Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 479-496, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470802

RESUMO

Cerebral ischemia is one of the leading causes of death and disability worldwide. The only FDA-approved treatment is recanalization with systemic tissue plasminogen activators like alteplase, although reperfusion caused by recanalization can result in neuroinflammation, which can cause brain cell apoptosis. Therefore, after an ischemic/reperfusion injury, interventions are needed to minimize the neuroinflammatory cascade. In the present study, piceatannol (PCT) was studied for its neuroprotective efficacy in a rat model of global ischemic injury by attenuating c-Jun N-terminal kinase 3 (JNK3) downstream signaling. PCT is a resveratrol analog and a polyphenolic stilbenoid naturally occurring in passion fruit and grapes. The neuroprotective efficacy of PCT (1, 5, 10 mg/kg) in ischemic conditions was assessed through pre- and post-treatment. Cerebral blood flow (CBF) and tests for functional recovery were assessed. Protein and gene expression were done for JNK3 and other inflammatory markers. A docking study was performed to identify the amino acid interaction. The results showed that PCT improved motor and memory function as measured by a functional recovery test believed to be due to an increase in cerebral blood flow. Also, the caspase signaling which promotes apoptosis was found to be down-regulated; however, nitric oxide synthase expression was up-regulated, which could explain the enhanced cerebral blood flow (CBF). According to our findings, PCT impeded c-Jun N-terminal kinase 3 (JNK3) signaling by suppressing phosphorylation and disrupting the mitochondrial apoptotic pathway, which resulted in the neuroprotective effect. Molecular docking analysis was performed to investigate the atomic-level interaction of JNK3 and PCT, which reveals that Met149, Leu206, and Lys93 amino acid residues are critical for the interaction of PCT and JNK3. According to our current research, JNK3 downstream signaling and the mitochondrial apoptosis pathway are both inhibited by PCT, which results in neuroprotection under conditions of global brain ischemia. Piceatannol attenuated JNK3 phosphorylation during the ischemic condition and prevented neuronal apoptosis.


Assuntos
Isquemia Encefálica , Estilbenos , Ratos , Animais , Neuroproteção , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Ratos Sprague-Dawley , Simulação de Acoplamento Molecular , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Isquemia Encefálica/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Aminoácidos/farmacologia , Circulação Cerebrovascular
2.
ACS Chem Neurosci ; 14(23): 4115-4127, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37967214

RESUMO

Cardiac arrest is one of the most dangerous health problems in the world. Outcome prognosis is largely based on cerebral performance categories determined by neurological evaluations. Few systemic tests are currently available to predict survival to hospital discharge. Here, we present the results from the preclinical studies of cardiac arrest and resuscitation (CAR) in mice to identify signatures of circulating immune cells as blood-derived biomarkers to predict outcomes after CAR. Two flow cytometry panels for circulating blood lymphocytes and myeloid-derived cells, respectively, were designed to correlate with neuroinflammation and neuronal and dendritic losses in the selectively vulnerable regions of bilateral hippocampi. We found that CD4+CD25+ regulatory T cells, CD11b+CD11c- and CD11b+Ly6C+Ly6G+ myeloid-derived cells, and cells positive for the costimulatory molecules CD80 and CD86 in the blood were correlated with activation of microglia and astrocytosis, and CD4+CD25+ T cells are additionally correlated with neuronal and dendritic losses. A fingerprint pattern of blood T cells and monocytes is devised as a diagnostic tool to predict CAR outcomes. Blood tests aimed at identifying these immunocyte patterns in cardiac arrest patients will guide future clinical trials to establish better prognostication tools to avoid unnecessary early withdrawal from life-sustaining treatment.


Assuntos
Encefalite , Parada Cardíaca , Humanos , Camundongos , Animais , Células Mieloides , Biomarcadores , Prognóstico
3.
Magn Reson Med ; 89(1): 299-307, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36089834

RESUMO

PURPOSE: Chemical exchange saturation transfer (CEST) MRI is promising for detecting dilute metabolites and microenvironment properties, which has been increasingly adopted in imaging disorders such as acute stroke and cancer. However, in vivo CEST MRI quantification remains challenging because routine asymmetry analysis (MTRasym ) or Lorentzian decoupling measures a combined effect of the labile proton concentration and its exchange rate. Therefore, our study aimed to quantify amide proton concentration and exchange rate independently in a cardiac arrest-induced global ischemia rat model. METHODS: The amide proton CEST (APT) effect was decoupled from tissue water, macromolecular magnetization transfer, nuclear Overhauser enhancement, guanidinium, and amine protons using the image downsampling expedited adaptive least-squares (IDEAL) fitting algorithm on Z-spectra obtained under multiple RF saturation power levels, before and after global ischemia. Omega plot analysis was applied to determine amide proton concentration and exchange rate simultaneously. RESULTS: Global ischemia induces a significant APT signal drop from intact tissue. Using the modified omega plot analysis, we found that the amide proton exchange rate decreased from 29.6 ± 5.6 to 12.1 ± 1.3 s-1 (P < 0.001), whereas the amide proton concentration showed little change (0.241 ± 0.035% vs. 0.202 ± 0.034%, P = 0.074) following global ischemia. CONCLUSION: Our study determined the labile proton concentration and exchange rate underlying the in vivo APT MRI. The significant change in the exchange rate, but not the concentration of amide proton demonstrated that the pH effect dominates the APT contrast during tissue ischemia.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Animais , Ratos , Imageamento por Ressonância Magnética/métodos , Concentração de Íons de Hidrogênio , Amidas/metabolismo , Isquemia
4.
Neurochem Res ; 48(1): 96-116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36006597

RESUMO

Strict metabolic regulation in discrete brain regions leads to neurochemical changes in cerebral ischemia. Accumulation of extracellular glutamate is one of the early neurochemical changes that take place during cerebral ischemia. Understanding the sequential neurochemical processes involved in cerebral ischemia-mediated excitotoxicity before the clinical intervention of revascularization and reperfusion may greatly influence future therapeutic strategies for clinical stroke recovery. This study investigated the influence of time and brain regions on excitatory neurochemical indices in the bilateral common carotid artery occlusion (BCCAO) model of global ischemia. Male Wistar rats were subjected to BCCAO for 15 and 60 min to evaluate the effect of ischemia duration on excitatory neurochemical indices (dopamine level, glutamine synthetase, glutaminase, glutamate dehydrogenase, aspartate aminotransferase, monoamine oxidase, acetylcholinesterase, and Na+ K+ ATPase activities) in the discrete brain regions (cortex, striatum, cerebellum, and hippocampus). BCCAO without reperfusion caused marked time and brain region-dependent alterations in glutamatergic, glutaminergic, dopaminergic, monoaminergic, cholinergic, and electrogenic homeostasis. Prolonged BCCAO decreased cortical, striatal, and cerebellar glutamatergic, glutaminergic, dopaminergic, cholinergic, and electrogenic activities; increased hippocampal glutamatergic, glutaminergic, dopaminergic, and cholinergic activities, increased cortical and striatal monoaminergic activity; decreased cerebellar and hippocampal monoaminergic activity; and decreased hippocampal electrogenic activity. This suggests that excitatory neurotransmitters play a major role in the tissue-specific metabolic plasticity and reprogramming that takes place between the onset of cardiac arrest-mediated global ischemia and clinical intervention of recanalization. These tissue-specific neurochemical indices may serve as diagnostic and therapeutic strategies for mitigating the progression of ischemic damage before revascularization.


Assuntos
Acetilcolinesterase , Isquemia Encefálica , Ratos , Animais , Masculino , Acetilcolinesterase/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia , Artéria Carótida Primitiva
5.
Peptides ; 160: 170922, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496010

RESUMO

ProTα discovered as a necrosis-inhibitor from the conditioned medium of cortical culture also shows a potent survival action in brain and retinal ischemia/reperfusion models. The proposed mechanisms are the initial cell death mode switch from necrosis to apoptosis, which is subsequently inhibited by neurotrophic factors in vivo. It should be noted that ProTα and its derived hexapeptide P6Q completely suppress the cerebral hemorrhage induced by late tPA treatment (4.5 h) after the brain ischemia/reperfusion. Mechanisms underlying their beneficial actions may be related to the fact that ProTα inhibits the production of matrix metalloproteases (MMPs) in microglia and vascular endothelial cells. However, as P6Q inhibits MMPs in vascular endothelial cells, but not in microglia, the suppression of MMP production in endothelial cells seems to play major roles in the late tPA-induced hemorrhage. Although the tPA-treatments could enable the survival of patients with stroke, the post-stroke sequelae are the next clinical issues to be solved. The use of small peptide P6Q revealed the blockade of post-stroke pain, depression and memory-learning deficits in animal models. Furthermore, recent studies also showed that P6Q supplementation increased the viability of human induced pluripotent stem (iPS) cell-derived retinal pigment epithelium cell suspensions during the storage and P6Q attenuated the cisplatin-induced acute kidney injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Animais , Humanos , Células Endoteliais/metabolismo , Isquemia , Necrose/complicações , Necrose/prevenção & controle , Isquemia Encefálica/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Encéfalo/metabolismo , Hemorragia/complicações , Modelos Animais de Doenças
6.
Front Cell Neurosci ; 17: 1308247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188667

RESUMO

Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100ß, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.

7.
Cell Rep ; 41(3): 111488, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260999

RESUMO

Cells possess several conserved adaptive mechanisms to respond to stress. Stress signaling is initiated to reestablish cellular homeostasis, but its effects on the tissue or systemic levels are far less understood. We report that the secreted luminal domain of the endoplasmic reticulum (ER) stress transducer CREB3L2 (which we name TAILS [transmissible activator of increased cell livability under stress]) is an endogenous, cell non-autonomous activator of neuronal resilience. In response to oxidative insults, neurons secrete TAILS, which potentiates hedgehog signaling through direct interaction with Sonic hedgehog (SHH) and its receptor PTCH1, leading to improved antioxidant signaling and mitochondrial function in neighboring neurons. In an in vivo model of ischemic brain injury, administration of TAILS enables survival of CNS neurons and fully preserves cognitive function in behavioral tests. Our findings reveal an SHH-mediated, cell non-autonomous branch of cellular stress signaling that confers resilience to oxidative stress in the mature brain, providing protection from ischemic neurodegeneration.


Assuntos
Antioxidantes , Proteínas Hedgehog , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
8.
Cell Tissue Res ; 389(3): 443-463, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35688947

RESUMO

We previously demonstrated that osteopontin (OPN) is closely associated with calcium precipitation in response to ischemic brain insults. The present study was designed to elucidate the possible association between deposition of OPN and progressive neurodegeneration in the ischemic hippocampus. To address this, we analyzed the OPN deposits in the rat hippocampus after global cerebral ischemia in the chronic phase (4 to 12 weeks) after reperfusion using immunoelectron microscopy and correlative light and electron microscopy. We identified three different types of OPN deposits based on their morphological characteristics, numbered according to the order in which they evolved. Dark degenerative cells that retained cellular morphology were frequently observed in the pyramidal cell layer, and type I OPN deposits were degenerative mitochondria that accumulated among these cells. Type II deposits evolved into more complex amorphous structures with prominent OPN deposits within their periphery and within degenerative mitochondria-like structures. Finally, type III had large concentric laminated structures with irregularly shaped bodies in the center of the deposits. In all types, OPN expression was closely correlated with calcification, as confirmed by calcium fixation and Alizarin Red staining. Notably, type II and III deposits were highly reminiscent of corpora amylacea, glycoprotein-rich aggregates found in aged brains, or neurodegenerative disease, which was further confirmed by ubiquitin expression and periodic acid-Schiff staining. Overall, our data provide a novel link between ongoing neurodegeneration and the formation of corpora amylacea-like structures and calcium deposits in the ischemic hippocampus, suggesting that OPN may play an important role in such processes.


Assuntos
Doenças Neurodegenerativas , Osteopontina , Animais , Cálcio/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Osteopontina/metabolismo , Ratos
9.
Brain Res Bull ; 184: 99-105, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452748

RESUMO

Peroxiredoxin 2 (Prx2) regulates oxidative stress response in neuronal injury. The present study examined the effects of Prx2 deletion on transient global ischemia-induced hippocampal-dependent memory impairment. First, 20-min bilateral common carotid artery occlusion (BCCAO)-reperfusion and sham-operated control procedures were conducted in 6- or 7-month-old Prx2 knockout and wild-type mice. The cognitive status of these mice was assessed using the Morris water maze task with a hidden platform and a novel object recognition task 7 days after the 20-min BCCAO. Next, to evaluate neuronal degeneration and oxidative stress in the CA1 subregion of the hippocampus critical for learning and memory, we measured immunoreactive Fluoro-jade C (FJC)-positive signals and 4-hydroxy-2-trans-nonenal (4-HNE) levels, respectively. The 20-min BCCAO induced cognitive impairments and increased the intensity of FJC-positive signals and 4-HNE levels of CA1 in Prx2 knockout mice but not in wild-type mice. These results suggest that Prx2 deficiency reduces resilience to transient global ischemia.


Assuntos
Isquemia Encefálica , Peroxirredoxinas , Animais , Hipocampo , Proteínas de Homeodomínio , Isquemia , Aprendizagem em Labirinto , Camundongos , Estresse Oxidativo , Peroxirredoxinas/genética
10.
Mol Neurobiol ; 59(4): 2552-2562, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091962

RESUMO

Epigenetics, including histone modifications, play a significant role in central nervous system diseases, but the underlying mechanism remains to be elucidated. The aim of this study was to evaluate the role of H3K27me3 in regulating transcriptomic and pathogenic mechanisms following global ischemic stroke. Here, we found that in vivo ischemic/reperfusion (I/R) injury induced marked upregulation of H3K27me3 in the hippocampus. The administration of GSK-126 to rat brains decreased the levels of H3K27me3 in the hippocampus and reduced neuronal apoptosis after experimental stroke. Furthermore, ChIP-seq data demonstrated that the primary role of GSK-126 in the ischemic brain is to reduce H3K27me3 enrichment, mediating negative regulation of the execution phase of apoptosis and the MAPK signaling pathway. Further study suggested that the protective role of GSK-126 in ischemic rats was antagonized by U0126, an inhibitor of ERK1/2. Collectively, we demonstrated the potential of H3K27me3 as a novel stroke therapeutic target, and GSK-126 exerted a neuroprotective function in ischemic brain injury, which might be associated with activation of the MAPK/ERK pathway.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Apoptose , Isquemia Encefálica/patologia , Infarto Cerebral/complicações , Histonas/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/metabolismo
11.
Cell Transplant ; 30: 9636897211041585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470528

RESUMO

Global cerebral ischemia induced by cardiac arrest usually leads to poor neurological outcomes. Numerous studies have focused on ways to prevent ischemic damage in the brain, however clinical therapies are still limited. Our previous studies revealed that delta opioid receptor (DOR) activation with [d-Ala2, d-Leu5] enkephalin (DADLE), a DOR agonist, not only significantly promotes neuronal survival on day 3, but also improves spatial memory deficits on days 5-9 after ischemia. However, the neurological mechanism underlying DADLE-induced cognitive recovery remains unclear. This study first examined the changes in neuronal survival in the CA1 region at the advanced time point (day 7) after ischemia/reperfusion (I/R) injury and found a significant amelioration of damaged CA1 neurons in the rats treated with DADLE (2.5 nmol) when administered at the onset of reperfusion. The structure and function of CA1 neurons on days 3 and 7 post-ischemia showed significant improvements in both the density of the injured dendritic spines and the basic transmission of the impaired CA3-CA1 synapses following DADLE treatment. The molecular changes involved in DADLE-mediated synaptic modulation on days 3 and 7 post-ischemia implied the time-related differential regulation of PKCα-MARCKS on the dendritic spine structure and of BDNF- ERK1/2-synapsin I on synaptic function, in response to ischemic/reperfusion injury as well as to DADLE treatment. Importantly, all the beneficial effects of DADLE on ischemia-induced cellular, synaptic, and molecular deficits were eliminated by the DOR inhibitor naltrindole (2.5 nmol). Taken together, this study suggested that DOR activation-induced protective signaling pathways of PKCα-MARCKS involved in the synaptic morphology and BDNF-ERK-synapsin I in synaptic transmission may be engaged in the cognitive recovery in rats suffering from advanced cerebral ischemia.


Assuntos
Isquemia Encefálica/terapia , Encefalinas/metabolismo , Hipocampo/fisiopatologia , Peptídeos Opioides/metabolismo , Receptores Opioides delta/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
12.
Prog Brain Res ; 265: 317-375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34560924

RESUMO

Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology and methylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.


Assuntos
Parada Cardíaca , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Heme Oxigenase-1 , Humanos , Azul de Metileno/farmacologia , Suínos , Regulação para Cima
13.
Biology (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439951

RESUMO

Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.

14.
Acta Pharmacol Sin ; 42(6): 909-920, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32968209

RESUMO

The protein levels and activities of calpain-1 and calpain-2 are increased in cardiac mitochondria under pathological conditions including ischemia, diabetes, and sepsis, and transgenic overexpression of mitochondrial-targeted calpain-1 induces dilated heart failure, which underscores an important role of increased calpain in mitochondria in mediating myocardial injury. However, it remains to be determined whether selective inhibition of calpain in mitochondria protects the heart under pathological conditions. In this study, we generated transgenic mice overexpressing mitochondrial-targeted calpastatin in cardiomyocytes. Their hearts were isolated and subjected to global ischemia/reperfusion. Hyperglycemia was induced in the transgenic mice by injections of STZ. We showed that transgenic calpastatin was expressed exclusively in mitochondria isolated from their hearts but not from other organs including skeletal muscle and lung tissues. Transgenic overexpression of mitochondrial-targeted calpastatin significantly attenuated mitochondrial oxidative stress and cell death induced by global ischemia/reperfusion in isolated hearts, and ameliorated mitochondrial oxidative stress, cell death, myocardial remodeling and dysfunction in STZ-treated transgenic mice. The protective effects of mitochondrial-targeted calpastatin were correlated with increased ATP5A1 protein expression and ATP synthase activity in isolated hearts subjected to global ischemia/reperfusion and hearts of STZ-treated transgenic mice. In cultured rat myoblast H9c2 cells, overexpression of mitochondrial-targeted calpastatin maintained the protein levels of ATP5A1 and ATP synthase activity, prevented mitochondrial ROS production and decreased cell death following hypoxia/reoxygenation, whereas upregulation of ATP5A1 or scavenging of mitochondrial ROS by mito-TEMPO abrogated mitochondrial ROS production and decreased cell death. These results confirm the role of calpain in myocardial injury, suggesting that selective inhibition of calpain in myocardial mitochondria by mitochondrial-targeted calpastatin is an effective strategy for alleviating myocardial injury and dysfunction in cardiac pathologies.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Cardiomegalia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/fisiologia , Animais , Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/genética , Cardiomegalia/etiologia , Diabetes Mellitus Experimental/complicações , Fibrose/etiologia , Fibrose/metabolismo , Masculino , Camundongos Transgênicos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Aging (Albany NY) ; 13(2): 2681-2699, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323541

RESUMO

Acute ischemia-reperfusion (IR)-induced brain injury is further exacerbated by a series of slower secondary pathogenic events, including delayed apoptosis due to neurotrophic factor deficiency. Neuritin, a neurotrophic factor regulating nervous system development and plasticity, is a potential therapeutic target for treatment of IR injury. In this study, Neuritin-overexpressing transgenic (Tg) mice were produced by pronuclear injection and offspring with high overexpression used to generate a line with stable inheritance for testing the neuroprotective capacity of Neuritin against transient global ischemia (TGI). Compared to wild-type mice, transgenic mice demonstrated reduced degradation of the DNA repair factor poly [ADP-ribose] polymerase 1 (PARP 1) in the hippocampus, indicating decreased hippocampal apoptosis rate, and a greater number of surviving hippocampal neurons during the first week post-TGI. In addition, Tg mice showed increased expression of the regeneration markers NF-200, synaptophysin, and GAP-43, and improved recovery of spatial learning and memory. Our findings exhibited that the window of opportunity of neural recovery in Neuritin transgenic mice group had a tendency to move ahead after TGI, which indicated that Neuritin can be used as a potential new therapeutic strategy for improving the outcome of cerebral ischemia injury.


Assuntos
Regeneração do Cérebro/genética , Encéfalo/fisiopatologia , Memória , Neurônios/metabolismo , Neuropeptídeos/genética , Traumatismo por Reperfusão/fisiopatologia , Aprendizagem Espacial , Animais , Apoptose , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Artéria Carótida Primitiva , Sobrevivência Celular , Feminino , Proteína GAP-43/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris , Proteínas de Neurofilamentos/metabolismo , Neuropeptídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Mensageiro/metabolismo , Ratos , Recuperação de Função Fisiológica , Traumatismo por Reperfusão/metabolismo , Sinaptofisina/metabolismo
16.
Front Cell Dev Biol ; 8: 584314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344448

RESUMO

The main stem cell niche for neurogenesis in the adult mammalian brain is the subventricular zone (SVZ) that extends along the cerebral lateral ventricles. We aimed at characterizing the initial molecular responses of the macaque monkey SVZ to transient, global cerebral ischemia. We microdissected tissue lining the anterior horn of the lateral ventricle (SVZa) from 7 day post-ischemic and sham-operated monkeys. Transcriptomics shows that in ischemic SVZa, 541 genes were upregulated and 488 genes were down-regulated. The transcription data encompassing the upregulated genes revealed a profile typical for quiescent stem cells and astrocytes. In the primate brain the SVZ is morphologically subdivided in distinct and separate ependymal and subependymal regions. The subependymal contains predominantly neural stem cells (NSC) and differentiated progenitors. To determine in which SVZa region ischemia had evoked transcriptional upregulation, sections through control and ischemic SVZa were analyzed by high-throughput in situ hybridization for a total of 150 upregulated genes shown in the www.monkey-niche.org image database. The majority of the differentially expressed genes mapped to the subependymal layers on the striatal or callosal aspect of the SVZa. Moreover, a substantial number of upregulated genes was expressed in the ependymal layer, implicating a contribution of the ependyma to stem cell biology. The transcriptome analysis yielded several novel gene markers for primate SVZa including the apelin receptor that is strongly expressed in the primate SVZa niche upon ischemic insult.

17.
J Biomed Sci ; 27(1): 99, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126859

RESUMO

BACKGROUND: Global ischemia is the resulting effect of a cardiopulmonary arrest (CPA). Presently there is no effective treatment to address neurological deficits in patients who survived a CPA. Granulocyte-colony stimulating factor is a growth factor (G-CSF) with a plethora of beneficial effects, including neuroprotection. Clinical application of human G-CSF (hG-CSF) is limited due to its plasma half-life of 4 h. Therefore, novel approaches need to be investigated that would (1) enable prolonged manifestation of hG-CSF and (2) demonstrate G-CSF efficacy from studying the underlying protective mechanisms of hG-CSF. In our previous work, we used the self-complementary adeno-associated virus (stereotype2: scAAV2) as a vector to transfect the hG-CSF gene into the global ischemic brain of a mouse. As an extension of that work, we now seek to elucidate the protective mechanisms of hG-CSF gene therapy against endoplasmic reticulum induced stress, mitochondrial dynamics and autophagy in global ischemia. METHOD: A single drop of either AAV-CMV-hG-CSF or AAV-CMV-GFP was dropped into the conjunctival sac of the Swiss Webster mouse's left eye, 30-60 min after bilateral common artery occlusion (BCAO). The efficacy of the expressed hG-CSF gene product was analyzed by monitoring the expression levels of endoplasmic reticulum stress (ER), mitochondrial dynamics and autophagic proteins over 4- and 7-days post-BCAO in vulnerable brain regions including the striatum, overlying cortex (frontal brain regions) and the hippocampus (middle brain regions). Statistical analysis was performed using mostly One-Way Analysis of variance (ANOVA), except for behavioral analysis, which used Repeated Measures Two-Way ANOVA, post hoc analysis was performed using the Tukey test. RESULTS: Several biomarkers that facilitated cellular death, including CHOP and GRP78 (ER stress) DRP1 (mitochondrial dynamics) and Beclin 1, p62 and LC3-ll (autophagy) were significantly downregulated by hG-CSF gene transfer. hG-CSF gene therapy also significantly upregulated antiapoptotic Bcl2 while downregulating pro-apoptotic Bax. The beneficial effects of hG-CSF gene therapy resulted in an overall improvement in functional behavior. CONCLUSION: Taken together, this study has substantiated the approach of sustaining the protein expression of hG-CSF by eye drop administration of the hG-CSF gene. In addition, the study has validated the efficacy of using hG-CSF gene therapy against endoplasmic reticulum induced stress, mitochondrial dynamics and autophagy in global ischemia.


Assuntos
Autofagia , Estenose das Carótidas/fisiopatologia , Estresse do Retículo Endoplasmático , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Dinâmica Mitocondrial , Acidente Vascular Cerebral/terapia , Animais , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Masculino , Camundongos
18.
Crit Care Clin ; 36(4): 737-752, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32892826

RESUMO

Cardiac arrest results from a broad range of etiologies that can be broadly grouped as sudden and asphyxial. Animal studies point to differences in injury pathways invoked in the heart and brain that drive injury and outcome after these different forms of cardiac arrest. Present guidelines largely ignore etiology in their management recommendations. Existing clinical data reveal significant heterogeneity in the utility of presently employed resuscitation and postresuscitation strategies based on etiology. The development of future neuroprotective and cardioprotective therapies should also take etiology into consideration to optimize the chances for successful translation.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Asfixia , Encéfalo , Modelos Animais de Doenças , Coração , Humanos , Ressuscitação
19.
J Stroke Cerebrovasc Dis ; 29(9): 104942, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807413

RESUMO

BACKGROUND AND OBJECTIVES: Studies implicate the lung in moderating systemic immune activation via effects on circulating leukocytes. In this study, we investigated whether targeted expression of the antioxidant extracellular superoxide dismutase (SOD3) within the lung would influence post-ischemic peripheral neutrophil activation and CNS reperfusion injury. METHODS: Adult, male mice expressing human SOD3 within type II pneumocytes were subjected to 15 min of transient global cerebral ischemia. Three days post-reperfusion, lung and brain tissue was collected and analyzed by immunohistochemistry for inflammation and injury markers. In vitro motility and neurotoxicity assays were conducted to ascertain the direct effects of hSOD3 on PMN activation. Results were compared against C57BL/6 age and sex-matched controls. RESULTS: Relative to wild-type controls, hSOD3 heterozygous mice exhibited a reduction in lung inflammation, blood-brain barrier damage, and post-ischemic neuronal injury within the hippocampus and cortex. PMNs harvested from hSOD3 mice were also resistant to LPS priming, slower-moving, and less toxic to primary neuronal cultures. CONCLUSIONS: Constitutive, focal expression of hSOD3 is neuroprotective in a model of global cerebral ischemia-reperfusion injury. The underlying mechanism of SOD3-dependent protection is attributable in part to effects on the activation state and toxic potential of circulating neutrophils. These results implicate lung-brain coupling as a determinant of cerebral ischemia-reperfusion injury and highlight post-stroke lung inflammation as a potential therapeutic target in acute ischemic cerebrovascular injuries.


Assuntos
Células Epiteliais Alveolares/enzimologia , Isquemia Encefálica/enzimologia , Encéfalo/metabolismo , Neurônios/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Pneumonia/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Superóxido Dismutase/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade Inata , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Neutrófilos/imunologia , Pneumonia/enzimologia , Pneumonia/genética , Pneumonia/imunologia , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Transdução de Sinais , Superóxido Dismutase/genética
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(4): 480-487, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32691554

RESUMO

OBJECTIVE: To investigate the effects and the mechanism of geniposide on the neuroinflammation occured in the neurodegeneration course of a chronic cerebral hypoperfusion rat model. METHODS: Permanent bilateral common carotid arteries occlusions was performed to induce gradient cognitive deficit in rats. The sham group was used as control group. Then 18 rats that met the Screening Criteria were randomly selected 8 weeks post surgery, and were randomly divided into three groups, the 2-VO rats with saline solution group (2-VO+saline group), 2-VO rats with 50 mg/kg per day geniposide group (2-VO+G50) and 2-VO rats with 100 mg/kg per day geniposide group (2-VO+G100). All intervention groups were daily administered with geniposide or saline for 4 weeks. The sham-operated rats were administrated with saline. Then the rats were tested for Morris water maze to evaluate the memory and learning ability. Rats were sacrificed to obtain cortex and hippocampus tissues for HE staining and to detect expression level of glial fibrillary acidic protein (GFAP), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB), and the level of inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. RESULTS: The 2-VO+saline group rats showed significant longer escape latency and less percent time in target quadrant, compared with sham-operation group ( P<0.05). The escape latency of 2-VO+G50 and 2-VO+G100 groups were shorter than the 2-VO+saline group ( P<0.05), but still longer than the sham group ( P<0.05), the percent time in target quadrant of which were more than the 2-VO+saline group and less than the sham group. However, there was no significant difference between these two groups. HE staining of sham group showed that neurons in the cortex and hippocampus lined up in order, cellar nucleus were big and globular. HE staining results showed that there were obviously neuoral cells loss, severe cytomorphosis, structural disappearance and nuclear fragmentation in the 2-VO+saline group. The 2-VO+G50 and 2-VO+G100 groups showed less neurodamage than the 2-VO+saline group with less neuoral cells loss, cytomorphosis and ambiguous nucleus. GFAP, iNOS, NF-κB were all highly expressed in the process of cognitive dysfunction in rats after chronic cerebral ischemia, however geniposide intervention (50 and 100 mg/kg per day) significantly decreased the expression of the above proteins. In addition, much more TNF-α and IL-6 were released in brain induced by chronic cerebral ischemia, and the levels were decreased after chronic geniposide oral treatment. No significant differences were detected between 2-VO+G50 and 2-VO+G100 groups. CONCLUSION: These findings demonstrated that geniposide significantly prevented cognition deterioration induced by chronic cerebral hypoperfusion in rats. Geniposide inhibited neuroinflammation occurred in the process of chronic cerebral ischemia probably via reducing iNOS and NF-κB expression and suppressing the release of inflammatory factor TNF-α and IL-6.


Assuntos
Isquemia Encefálica , Transtornos Cognitivos , Hipocampo , Iridoides , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Iridoides/farmacologia , Iridoides/uso terapêutico , Aprendizagem em Labirinto/efeitos dos fármacos , Distribuição Aleatória , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA