhood trauma, traumatic life events, and PTSD-PRS and how they contribute to the risk of developing PTSD. RESULTS: We found a significant association between PRS, childhood trauma (p = 0.03; OR = 1.241), and PTSD. Additionally, an interaction was observed between PRS, traumatic life events, and childhood trauma, particularly relating to physical and emotional neglect (p = 0.028; OR = 1.010). When examining neglect separately, we found a modest association between emotional neglect and PTSD (p = 0.014; OR = 1.086). CONCLUSIONS: Our findings highlight the importance of considering genetic vulnerability and traumatic experiences in understanding the etiology of PTSD.

8.
WIREs Mech Dis ; 16(2): e1635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059513

RESUMO

Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.


Assuntos
Interfaces Cérebro-Computador , Estimulação Encefálica Profunda , Transtornos Mentais , Humanos , Encéfalo/fisiologia , Transtornos Mentais/genética , Genômica
9.
Alzheimers Dement ; 20(2): 1298-1308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985413

RESUMO

INTRODUCTION: Genome-wide association studies (GWAS) are fundamental for identifying loci associated with diseases. However, they require replication in other ethnicities. METHODS: We performed GWAS on sporadic Alzheimer's disease (AD) including 539 patients and 854 controls from Argentina and Chile. We combined our results with those from the European Alzheimer and Dementia Biobank (EADB) in a meta-analysis and tested their genetic risk score (GRS) performance in this admixed population. RESULTS: We detected apolipoprotein E ε4 as the single genome-wide significant signal (odds ratio  = 2.93 [2.37-3.63], P = 2.6 × 10-23 ). The meta-analysis with EADB summary statistics revealed four new loci reaching GWAS significance. Functional annotations of these loci implicated endosome/lysosomal function. Finally, the AD-GRS presented a similar performance in these populations, despite the score diminished when the Native American ancestry rose. DISCUSSION: We report the first GWAS on AD in a population from South America. It shows shared genetics modulating AD risk between the European and these admixed populations. HIGHLIGHTS: This is the first genome-wide association study on Alzheimer's disease (AD) in a population sample from Argentina and Chile. Trans-ethnic meta-analysis reveals four new loci involving lysosomal function in AD. This is the first independent replication for TREM2L, IGH-gene-cluster, and ADAM17 loci. A genetic risk score (GRS) developed in Europeans performed well in this population. The higher the Native American ancestry the lower the GRS values.


Assuntos
Doença de Alzheimer , Azidas , Estudo de Associação Genômica Ampla , Humanos , Chile , Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
10.
J Anim Breed Genet ; 141(2): 179-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917404

RESUMO

Both the measurement age of a longitudinal trait and the common pre-sampling procedures used in beef cattle herds may affect the identification of a functional candidate gene (FCG) that is potentially associated with a trait. To identify the FCG that takes part in the genetic control of body weight at five different ages in a beef cattle population with and without sequential sampling, the animals were weighed at different measurement events, around 330, 385, 440, 495 and 550 days old. Genetic parameters were estimated for body weight at each age using a single trait (STM) and a random regression model (RRM). In addition, two different databases were used to estimate the genetic parameters: the first (DB100) was formed by all animals that were weighed in the five measurement events, and the second (DB70) has records of the same population, considering that 70% of the heaviest animals were selected after each measurement event. For DB100, genome-wide association studies (GWAS) were performed with 21,667 SNP markers to identify genomic windows that explained at least 1% of the genetic variance. Additionally, prioritization analyses were performed and FCGs were selected. We associated seven different FCGs with body weight at different ages. Among them, the gene DUSP10 was suggested as FCG in all five ages evaluated. Genetic parameters estimated for body weight using DB100 were similar when STM and RRM were applied. However, when DB70 was used as phenotypic data, there were differences between the two models. When the STM was applied, there were differences between the genetic parameters estimated for body weight when DB100 or DB70 were used as sources of phenotypes, but not for the estimates obtained with RRM. The importance of each gene for animal growth can change at different ages, and different genes may be more relevant to body weight at each different growth stage for beef cattle. Besides, sequential sampling can affect the GWAS results of a longitudinal trait. The age of the animal when a longitudinal trait is measured and pre-sampling can also contribute to inconsistencies in GWAS results for body weight in beef cattle, depending on the time when that data were collected, and consequently on the identification of FCG between studies, even when models that consider a covariance structure are used.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Peso Corporal/genética , Genômica , Polimorfismo de Nucleotídeo Único
11.
Microorganisms ; 11(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38138010

RESUMO

Antibiotic resistance is a significant threat to public health worldwide. Genome-wide association studies (GWAS) have emerged as a powerful tool to identify genetic variants associated with this antibiotic resistance. By analyzing large datasets of bacterial genomes, GWAS can provide valuable insights into the resistance mechanisms and facilitate the discovery of new drug targets. The present study aimed to undertake a systematic review of different GWAS approaches used for detecting genetic variants associated with antibiotic resistance. We comprehensively searched the PubMed and Scopus databases to identify relevant studies published from 2013 to February 2023. A total of 40 studies met our inclusion criteria. These studies explored a wide range of bacterial species, antibiotics, and study designs. Notably, most of the studies were centered around human pathogens such as Mycobacterium tuberculosis, Escherichia coli, Neisseria gonorrhoeae, and Staphylococcus aureus. The review seeks to explore the several GWAS approaches utilized to investigate the genetic mechanisms associated with antibiotic resistance. Furthermore, it examines the contributions of GWAS approaches in identifying resistance-associated genetic variants through binary and continuous phenotypes. Overall, GWAS holds great potential to enhance our understanding of bacterial resistance and improve strategies to combat infectious diseases.

12.
Genes (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38002947

RESUMO

Reproductive efficiency stands as a critical determinant of profitability within beef production systems. The incorporation of molecular markers can expedite advancements in reproductive performance. While the use of SNPs in association analysis is prevalent, approaches centered on haplotypes can offer a more comprehensive insight. The study used registered Simmental and Simbrah cattle genotyped with the GGP Bovine 150 k panel. Phenotypes included scrotal circumference (SC), heifer fertility (HF), stayability (STAY), and frame score (FS). After quality control, 105,129 autosomal SNPs from 967 animals were used. Haplotype blocks were defined based on linkage disequilibrium. Comparison between haplotypes and SNPs for reproductive traits and FS was conducted using Bayesian and frequentist models. 23, 13, 7, and 2 SNPs exhibited associations with FS, SC, HF, and STAY, respectively. In addition, seven, eight, seven, and one haplotypes displayed associations with FS, SC, HF, and STAY, respectively. Within these delineated genomic segments, potential candidate genes were associated.


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único , Bovinos/genética , Animais , Feminino , Haplótipos/genética , Teorema de Bayes , Fenótipo
13.
Front Plant Sci ; 14: 1218042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860246

RESUMO

In maize, doubled haploid (DH) lines are created in vivo through crosses with maternal haploid inducers. Their induction ability, usually expressed as haploid induction rate (HIR), is known to be under polygenic control. Although two major genes (MTL and ZmDMP) affecting this trait were recently described, many others remain unknown. To identify them, we designed and performed a SNP based (~9007) genome-wide association study using a large and diverse panel of 159 maternal haploid inducers. Our analyses identified a major gene near MTL, which is present in all inducers and necessary to disrupt haploid induction. We also found a significant quantitative trait loci (QTL) on chromosome 10 using a case-control mapping approach, in which 793 noninducers were used as controls. This QTL harbors a kokopelli ortholog, whose role in maternal haploid induction was recently described in Arabidopsis. QTL with smaller effects were identified on six of the ten maize chromosomes, confirming the polygenic nature of this trait. These QTL could be incorporated into inducer breeding programs through marker-assisted selection approaches. Further improving HIR is important to reduce the cost of DH line production.

14.
Front Plant Sci ; 14: 1124768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465383

RESUMO

Introduction: Mycosphaerella leaf disease (MLD) is one of the most prevalent foliar diseases of Eucalyptus globulus plantations around the world. Since resistance management strategies have not been effective in commercial plantations, breeding to develop more resistant genotypes is the most promising strategy. Available genomic information can be used to detect genomic regions associated with resistance to MLD, which could significantly speed up the process of genetic improvement. Methods: We investigated the genetic basis of MLD resistance in a breeding population of E. globulus which was genotyped with the EUChip60K SNP array. Resistance to MLD was evaluated through resistance of the juvenile foliage, as defoliation and leaf spot severity, and through precocity of change to resistant adult foliage. Genome-wide association studies (GWAS) were carried out applying four Single-SNP models, a Genomic Best Linear Unbiased Prediction (GBLUP-GWAS) approach, and a Single-step genome-wide association study (ssGWAS). Results: The Single-SNP (model K) and GBLUP-GWAS models detected 13 and 16 SNP-trait associations in chromosomes 2, 3 y 11; whereas the ssGWAS detected 66 SNP-trait associations in the same chromosomes, and additional significant SNP-trait associations in chromosomes 5 to 9 for the precocity of phase change (proportion of adult foliage). For this trait, the two main regions in chromosomes 3 and 11 were identified for the three approaches. The SNPs identified in these regions were positioned near the key miRNA genes, miR156.5 and miR157.4, which have a main role in the regulation of the timing of vegetative change, and also in the response to environmental stresses in plants. Discussion: Our results demonstrated that ssGWAS was more powerful in detecting regions that affect resistance than conventional GWAS approaches. Additionally, the results suggest a polygenic genetic architecture for the heteroblastic transition in E. globulus and identified useful SNP markers for the development of marker-assisted selection strategies for resistance to MLD.

15.
Front Plant Sci ; 14: 1145858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293677

RESUMO

Common bean (Phaseolus vulgaris L.) is an important legume crop worldwide and is a major nutrient source in the tropics. Common bean reproductive development is strongly affected by heat stress, particularly overnight temperatures above 20°C. The desert Tepary bean (Phaseolus acutifolius A. Gray) offers a promising source of adaptative genes due to its natural acclimation to arid conditions. Hybridization between both species is challenging, requiring in vitro embryo rescue and multiple backcrossing cycles to restore fertility. This labor-intensive process constrains developing mapping populations necessary for studying heat tolerance. Here we show the development of an interspecific mapping population using a novel technique based on a bridging genotype derived from P. vulgaris, P. Acutifolius and P. parvifolius named VAP1 and is compatible with both common and tepary bean. The population was based on two wild P. acutifolius accessions, repeatedly crossed with Mesoamerican elite common bush bean breeding lines. The population was genotyped through genotyping-by-sequencing and evaluated for heat tolerance by genome-wide association studies. We found that the population harbored 59.8% introgressions from wild tepary, but also genetic regions from Phaseolus parvifolius, a relative represented in some early bridging crosses. We found 27 significative quantitative trait loci, nine located inside tepary introgressed segments exhibiting allelic effects that reduced seed weight, and increased the number of empty pods, seeds per pod, stem production and yield under high temperature conditions. Our results demonstrate that the bridging genotype VAP1 can intercross common bean with tepary bean and positively influence the physiology of derived interspecific lines, which displayed useful variance for heat tolerance.

16.
Am J Biol Anthropol ; 181(3): 474-482, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114747

RESUMO

Uncovering causal relationships between exposures and outcomes can be difficult in observational studies because of the potential for confounding and reverse causation to produce biased estimates. Conversely, randomized controlled trials (RCTs) provide the strongest evidence for causality but they are not always feasible. Mendelian randomization (MR) is a method that aims to strengthen causal inference using genetic variants as proxies or instrumental variables (IVs) for exposures, to overcome the above-mentioned biases. Since allele segregation occurs at random from parents to offspring, and alleles for a trait assort independently from those for other traits, MR studies have frequently been compared to "natural" RCTs. In biological anthropology (BA) relationships between variables of interest are usually evaluated using observational data, often remaining descriptive, and other approaches to causal inference have seldom been implemented. Here, we propose the use of MR to investigate cause and effect relationships in BA studies and provide examples to show how that can be done across areas of BA relevance, such as adaptation to the environment, nutrition and life history theory. While we consider MR a useful addition to the biological anthropologist's toolbox, we advocate the adoption of a wide range of methods, affected by different types of biases, in order to better answer the important causal questions for the discipline.


Assuntos
Análise da Randomização Mendeliana , Análise da Randomização Mendeliana/métodos , Causalidade , Viés , Fenótipo , Alelos
17.
Curr Issues Mol Biol ; 45(2): 799-819, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36825998

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide; the main risk factors associated with the suffering are tobacco smoking (TS) and chronic exposure to biomass-burning smoke (BBS). Different biological pathways have been associated with COPD, especially xenobiotic or drug metabolism enzymes. This research aims to identify single nucleotide polymorphisms (SNPs) profiles associated with COPD from two expositional sources: tobacco smoking and BBS. One thousand-five hundred Mexican mestizo subjects were included in the study and divided into those exposed to biomass-burning smoke and smokers. Genome-wide exome genotyping was carried out using Infinium Exome-24 kit arrays v. 1.2. Data quality control was conducted using PLINK 1.07. For clinical and demographic data analysis, Rstudio was used. Eight SNPs were found associated with COPD secondary to TS and seven SNPs were conserved when data were analyzed by genotype. When haplotype analyses were carried out, five blocks were predicted. In COPD secondary to BBS, 24 SNPs in MGST3 and CYP family genes were associated. Seven blocks of haplotypes were associated with COPD-BBS. SNPs in the ARNT2 and CYP46A1 genes are associated with COPD secondary to TS, while in the BBS comparison, SNPs in CYP2C8, CYP2C9, MGST3, and MGST1 genes were associated with increased COPD risk.

18.
Sleep ; 46(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36718043

RESUMO

The mechanisms by which the genotype interacts with nutrition during development to contribute to the variation of complex behaviors and brain morphology of adults are not well understood. Here we use the Drosophila Genetic Reference Panel to identify genes and pathways underlying these interactions in sleep behavior and mushroom body morphology. We show that early-life nutritional restriction effects on sleep behavior and brain morphology depends on the genotype. We mapped genes associated with sleep sensitivity to early-life nutrition, which were enriched for protein-protein interactions responsible for translation, endocytosis regulation, ubiquitination, lipid metabolism, and neural development. By manipulating the expression of candidate genes in the mushroom bodies (MBs) and all neurons, we confirm that genes regulating neural development, translation and insulin signaling contribute to the variable response of sleep and brain morphology to early-life nutrition. We show that the interaction between differential expression of candidate genes with nutritional restriction in early life resides in the MBs or other neurons and that these effects are sex-specific. Natural variations in genes that control the systemic response to nutrition and brain development and function interact with early-life nutrition in different types of neurons to contribute to the variation of brain morphology and adult sleep behavior.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Drosophila/genética , Encéfalo/fisiologia , Sono/fisiologia , Genes Controladores do Desenvolvimento
19.
Plant Biotechnol J ; 21(5): 1058-1072, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710373

RESUMO

The rubber tree (Hevea brasiliensis) is grown in tropical regions and is the major source of natural rubber. Using traditional breeding approaches, the latex yield has increased by sixfold in the last century. However, the underlying genetic basis of rubber yield improvement is largely unknown. Here, we present a high-quality, chromosome-level genome sequence of the wild rubber tree, the first report on selection signatures and a genome-wide association study (GWAS) of its yield traits. Population genomic analysis revealed a moderate population divergence between the Wickham clones and wild accessions. Interestingly, it is suggestive that H. brasiliensis and six relatives of the Hevea genus might belong to the same species. The selective sweep analysis found 361 obvious signatures in the domesticated clones associated with 245 genes. In a 15-year field trial, GWAS identified 155 marker-trait associations with latex yield, in which 326 candidate genes were found. Notably, six genes related to sugar transport and metabolism, and four genes related to ethylene biosynthesis and signalling are associated with latex yield. The homozygote frequencies of the causal nonsynonymous SNPs have been greatly increased under selection, which may have contributed to the fast latex yield improvement during the short domestication history. Our study provides insights into the genetic basis of the latex yield trait and has implications for genomic-assisted breeding by offering valuable resources in this new domesticated crop.


Assuntos
Hevea , Borracha , Borracha/metabolismo , Hevea/genética , Hevea/metabolismo , Látex/metabolismo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Cromossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA