Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0156321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634928

RESUMO

Wolbachia are endosymbiont bacteria known to infect arthropods causing different effects, such as cytoplasmic incompatibility and pathogen blocking in Aedes aegypti. Although several Wolbachia strains have been studied, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their obligate endosymbiont nature and its pathogen blocking ability. Motivated by the potential applications on disease control, we developed a genome-scale model of two Wolbachia strains: wMel and the strongest Dengue blocking strain known to date: wMelPop. The obtained metabolic reconstructions exhibit an energy metabolism relying mainly on amino acids and lipid transport to support cell growth that is consistent with altered lipid and cholesterol metabolism in Wolbachia-infected mosquitoes. The obtained metabolic reconstruction was then coupled with a reconstructed mosquito model to retrieve a symbiotic genome-scale model accounting for 1,636 genes and 6,408 reactions of the Aedes aegypti-Wolbachia interaction system. Simulation of an arboviral infection in the obtained novel symbiotic model represents a metabolic scenario characterized by pathogen blocking in higher titer Wolbachia strains, showing that pathogen blocking by Wolbachia infection is consistent with competition for lipid and amino acid resources between arbovirus and this endosymbiotic bacteria. IMPORTANCE Arboviral diseases such as Zika and Dengue have been on the rise mainly due to climate change, and the development of new treatments and strategies to limit their spreading is needed. The use of Wolbachia as an approach for disease control has motivated new research related to the characterization of the mechanisms that underlie its pathogen-blocking properties. In this work, we propose a new approach for studying the metabolic interactions between Aedes aegypti and Wolbachia using genome-scale models, finding that pathogen blocking is mainly influenced by competition for the resources required for Wolbachia and viral replication.


Assuntos
Aedes/microbiologia , Aedes/virologia , Arbovírus/patogenicidade , Genoma Bacteriano , Simbiose/genética , Wolbachia/genética , Wolbachia/virologia , Aminoácidos/metabolismo , Animais , Arbovírus/metabolismo , Interações entre Hospedeiro e Microrganismos , Metabolismo dos Lipídeos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Replicação Viral/fisiologia , Wolbachia/metabolismo
2.
Microorganisms ; 8(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824882

RESUMO

Streptomyces clavuligerus is a filamentous Gram-positive bacterial producer of the ß-lactamase inhibitor clavulanic acid. Antibiotics biosynthesis in the Streptomyces genus is usually triggered by nutritional and environmental perturbations. In this work, a new genome scale metabolic network of Streptomyces clavuligerus was reconstructed and used to study the experimentally observed effect of oxygen and phosphate concentrations on clavulanic acid biosynthesis under high and low shear stress. A flux balance analysis based on experimental evidence revealed that clavulanic acid biosynthetic reaction fluxes are favored in conditions of phosphate limitation, and this is correlated with enhanced activity of central and amino acid metabolism, as well as with enhanced oxygen uptake. In silico and experimental results show a possible slowing down of tricarboxylic acid (TCA) due to reduced oxygen availability in low shear stress conditions. In contrast, high shear stress conditions are connected with high intracellular oxygen availability favoring TCA activity, precursors availability and clavulanic acid (CA) production.

3.
BMC Syst Biol ; 13(1): 11, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665399

RESUMO

BACKGROUND: There is little published regarding metabolism of Salinispora species. In continuation with efforts performed towards this goal, this study is focused on new insights into the metabolism of the three-identified species of Salinispora using constraints-based modeling. At present, only one manually curated genome-scale metabolic model (GSM) for Salinispora tropica strain CNB-440T has been built despite the role of Salinispora strains in drug discovery. RESULTS: Here, we updated, and expanded the scope of the model of Salinispora tropica CNB-440T, and GSMs were constructed for two sequenced type strains covering the three-identified species. We also constructed a Salinispora core model that contains the genes shared by 93 sequenced strains and a few non-conserved genes associated with essential reactions. The models predicted no auxotrophies for essential amino acids, which was corroborated experimentally using a defined minimal medium (DMM). Experimental observations suggest possible sulfur accumulation. The Core metabolic content shows that the biosynthesis of specialised metabolites is the less conserved subsystem. Sets of reactions were analyzed to explore the differences between the reconstructions. Unique reactions associated to each GSM were mainly due to genome sequence data except for the ST-CNB440 reconstruction. In this case, additional reactions were added from experimental evidence. This reveals that by reaction content the ST-CNB440 model is different from the other species models. The differences identified in reaction content between models gave rise to different functional predictions of essential nutrient usage by each species in DMM. Furthermore, models were used to evaluate in silico single gene knockouts under DMM and complex medium. Cluster analysis of these results shows that ST-CNB440, and SP-CNR114 models are more similar when considering predicted essential genes. CONCLUSIONS: Models were built for each of the three currently identified Salinispora species, and a core model representing the conserved metabolic capabilities of Salinispora was constructed. Models will allow in silico metabolism studies of Salinispora strains, and help researchers to guide and increase the production of specialised metabolites. Also, models can be used as templates to build GSMs models of closely related organisms with high biotechnology potential.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Genômica , Modelos Biológicos , Biomassa , Genes Bacterianos/genética , Redes e Vias Metabólicas , Filogenia
4.
Biotechnol Bioeng ; 115(7): 1815-1828, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29578590

RESUMO

The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains.


Assuntos
Genoma Bacteriano , Redes e Vias Metabólicas/genética , Modelos Biológicos , Streptomyces/genética , Biologia de Sistemas/métodos , Antibacterianos/biossíntese , Engenharia Metabólica/métodos , Metabolismo Secundário
5.
Metab Eng Commun ; 2: 76-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34150511

RESUMO

Macroalgae have high potential to be an efficient, and sustainable feedstock for the production of biofuels and other more valuable chemicals. Attempts have been made to enable the co-fermentation of alginate and mannitol by Saccharomyces cerevisiae to unlock the full potential of this marine biomass. However, the efficient use of the sugars derived from macroalgae depends on the equilibrium of cofactors derived from the alginate and mannitol catabolic pathways. There are a number of strong metabolic limitations that have to be tackled before this bioconversion can be carried out efficiently by engineered yeast cells. An analysis of the redox balance during ethanol fermentation from alginate and mannitol by Saccharomyces cerevisiae using metabolic engineering tools was carried out. To represent the strain designed for conversion of macroalgae carbohydrates to ethanol, a context-specific model was derived from the available yeast genome-scale metabolic reconstructions. Flux balance analysis and dynamic simulations were used to determine the flux distributions. The model indicates that ethanol production is determined by the activity of 4-deoxy-l-erythro-5-hexoseulose uronate (DEHU) reductase (DehR) and its preferences for NADH or NADPH which influences strongly the flow of cellular resources. Different scenarios were explored to determine the equilibrium between NAD(H) and NADP(H) that will lead to increased ethanol yields on mannitol and DEHU under anaerobic conditions. When rates of mannitol dehydrogenase and DehRNADH tend to be close to a ratio in the range 1-1.6, high growth rates and ethanol yields were predicted. The analysis shows a number of metabolic limitations that are not easily identified through experimental procedures such as quantifying the impact of the cofactor preference by DEHU reductase in the system, the low flux into the alginate catabolic pathway, and a detailed analysis of the redox balance. These results show that production of ethanol and other chemicals can be optimized if a redox balance is achieved. A possible methodology to achieve this balance is presented. This paper shows how metabolic engineering tools are essential to comprehend and overcome this limitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA