Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
1.
Function (Oxf) ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984988

RESUMO

Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis. Thrombin-induced mesangial remodeling was found in diabetic patients, and expression of the corresponding protease-activated receptors (PARs) in the renal mesangium was reported. However, the functional PAR-mediated signaling in mesangial cells was not examined. This study investigated protease-activated mechanisms regulating mesangial cell calcium waves that may play an essential role in the mesangial proliferation or constriction of the arteriolar cells. Our results indicate that coagulation proteases like thrombin induce synchronized oscillations in cytoplasmic Ca2+ concentration of mesangial cells. The oscillations required PAR1 GPCRs-related activation, but not a PAR4, and were further mediated presumably through store-operated calcium entry and TRPC3 channel activity. Understanding thrombin signaling pathways and their relation to mesangial cells' contractile or synthetic (proliferative) phenotype may play a role in the development of chronic kidney disease and requires further investigation.

2.
Physiol Rep ; 12(13): e16129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955668

RESUMO

Cardiotrophin-1 (CT-1), a member of the interleukin (IL)-6 cytokine family, has renoprotective effects in mouse models of acute kidney disease and tubulointerstitial fibrosis, but its role in glomerular disease is unknown. To address this, we used the mouse model of nephrotoxic nephritis to test the hypothesis that CT-1 also has a protective role in immune-mediated glomerular disease. Using immunohistochemistry and analysis of single-cell RNA-sequencing data of isolated glomeruli, we demonstrate that CT-1 is expressed in the glomerulus in male mice, predominantly in parietal epithelial cells and is downregulated in mice with nephrotoxic nephritis. Furthermore, analysis of data from patients revealed that human glomerular disease is also associated with reduced glomerular CT-1 transcript levels. In male mice with nephrotoxic nephritis and established proteinuria, administration of CT-1 resulted in reduced albuminuria, prevented podocyte loss, and sustained plasma creatinine, compared with mice administered saline. CT-1 treatment also reduced fibrosis in the kidney cortex, peri-glomerular macrophage accumulation and the kidney levels of the pro-inflammatory mediator complement component 5a. In conclusion, CT-1 intervention therapy delays the progression of glomerular disease in mice by preserving kidney function and inhibiting renal inflammation and fibrosis.


Assuntos
Citocinas , Glomérulos Renais , Camundongos Endogâmicos C57BL , Animais , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Modelos Animais de Doenças , Humanos , Fibrose , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/tratamento farmacológico
3.
Regen Ther ; 26: 275-280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38993536

RESUMO

In vitro models of kidneys have limited effectiveness owing to the complex structure and functions of the kidney when compared with other organs. Therefore many renal function evaluations are currently being carried out through animal experiments. In contrast, efforts are being made to apply biomimetic systems, such as organ-on-a-chip, which is based on microfluidic device technology, to serve as an in vitro model for the kidney. These systems aimed to recreate a physiological cultivation environment. This review has provided an overview of organ-on-a-chip research focused on glomeruli and tubules as in vitro models for the kidney and discusses future prospects.

4.
Front Physiol ; 15: 1410764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966231

RESUMO

Introduction: Mechanical stresses and strains exerted on the glomerular cells have emerged as potentially influential factors in the progression of glomerular disease. Renal autoregulation, the feedback process by which the afferent arteriole changes in diameter in response to changes in blood pressure, is assumed to control glomerular mechanical stresses exerted on the glomerular capillaries. However, it is unclear how the two major mechanisms of renal autoregulation, the afferent arteriole myogenic mechanism and tubuloglomerular feedback (TGF), each contribute to the maintenance of glomerular mechanical homeostasis. Methods: In this study, we made a mathematical model of renal autoregulation and combined this model with an anatomically accurate model of glomerular blood flow and filtration, developed previously by us. We parameterized the renal autoregulation model based on data from previous literature, and we found evidence for an increased myogenic mechanism sensitivity when TGF is operant, as has been reported previously. We examined the mechanical effects of each autoregulatory mechanism (the myogenic, TGF and modified myogenic) by simulating blood flow through the glomerular capillary network with and without each mechanism operant. Results: Our model results indicate that the myogenic mechanism plays a central role in maintaining glomerular mechanical homeostasis, by providing the most protection to the glomerular capillaries. However, at higher perfusion pressures, the modulation of the myogenic mechanism sensitivity by TGF is crucial for the maintenance of glomerular mechanical homeostasis. Overall, a loss of renal autoregulation increases mechanical strain by up to twofold in the capillaries branching off the afferent arteriole. This further corroborates our previous simulation studies, that have identified glomerular capillaries nearest to the afferent arteriole as the most prone to mechanical injury in cases of disturbed glomerular hemodynamics. Discussion: Renal autoregulation is a complex process by which multiple feedback mechanisms interact to control blood flow and filtration in the glomerulus. Importantly, our study indicates that another function of renal autoregulation is control of the mechanical stresses on the glomerular cells, which indicates that loss or inhibition of renal autoregulation may have a mechanical effect that may contribute to glomerular injury in diseases such as hypertension or diabetes. This study highlights the utility of mathematical models in integrating data from previous experimental studies, estimating variables that are difficult to measure experimentally (i.e. mechanical stresses in microvascular networks) and testing hypotheses that are historically difficult or impossible to measure.

5.
Front Endocrinol (Lausanne) ; 15: 1357294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872969

RESUMO

Objective: To investigate the correlation between vibration sensory threshold (VPT) and renal function, including glomerulus and renal tubule, in patients with type 2 diabetes mellitus (T2DM). Methods: A total of 1274 patients with T2DM who were enrolled in the Department of Endocrinology of the First Affiliated Hospital of Fujian Medical University between January 2017 and June 2020 were included. Patients were grouped according to VPT levels and divided into three groups, including the normal VPT group (VPT<15V), the mild-moderate elevated VPT group (VPT15~25V), and the severely elevated VPT group (VPT≥25 V). Linear correlation analysis was used to analyze the correlation between VPT and renal functions, including glomerulus markers urine microalbumin (MA) and urinary immunoglobulin G (U-IgG), and renal tubule marker α1-microglobulin (α1-MG). Chronic kidney disease (CKD) was defined according to Kidney Disease Improving Global Outcomes (KDIGO) criteria. The binary logistic regression of the relation between VPT and CKD, eGFR<60 ml/min, and UACR >30 mg/g were expressed. Results: In the mild-moderate and severely elevated VPT group, injury biomarkers of glomerulus (MA and U-IgG), renal tubule (α1-MG), and the incidence of CKD, eGFR<60 ml/min, and UACR > 30 mg/g were gradually increased compared with the normal VPT group. Furthermore, patients with diabetes and severely elevated VPT had significantly higher levels of MA (ß=197.54, p=0.042) and α1-MG (ß=11.69, p=0.023) compared to those with normal VPT. Also, patients with mild-moderate elevated VPT demonstrate significantly higher levels of MA (ß=229.02, p=0.005). Patients in mild-moderate elevated VPT group (OR=1.463, 95% CI 1.005-2.127; OR=1.816, 95% CI 1.212-2.721) and severely elevated VPT group (OR=1.704, 95% CI 1.113-2.611; OR=2.027, 95% CI 1.248-3.294) are at a higher incidence of CKD and elevated levels of UACR>30mg/g compared to those in the VPT normal group. Moreover, the incidence of positive Upro was notably higher in the severely elevated VPT group (OR=1.738, 95% CI 1.182-2.556). However, this phenomenon was not observed in the incidence of eGFR <60 ml/min. Conclusion: A higher VPT is positively associated with the incidence of CKD in patients with T2DM, particularly with elevated UACR. VPT may serve as a marker for glomerulus and renal tubule injury.


Assuntos
Diabetes Mellitus Tipo 2 , Limiar Sensorial , Vibração , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Limiar Sensorial/fisiologia , Taxa de Filtração Glomerular , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/epidemiologia , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/epidemiologia , Adulto , Testes de Função Renal , Túbulos Renais/fisiopatologia , Rim/fisiopatologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38867675

RESUMO

Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells communicate via endocrine and paracrine signaling mechanisms to maintain structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels modulates the functions of all three cell types. The last two decades have witnessed pivotal advances in understanding of Ca2+ channel function and regulation in glomerular cells, particularly non-voltage gated Ca2+ channels, in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage gated Ca2+ channel signaling in glomerular capillary endothelium, mesangial cells and podocytes. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-D-aspartate receptors and purinergic 2X receptors also are discussed. This update of Ca2+ channel functions in the renal corpuscle and their cellular signaling cascades is intended to inform development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.

7.
ACS Appl Mater Interfaces ; 16(27): 35447-35462, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940537

RESUMO

Membranous nephropathy (MN) is a common immune-mediated glomerular disease that requires the development of safe and highly effective therapies. Celastrol (CLT) has shown promise as a therapeutic molecule candidate, but its clinical use is currently limited due to off-target toxicity. Given that excess levels of reactive oxygen species (ROS) contributing to podocyte damage is a key driver of MN progression to end-stage renal disease, we rationally designed ROS-responsive cationic polymeric nanoparticles (PPS-CPNs) with a well-defined particle size and surface charge by employing poly(propylene sulfide)-polyethylene glycol (PPS-PEG) and poly(propylene sulfide)-polyethylenimine (PPS-PEI) to selectively deliver CLT to the damaged glomerulus for MN therapy. Experimental results show that PPS-CPNs successfully crossed the fenestrated endothelium, accumulated in the glomerular basement membrane (GBM), and were internalized by podocytes where rapid drug release was triggered by the overproduction of ROS, thereby outperforming nonresponsive CLT nanotherapy to alleviate subepithelial immune deposits, podocyte foot process effacement, and GBM expansion in a rat MN model. Moreover, the ROS-responsive CLT nanotherapy was associated with significantly lower toxicity to major organs than free CLT. These results suggest that encapsulating CLT into PPS-CPNs can improve efficacy and reduce toxicity as a promising treatment option for MN.


Assuntos
Glomerulonefrite Membranosa , Nanopartículas , Triterpenos Pentacíclicos , Podócitos , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Ratos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Polietilenoglicóis/química , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Ratos Sprague-Dawley , Humanos , Masculino , Polímeros/química , Polímeros/farmacologia , Sulfetos/química , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Polietilenoimina/química , Portadores de Fármacos/química
8.
J Environ Sci (China) ; 145: 75-87, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844325

RESUMO

Prednisone is a synthetic glucocorticoid that is commonly used in both human and veterinary medication. Now, it is also recognized as an emerging environmental contaminant. Pregnant women may be exposed to prednisone actively or passively through multiple pathways and cause developmental toxicity to the fetus. However, the impact of prenatal prednisone exposure (PPE) on fetal kidney development remains unclear. In this study, pregnant mice were administered prednisone intragastrically during full-term pregnancy with different doses (0.25, 0.5, or 1 mg/(kg·day)), or at the dose of 1 mg/(kg·day) in different gestational days (GD) (GD0-9, GD10-18, or GD0-18). The pregnant mice were euthanized on GD18. HE staining revealed fetal kidney dysplasia, with an enlarged glomerular Bowman's capsule space and a reduced capillary network in the PPE groups. The expression of the podocyte and the mesangial cell marker genes was significantly reduced in the PPE groups. However, overall gene expression in renal tubules and collecting ducts were markedly increased. All of the above effects were more pronounced in high-dose, full-term pregnancy, and female fetuses. Studies on the mechanism of the female fetal kidney have revealed that PPE reduced the expression of Six2, increased the expression of Hnf1ß, Hnf4α, and Wnt9b, and inhibited the expression of glial cell line-derived neurotrophic factor (GDNF) and Notch signaling pathways. In conclusion, this study demonstrated that there is a sex difference in the developmental toxicity of PPE to the fetal kidney, and the time effect is manifested as full-term pregnancy > early pregnancy > mid-late pregnancy.


Assuntos
Rim , Prednisona , Feminino , Animais , Gravidez , Camundongos , Rim/efeitos dos fármacos , Rim/embriologia , Prednisona/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna/efeitos adversos
9.
Pharmaceuticals (Basel) ; 17(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794195

RESUMO

Chronic kidney disease (CKD) affects more than 10% of the global population, and its incidence is increasing, partially due to an increase in the prevalence of disease risk factors. Acute kidney injury (AKI) is an independent risk factor for CKD and end-stage renal disease (ESRD). The pathogenic mechanisms of CKD provide several potential targets for its treatment. However, due to off-target effects, conventional drugs for CKD typically require high doses to achieve adequate therapeutic effects, leading to long-term organ toxicity. Therefore, ideal treatments that completely cure the different types of kidney disease are rarely available. Several approaches for the drug targeting of the kidneys have been explored in drug delivery system research. Nanotechnology-based drug delivery systems have multiple merits, including good biocompatibility, suitable degradability, the ability to target lesion sites, and fewer non-specific systemic effects. In this review, the development, potential, and limitations of low-molecular-weight protein-lysozymes, polymer nanomaterials, and lipid-based nanocarriers as drug delivery platforms for treating AKI and CKD are summarized.

10.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791159

RESUMO

Glomerulonephritis (GN) is characterized by podocyte injury or glomerular filtration dysfunction, which results in proteinuria and eventual loss of kidney function. Progress in studying the mechanism of GN, and developing an effective therapy, has been limited by the absence of suitable in vitro models that can closely recapitulate human physiological responses. We developed a microfluidic glomerulus-on-a-chip device that can recapitulate the physiological environment to construct a functional filtration barrier, with which we investigated biological changes in podocytes and dynamic alterations in the permeability of the glomerular filtration barrier (GFB) on a chip. We also evaluated the potential of GN-mimicking devices as a model for predicting responses to human GN. Glomerular endothelial cells and podocytes successfully formed intact monolayers on opposite sides of the membrane in our chip device. Permselectivity analysis confirmed that the chip was constituted by a functional GFB that could accurately perform differential clearance of albumin and dextran. Reduction in cell viability resulting from damage was observed in all serum-induced GN models. The expression of podocyte-specific marker WT1 was also decreased. Albumin permeability was increased in most models of serum-induced IgA nephropathy (IgAN) and membranous nephropathy (MN). However, sera from patients with minimal change disease (MCD) or lupus nephritis (LN) did not induce a loss of permeability. This glomerulus-on-a-chip system may provide a platform of glomerular cell culture for in vitro GFB in formation of a functional three-dimensional glomerular structure. Establishing a disease model of GN on a chip could accelerate our understanding of pathophysiological mechanisms of glomerulopathy.


Assuntos
Glomerulonefrite , Glomérulos Renais , Dispositivos Lab-On-A-Chip , Podócitos , Humanos , Podócitos/metabolismo , Podócitos/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomerulonefrite/metabolismo , Glomerulonefrite/fisiopatologia , Glomerulonefrite/patologia , Barreira de Filtração Glomerular/metabolismo , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/fisiopatologia , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/fisiopatologia , Permeabilidade , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Nefrite Lúpica/fisiopatologia , Sobrevivência Celular , Nefrose Lipoide/metabolismo , Nefrose Lipoide/patologia , Nefrose Lipoide/fisiopatologia
11.
Front Mol Neurosci ; 17: 1381534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783902

RESUMO

Functions of the cerebellar cortex, from motor learning to emotion and cognition, depend on the appropriate molecular composition at diverse synapse types. Glutamate receptor distributions have been partially mapped using immunogold electron microscopy. However, information is lacking on the distribution of many other components, such as Shank2, a postsynaptic scaffolding protein whose cerebellar dysfunction is associated with autism spectrum disorders. Here, we used an adapted Magnified Analysis of the Proteome, an expansion microscopy approach, to map multiple glutamate receptors, scaffolding and signaling proteins at single synapse resolution in the cerebellar cortex. Multiple distinct synapse-selective distribution patterns were observed. For example, AMPA receptors were most concentrated at synapses on molecular layer interneurons and at climbing fiber synapses, Shank1 was most concentrated at parallel fiber synapses on Purkinje cells, and Shank2 at both climbing fiber and parallel fiber synapses on Purkinje cells but little on molecular layer interneurons. Our results are consistent with gene expression data but also reveal input-selective targeting within Purkinje cells. In specialized glomerular structures of the granule cell layer, AMPA receptors as well as most other synaptic components preferentially targeted to synapses. However, NMDA receptors and the synaptic GTPase activating protein SynGAP preferentially targeted to extrasynaptic sites. Thus, glomeruli may be considered integrative signaling units through which mossy fibers differentially activate synaptic AMPA and extrasynaptic NMDA receptor complexes. Furthermore, we observed NMDA receptors and SynGAP at adherens junctions, suggesting a role in structural plasticity of glomeruli. Altogether, these data contribute to mapping the cerebellar 'synaptome'.

13.
J Pharmacopuncture ; 27(1): 1-13, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38560336

RESUMO

Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.

14.
Comput Med Imaging Graph ; 115: 102375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599040

RESUMO

Glomerulus morphology on renal pathology images provides valuable diagnosis and outcome prediction information. To provide better care, an efficient, standardized, and scalable method is urgently needed to optimize the time-consuming and labor-intensive interpretation process by renal pathologists. This paper proposes a deep convolutional neural network (CNN)-based approach to automatically detect and classify glomeruli with different stains in renal pathology images. In the glomerulus detection stage, this paper proposes a flattened Xception with a feature pyramid network (FX-FPN). The FX-FPN is employed as a backbone in the framework of faster region-based CNN to improve glomerulus detection performance. In the classification stage, this paper considers classifications of five glomerulus morphologies using a flattened Xception classifier. To endow the classifier with higher discriminability, this paper proposes a generative data augmentation approach for patch-based glomerulus morphology augmentation. New glomerulus patches of different morphologies are generated for data augmentation through the cycle-consistent generative adversarial network (CycleGAN). The single detection model shows the F1 score up to 0.9524 in H&E and PAS stains. The classification result shows that the average sensitivity and specificity are 0.7077 and 0.9316, respectively, by using the flattened Xception with the original training data. The sensitivity and specificity increase to 0.7623 and 0.9443, respectively, by using the generative data augmentation. Comparisons with different deep CNN models show the effectiveness and superiority of the proposed approach.


Assuntos
Aprendizado Profundo , Glomérulos Renais , Humanos , Glomérulos Renais/diagnóstico por imagem , Glomérulos Renais/patologia , Redes Neurais de Computação , Interpretação de Imagem Assistida por Computador/métodos , Nefropatias/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/patologia , Processamento de Imagem Assistida por Computador/métodos
15.
J Transl Med ; 22(1): 397, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684996

RESUMO

BACKGROUND: Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. METHODS: A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. RESULTS: Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. CONCLUSION: Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.


Assuntos
Inteligência Artificial , Nefropatias Diabéticas , Glomérulos Renais , Humanos , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/classificação , Glomérulos Renais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Redes Neurais de Computação
16.
Early Hum Dev ; 191: 105986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460342

RESUMO

BACKGROUND: The number of infants born during the peri-viable period who survive has been increasing. AIM: To clarify renal function in infants from the time of birth during the peri-viable period until their due date. STUDY DESIGN: This retrospective cohort study was conducted at a single center. SUBJECTS: We reviewed the data of infants born at ≤28 weeks of gestation between 2018 and 2022 at our hospital. The infants were divided into the following groups: born at 22-24 weeks vs. 25-28 weeks (appropriate-for-gestational age [AGA] infants), and AGA infants vs. small-for-gestational age (SGA) infants (born at 22-28 weeks). OUTCOME MEASURES: We compared the perinatal data and renal function of the infants from birth until their due date. RESULTS: Eighty-one infants were included. Their serum creatinine, fractional excretion of sodium, and urine glucose levels were high or positive soon after birth but gradually improved. The urine albumin level was significantly higher among AGA infants born at 22-24 weeks, even at term equivalent age, than among those born at 25-28 weeks. CONCLUSIONS: Persistent renal insufficiency was observed even around the term equivalent age in peri-viable infants. Follow-up data collected after the neonatal period should be investigated in these infants.


Assuntos
Recém-Nascido Pequeno para a Idade Gestacional , Rim , Recém-Nascido , Lactente , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Estudos Longitudinais , Idade Gestacional
17.
Am J Physiol Renal Physiol ; 326(5): F862-F875, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511222

RESUMO

IgA nephropathy (IgAN) is characterized by glomerular deposition of immune complexes (ICs) consisting of IgA1 with O-glycans deficient in galactose (Gd-IgA1) and Gd-IgA1-specific IgG autoantibodies. These ICs induce kidney injury, and in the absence of disease-specific therapy, up to 40% of patients with IgAN progress to kidney failure. IgA1 with its clustered O-glycans is unique to humans, which hampered development of small-animal models of IgAN. Here, we used a model wherein engineered ICs (EICs) formed from human Gd-IgA1 and recombinant human IgG autoantibody are injected into nude mice to induce glomerular injury mimicking human IgAN. In this model, we assessed the protective effects of sparsentan, a single-molecule dual endothelin angiotensin receptor antagonist (DEARA) versus vehicle on EIC-induced glomerular proliferation and dysregulation of gene expression in the kidney. Oral administration of sparsentan (60 or 120 mg/kg daily) to mice intravenously injected with EIC attenuated the EIC-induced glomerular hypercellularity. Furthermore, analysis of changes in the whole kidney transcriptome revealed that key inflammatory and proliferative biological genes and pathways that are upregulated in this EIC model of IgAN were markedly reduced by sparsentan, including complement genes, integrin components, members of the mitogen-activated protein kinase family, and Fc receptor elements. Partial overlap between mouse and human differentially expressed genes in IgAN further supported the translational aspect of the immune and inflammatory components from our transcriptional findings. In conclusion, our data indicate that in the mouse model of IgAN, sparsentan targets immune and inflammatory processes leading to protection from mesangial hypercellularity.NEW & NOTEWORTHY The mechanisms by which deposited IgA1 immune complexes cause kidney injury during early phases of IgA nephropathy are poorly understood. We used an animal model we recently developed that involves IgA1-IgG immune complex injections and determined pathways related to the induced mesangioproliferative changes. Treatment with sparsentan, a dual inhibitor of endothelin type A and angiotensin II type 1 receptors, ameliorated the induced mesangioproliferative changes and the associated alterations in the expression of inflammatory genes and networks.


Assuntos
Complexo Antígeno-Anticorpo , Modelos Animais de Doenças , Glomerulonefrite por IGA , Imunoglobulina A , Imunoglobulina G , Glomérulos Renais , Animais , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Redes Reguladoras de Genes , Camundongos Nus , Humanos , Camundongos , Proliferação de Células/efeitos dos fármacos
18.
Small ; : e2310781, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488770

RESUMO

Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.

19.
Clin Kidney J ; 17(2): sfae019, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370429

RESUMO

Background: The Banff Classification may not adequately address protocol transplant biopsies categorized as normal in patients experiencing unexplained graft function deterioration. This study seeks to employ convolutional neural networks to automate the segmentation of glomerular cells and capillaries and assess their correlation with transplant function. Methods: A total of 215 patients were categorized into three groups. In the Training cohort, glomerular cells and capillaries from 37 patients were manually annotated to train the networks. The Test cohort (24 patients) compared manual annotations vs automated predictions, while the Application cohort (154 protocol transplant biopsies) examined predicted factors in relation to kidney function and prognosis. Results: In the Test cohort, the networks recognized histological structures with Precision, Recall, F-score and Intersection Over Union exceeding 0.92, 0.85, 0.89 and 0.74, respectively. Univariate analysis revealed associations between the estimated glomerular filtration rate (eGFR) at biopsy and relative endothelial area (r = 0.19, P = .027), endothelial cell density (r = 0.20, P = .017), mean parietal epithelial cell area (r = -0.38, P < .001), parietal epithelial cell density (r = 0.29, P < .001) and mesangial cell density (r = 0.22, P = .010). Multivariate analysis retained only endothelial cell density as associated with eGFR (Beta = 0.13, P = .040). Endothelial cell density (r = -0.22, P = .010) and mean podocyte area (r = 0.21, P = .016) were linked to proteinuria at biopsy. Over 44 ± 29 months, 25 patients (16%) reached the primary composite endpoint (dialysis initiation, or 30% eGFR sustained decline), with relative endothelial area, mean endothelial cell area and parietal epithelial cell density below medians linked to this endpoint [hazard ratios, respectively, of 2.63 (P = .048), 2.60 (P = .039) and 3.23 (P = .019)]. Conclusion: This study automated the measurement of intraglomerular cells and capillaries. Our results suggest that the precise segmentation of endothelial and epithelial cells may serve as a potential future marker for the risk of graft loss.

20.
Soins Gerontol ; 29(165): 10-20, 2024.
Artigo em Francês | MEDLINE | ID: mdl-38331520

RESUMO

The kidney performs several major functions: it eliminates toxins produced by cellular or xenobiotic metabolism, regulates the homeostasis of the internal environment and plays a hormonal role, producing erythropoietin, calcitriol and renin. Maintaining the body's homeostasis (hydric, ionic [sodium, potassium, calcium, phosphorus, etc.] or acid-base balance) requires the successive action of plasma filtration, followed by reabsorption/secretion mechanisms, which take place in the various portions of the kidney's functional unit known as the nephron. The initial part of the nephron, the glomerulus, is the site of filtration, while the tubule, which collects the glomerular filtrate, is the site of reabsorption/secretion, leading to the composition of the final urine. It's important to understand how these different structures work, before tackling the various disorders that can affect the kidney.


Assuntos
Glomérulos Renais , Rim , Humanos , Rim/anatomia & histologia , Rim/metabolismo , Glomérulos Renais/anatomia & histologia , Glomérulos Renais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...